Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = light-metal matrix composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 177
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 224
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 3244 KiB  
Article
Polymethyl Methacrylate-like Photopolymer Resin with Titanium Metal Nanoparticles Is a Promising Material for Biomedical Applications
by Dmitriy E. Burmistrov, Dmitriy A. Serov, Ilya V. Baimler, Ann V. Gritsaeva, Pavel Chapala, Aleksandr V. Simakin, Maxim E. Astashev, Ekaterina E. Karmanova, Mikhail V. Dubinin, Guliya R. Nizameeva, Shamil Z. Validov, Fatikh M. Yanbaev, Oleg G. Synyashin and Sergey V. Gudkov
Polymers 2025, 17(13), 1830; https://doi.org/10.3390/polym17131830 - 30 Jun 2025
Viewed by 315
Abstract
New materials for additive manufacturing are currently being actively studied, which both have the necessary physicochemical properties and are safe for the environment and living organisms. We have proposed a simple process for the production of composite materials based on a transparent polymethyl [...] Read more.
New materials for additive manufacturing are currently being actively studied, which both have the necessary physicochemical properties and are safe for the environment and living organisms. We have proposed a simple process for the production of composite materials based on a transparent polymethyl methacrylate-like photopolymer resin modified with metallic titanium nanoparticles. Standardized plate samples were printed from the obtained modified photopolymer resins using mask stereolithography with an LED light source array (MSLA), and their mechanical properties were evaluated. Plates were also printed, for which the surface topology, distribution of nanoparticles in the polymer matrix, chemical structure, optical properties, chemical structure, and optical properties were characterized. In the context of the impact on biological systems, the ability of materials to enhance the formation of ROS and affect the main biomacromolecules was demonstrated. At the same time, the developed composite materials inhibit the growth of E. coli bacterial cells, and the bactericidal effect of the surfaces of the obtained materials was shown. Despite the significant antibacterial properties of the synthesized materials, no negative impact on the growth and development of adhesive cultures of eukaryotic cells in vitro was detected. Full article
Show Figures

Figure 1

13 pages, 1727 KiB  
Article
Simulation of the Design Performance of Carbon Fiber/Glass Fiber Hybrid-Reinforced Resin Matrix Composite Rotors
by Chong Li, Jiayou Wang, Meng Li, Haoyu Wang, Yiguo Song, Xiangzhe Meng and Ruiliang Liu
Polymers 2025, 17(12), 1668; https://doi.org/10.3390/polym17121668 - 16 Jun 2025
Viewed by 343
Abstract
Composite rotors, attributing to their leveraging characteristics of the light weight, high strength, high rigidity, corrosion resistance, and low noise, can significantly reduce the moment of inertia and enhance equipment operational efficiency. Using carbon fiber/glass fiber hybrid-reinforced resin–matrix composites as the rotor base [...] Read more.
Composite rotors, attributing to their leveraging characteristics of the light weight, high strength, high rigidity, corrosion resistance, and low noise, can significantly reduce the moment of inertia and enhance equipment operational efficiency. Using carbon fiber/glass fiber hybrid-reinforced resin–matrix composites as the rotor base material, the radial stability of a rotor can be effectively increased by regulating the fiber volume content. Meanwhile, the introduction of glass fiber not only enables the transition between the metal hub and composite rim but also optimizes the cost structure of the composite system, overcoming the economic bottleneck of single carbon fiber-reinforced resin–matrix composite rotors. This paper employs the finite element method to analyze a three-dimensional model of a composite rotor, investigating the performance of its metal hub and hybrid-reinforced resin–matrix composite rim. According to the radial stress distribution of the composite rotor during operation, the mixing ratio of carbon fiber/glass fiber is adjusted. The high-speed rotation condition of the composite rotor at 18,000 revolutions per minute is simulated to verify its safety and reliability. Full article
Show Figures

Figure 1

15 pages, 11857 KiB  
Article
Comparison of Cu Strengthened by Ionic Bonded Particles and Cu Strengthened by Metallic Bonded Particles
by Ke Han, Vince Toplosky, Rongmei Niu and Yan Xin
Materials 2025, 18(11), 2648; https://doi.org/10.3390/ma18112648 - 5 Jun 2025
Viewed by 372
Abstract
Cu matrix composites, because of their high mechanical strength, are often used as conductors in high-performance electrical applications. These composites are manufactured through thermomechanical processing, which introduces a high density of particles that act as obstacles to dislocation motion. Increasing the density of [...] Read more.
Cu matrix composites, because of their high mechanical strength, are often used as conductors in high-performance electrical applications. These composites are manufactured through thermomechanical processing, which introduces a high density of particles that act as obstacles to dislocation motion. Increasing the density of these particles enhances the mechanical strength of the conductors, which we tested under static loading. Under cyclic loading, especially pulsed electrical mechanical loading, conductors may soften, harden, or even fail. Failure is likely to occur whenever the applied stress exceeds the flow stress of the conductors. Understanding and predicting the performance of conductors under cyclic loading can help researchers estimate the lifespan of any apparatus made from these conductors. The performance of conductors depends on whether the strengthening particles are characterized by ionic interatomic bonding or metallic bonding. During fabrication, we observed both the accumulation of dislocations and the dissolution of particles (which added more solute atoms to the matrix). Because both dislocations and solute atoms tend to migrate at room temperature or higher, the complexity of microstructure changes increases in composites under cyclic loading. To minimize such complexity, we designed our test to determine fatigue properties at 77 K. We subjected the conductors to cyclic fatigue tests using a load-controlled mode (the mode most commonly used in applications). This work sheds light on the correlation between tensile properties and fatigue properties in our composite conductors. We found that the correlation varied, depending on whether the conductors had been strengthened by ionic bond or metallic bond particles. Full article
(This article belongs to the Special Issue Fatigue Crack Growth in Metallic Materials (Volume II))
Show Figures

Figure 1

18 pages, 8696 KiB  
Article
In Situ Ceramic Phase Reinforcement via Short-Pulsed Laser Cladding for Enhanced Tribo-Mechanical Behavior of Metal Matrix Composite FeNiCr-B4C (5 and 7 wt.%) Coatings
by Artem Okulov, Olga Iusupova, Alexander Stepchenkov, Vladimir Zavalishin, Elena Marchenkova, Kun Liu, Jie Li, Tushar Sonar, Aleksey Makarov, Yury Korobov, Evgeny Kharanzhevskiy, Ivan Zhidkov, Yulia Korkh, Tatyana Kuznetsova, Pei Wang and Yuefei Jia
Technologies 2025, 13(6), 231; https://doi.org/10.3390/technologies13060231 - 4 Jun 2025
Viewed by 425
Abstract
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced [...] Read more.
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced X-ray diffraction/Raman spectroscopy techniques, provided a comprehensive characterization of the coatings’ behavior under mechanical and scratch testing, shedding light on the mechanisms governing their wear resistance. Specifically, microstructural analysis revealed uniform coatings with a columnar structure and controlled defect density, showcasing an average thickness of 250 ± 20 μm and a transition zone of 80 ± 10 μm. X-ray diffraction and Raman spectroscopy confirmed the presence of α-Fe (Im-3m), γ-FeNiCr (Fm-3m), Fe2B (I-42m), and B4C (R-3m) phases, highlighting the successful incorporation of B4C reinforcement. The addition of 5 and 7 wt.% B4C significantly increased microhardness, showing enhancements up to 201% compared to the B4C-free FeNiCr coating and up to 351% relative to the AISI 1040 steel substrate, respectively. Boron carbide addition promoted a synergistic strengthening effect between the in situ formed Fe2B and the retained B4C phases. Furthermore, scratch test analysis clarified improved wear resistance, excellent adhesion, and a tailored hardness gradient. These findings demonstrated that optimized short-pulsed laser cladding, combined with moderate B4C reinforcement, is a promising route for creating robust, high-strength FeNiCr-B4C MMC coatings suitable for demanding engineering applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

38 pages, 1212 KiB  
Review
Insights into the Development of Corrosion Protection Coatings
by Monmi Saikia, Trisha Dutta, Niteen Jadhav and Deep J. Kalita
Polymers 2025, 17(11), 1548; https://doi.org/10.3390/polym17111548 - 2 Jun 2025
Viewed by 1644
Abstract
This review article focuses on providing an accumulated knowledge on state-of-the-art composite polymer coating technologies that are studied for corrosion protection. A specific focus has been given to epoxy resin-based composite systems, considering their wide use due to remarkable chemical resistance, excellent adhesion [...] Read more.
This review article focuses on providing an accumulated knowledge on state-of-the-art composite polymer coating technologies that are studied for corrosion protection. A specific focus has been given to epoxy resin-based composite systems, considering their wide use due to remarkable chemical resistance, excellent adhesion to substrate, thermal stability, and mechanical strength. The addition of various functional polymers to the epoxy matrix has spurred significant advancements in the prevention of corrosion. Light has been shed on the epoxy resin composite systems that are produced by blending with functional polymers like conductive polymers, hydrophobic polymers, etc., and nanofillers. In many cases, the formation of a passive layer at the metal/polymer interface was aided by the addition of such a functional polymer and nanofiller to the epoxy matrix. As a result, corrosive ions are prevented from penetrating by the physical barrier that composite coatings provide. Comparable blends of epoxy and polyamide, epoxy and polyester, and epoxy/poly(vinyl alcohol) and epoxy/polyurethane have superior adhesion, wear, barrier, and anticorrosion properties due to the fine dispersion of nanocarbon and inorganic nanoparticles. The several strategies used to prevent metals from corroding are covered in this review article. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Coatings and Surfaces)
Show Figures

Figure 1

12 pages, 2925 KiB  
Article
Rare Earth Fluorescent Composite Hydrogel with Controllable Color Photoluminescence for Information Encryption
by Jiajia Du, Daohai Zhang, Teng Zhou, Kunlan Diao and Zhi Lei
Polymers 2025, 17(11), 1534; https://doi.org/10.3390/polym17111534 - 30 May 2025
Viewed by 519
Abstract
In the context of the information age, the need for data security and confidentiality is becoming increasingly urgent. In this study, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) were used as the matrix, and a PVA/PEG/rare earth composite hydrogel material with controllable photoluminescence [...] Read more.
In the context of the information age, the need for data security and confidentiality is becoming increasingly urgent. In this study, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) were used as the matrix, and a PVA/PEG/rare earth composite hydrogel material with controllable photoluminescence color was successfully developed by incorporating rare earth ion doping. Through scanning electron microscopy (SEM), X-ray photoelectronic spectroscopy (XPS), X-ray diffraction (XRD), and fluorescence spectroscopy, it was confirmed that the introduction of lanthanide metal light-emitting units makes the material’s photoluminescence color adjustable from red to green, significantly improves the mechanical properties, and the compressive strength is increased from 17.6 MPa to 23 MPa, representing a 30.7% improvement. In addition, the material exhibits excellent alkaline pH response characteristics; as the concentration of NaOH solution increases, the luminous intensity gradually decays to complete quenching. Based on the adjustable light color and dynamic response characteristics, the material can realize information concealment and encryption through programmable light color changes, providing a new functional material solution for intelligent anti-counterfeiting and optical encryption. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

17 pages, 15972 KiB  
Article
Structure and Properties of Silver-Platinum-Titanium Dioxide Nanocomposite Coating
by Andrzej Dziedzic, Dariusz Augustowski, Paweł Kwaśnicki, Stanisław Adamiak, Wojciech Bochnowski, Anna Żaczek, Patrycja Skała, Bogumił Cieniek, Piotr Potera, Jakub Dziedzic, Małgorzata Kus-Liskiewicz and Dariusz Płoch
Coatings 2025, 15(5), 587; https://doi.org/10.3390/coatings15050587 - 15 May 2025
Viewed by 799
Abstract
The aim of this study was to produce a coating for protective glass glued to touch displays with high antibacterial effectiveness. This paper presents the structural, mechanical, optical, and antibacterial properties of a TiO2:Ag–Pt coating prepared by dual reactive DC and [...] Read more.
The aim of this study was to produce a coating for protective glass glued to touch displays with high antibacterial effectiveness. This paper presents the structural, mechanical, optical, and antibacterial properties of a TiO2:Ag–Pt coating prepared by dual reactive DC and RF magnetron sputtering. Characterization techniques used include XRD, TEM with EDS, SEM, AFM, nanoindentation for hardness and Young’s modulus, wettability tests, and optical property analysis. The coating exhibited columnar crystals with a width of 30–50 nm. Crystals of anatase, rutile, silver, and platinum with a size of up to 3 nm were identified. The coating deposited on glass had a concentration of 5.0 ± 0.2% at. Ag and 4.4 ± 0.1% at. Pt. The value of the optical band gap energy, corresponding to the direct transition, was 3.36 eV, while Urbach’s energy was in the order of 500 meV. The hydrophilic coating had a roughness RMS = 1.8 ± 0.2 nm, hardness HV = 6.8 ± 0.5 GPa, and Young’s modulus E = 116 ± 8 GPa. A unique combination of the phase composition of the TiO2:Ag–Pt coating, metallic Ag and Pt nanoparticles in a ceramic matrix of anatase and rutile crystallites resulted a >90% reduction of Staphylococcus aureus bacteria. This antibacterial effect was attributed to the activation of the doped semiconductor under visible light via plasmon resonance of the Ag and Pt nanoparticles, as well as a light-independent antibacterial action due to Ag+ ion release. In contrast, commercial antibacterial coatings typically achieve only around 60% bacterial reduction. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films, Volume II)
Show Figures

Figure 1

18 pages, 5155 KiB  
Article
Antibacterial UV-Curable Gel with Hydroxyapatite Nanoparticles for Regenerative Medicine in the Field of Orthopedics
by Julia A. Burunkova, Valeria V. Semykina, Vera E. Sitnikova, Dmitry M. Dolgintsev, Faliya F. Zaripova, Alina A. Ponomareva, Diana R. Mizina, Attila Csick, Sandor Kokenyesi and Anton Zhilenkov
J. Compos. Sci. 2025, 9(2), 65; https://doi.org/10.3390/jcs9020065 - 1 Feb 2025
Cited by 1 | Viewed by 1041
Abstract
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because [...] Read more.
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because it covers any surface geometry of metal implants and hardens under ultraviolet light. In this work, sorption properties, changes in porosity, and mechanical properties of the material were investigated. The conditions for obtaining hydroxyapatite (HA) nanoparticles and the presence of silicon oxide nanoparticles and organic for the shell in an aqueous medium were studied for the pH of the medium, the sequence of administration and concentration of the material components, as well as antibacterial properties. This polymer material is partially resorbable. That supports not only the growth of bone cells but also serves as a protective layer. It reduces friction between organic tissues and a metal implant and can be a solution to the problem of the aseptic instability of metal implants. The material can also be used to repair damaged bones and cartilage tissues, especially in cases where the application and curing procedure is performed using laparoscopic methods. In this work, the authors propose a simple and quite cheap method for obtaining material based on photopolymerizable acrylates and natural gelatin with nanoparticles of HA, zinc oxide, and silicon oxide. The method allows one to obtain a composite material with different nanoparticles in a polymer matrix which retain the requisite properties needed such as active-sized HA, antibacterial ZnO, and structure-forming and stability-improving SiO2 nanoparticles. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

34 pages, 12218 KiB  
Review
Significance of the Powder Metallurgy Approach and Its Processing Parameters on the Mechanical Behavior of Magnesium-Based Materials
by Sachin Kumar Sharma, Sandra Gajević, Lokesh Kumar Sharma, Dhanesh G. Mohan, Yogesh Sharma, Mladen Radojković and Blaža Stojanović
Nanomaterials 2025, 15(2), 92; https://doi.org/10.3390/nano15020092 - 9 Jan 2025
Cited by 2 | Viewed by 2768
Abstract
Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal [...] Read more.
Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics. The mechanical characteristics depend upon the fabrication methodology, composition, processing technique, and reinforcement added to the magnesium. PM is identified as the most efficient due to its ability to produce near-net shape composites with high precision, cost-effectiveness, and minimal waste. Furthermore, PM enables precise control over critical processing parameters, such as compaction pressure, sintering temperature, and particle size, which directly influence the composite’s microstructure and properties. This study highlights various reinforcements, mainly carbon nanotubes (CNTs), graphene nanoparticles (GNPs), silicon carbide (SiC), and hydroxyapatite (HAp), and their effects on improving wear, corrosion resistance, and mechanical strength. Among these, CNTs emerge as a standout reinforcement due to their ability to enhance multiple properties when used at optimal weight fractions. Further, this study delves into the interaction between reinforcement types and matrix materials, emphasizing the importance of uniform dispersion in preventing porosity and improving durability. Optimal PM conditions, such as a compaction pressure of 450 MPa, sintering temperatures between 550 and 600 °C, and sintering times of 2 h, are recommended for achieving superior mechanical performance. Emerging trends in reinforcement materials, including nanostructures and bioactive particles, are also discussed, underscoring their potential to widen the application spectrum of Mg-MMCs. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

58 pages, 25512 KiB  
Review
The Role of Non-Destructive Testing of Composite Materials for Aerospace Applications
by Thiago Luiz Lara Oliveira, Maha Hadded, Saliha Mimouni and Renata Brandelli Schaan
NDT 2025, 3(1), 3; https://doi.org/10.3390/ndt3010003 - 3 Jan 2025
Cited by 3 | Viewed by 6709
Abstract
This review examines the essential application of non-destructive testing (NDT) techniques in assessing the integrity and damage of composite materials used in aerospace engineering, focusing on polymer matrix composites (PMCs), metal matrix composites (MMCs), and ceramic matrix composites (CMCs). As these materials increasingly [...] Read more.
This review examines the essential application of non-destructive testing (NDT) techniques in assessing the integrity and damage of composite materials used in aerospace engineering, focusing on polymer matrix composites (PMCs), metal matrix composites (MMCs), and ceramic matrix composites (CMCs). As these materials increasingly replace traditional metallic and alloy components due to their advantageous properties, such as light weight, high strength, and corrosion resistance, ensuring their structural integrity becomes paramount. Here, various NDT techniques were described in detail, including ultrasonic, radiographic, and acoustic emission, among others, highlighting their significance in identifying and evaluating damages that are often invisible, yet critical, to parts safety. It stresses the need for innovation in NDT technologies to keep pace with the evolving complexity of composite materials and their applications. The review underscores the ongoing challenges and developments in NDT, advocating for enhanced techniques that provide accurate, reliable, and timely assessments to ensure the safety and durability of aerospace components. This comprehensive analysis not only illustrates current capabilities but also directs future research pathways for improving NDT methodologies in aerospace material engineering. Full article
(This article belongs to the Topic Nondestructive Testing and Evaluation)
Show Figures

Graphical abstract

26 pages, 13491 KiB  
Article
Comparative Study on the Impact of Various Non-Metallic Fibres on High-Performance Concrete Properties
by Aleksandrs Korjakins, Girts Kolendo, Vitalijs Lusis, Laura Spure, Kaspars Bondars, Diana Bajare and Genadijs Sahmenko
J. Compos. Sci. 2024, 8(11), 476; https://doi.org/10.3390/jcs8110476 - 17 Nov 2024
Cited by 2 | Viewed by 1082
Abstract
The performance of high-performance concrete has been enhanced in the present study by incorporating non-metallic fibres without altering the binder content. The impact of these fibres on high-performance concrete flexural and compression characteristics and the arrangement of fibres within the composite were systematically [...] Read more.
The performance of high-performance concrete has been enhanced in the present study by incorporating non-metallic fibres without altering the binder content. The impact of these fibres on high-performance concrete flexural and compression characteristics and the arrangement of fibres within the composite were systematically analysed. Unlike conventional practices, the authors of the research introduce various non-metallic fibres, including alkali-resistant glass fibres, carbon microfibers, three types of polypropylene microfibers, and one type of polyvinyl alcohol fibre while maintaining an equal amount of binder. The research aims to comprehensively evaluate the fibre’s influence on cement composite properties. Various types of non-metallic fibres, highlighting differences in diameters and their physical-mechanical properties with a constant amount by volume, have been considered in the research. Alkali-resistant glass and carbon fibres exhibit low values of residual post-cracking force but polyvinyl alcohol fibres demonstrate the best post-cracking behaviour, with a residual post-cracking force value. This detailed examination of fibre distribution and composition sheds light on the nuanced effects on fresh and hardened concrete properties. Notably, this work diverges from existing research by maintaining a constant binder amount and considering the quantitative distribution of fibres in a unit volume of the cement matrix, along with their aspect ratio. These findings provide valuable insights for selecting the most suitable non-metallic fibres for enhancing high-performance concrete properties. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

13 pages, 2718 KiB  
Article
Crystal Chemistry at Interfaces Between Liquid Al and Polar SiC{0001} Substrates
by Changming Fang and Zhongyun Fan
Metals 2024, 14(11), 1258; https://doi.org/10.3390/met14111258 - 6 Nov 2024
Viewed by 958
Abstract
Silicon carbide (SiC) has been widely added into light metals, e.g., Al, to enhance their mechanical performance and corrosion resistance. SiC particle-reinforced metal matrix composites (SiC-MMCs) exhibit low weight/volume ratios, high strength/hardness, high corrosion resistance, and thermal stability. They have potential applications in [...] Read more.
Silicon carbide (SiC) has been widely added into light metals, e.g., Al, to enhance their mechanical performance and corrosion resistance. SiC particle-reinforced metal matrix composites (SiC-MMCs) exhibit low weight/volume ratios, high strength/hardness, high corrosion resistance, and thermal stability. They have potential applications in aerospace, automobiles, and other specialized equipment. The macro-mechanical properties of Al/SiC composites depend on the local structures and chemical interactions at the Al/SiC interfaces at the atomic level. Moreover, the added SiC particles may act as potential nucleation sites during solidification. We investigate local atomic ordering and chemical interactions at the interfaces between liquid Al (Al(l) in short) and polar SiC substrates using ab initio molecular dynamics (AIMD) methods. The simulations reveal a rich variety of interfacial interactions. Charge transfer occurs from Al(l) to C-terminating atoms (Δq = 0.3e/Al on average), while chemical bonding between interfacial Si and Al(l) atoms is more covalent with a minor charge transfer of Δq = 0.04e/Al. The prenucleation at both interfaces is moderate with three to four recognizable layers. The information obtained here helps increase understanding of the interfacial interactions at Al/SiC at the atomic level and the related macro-mechanical properties, which is helpful in designing novel SiC-MMC materials with desirable properties and optimizing related manufacturing and machining processes. Full article
(This article belongs to the Special Issue Multi-scale Simulation of Metallic Materials (2nd Edition))
Show Figures

Figure 1

11 pages, 2522 KiB  
Article
Comparative Assessment of a Light-Curable Dental Composite Reinforced with Artificial Fibers
by Bartosz Bienias, Jolanta Kostrzewa-Janicka, Kamila Wróbel-Bednarz and Izabela Strużycka
Polymers 2024, 16(21), 2970; https://doi.org/10.3390/polym16212970 - 23 Oct 2024
Viewed by 962
Abstract
FRCs (Fiber-Reinforced Composites) are materials that are being used increasingly more often in dentistry as an alternative to traditional restorations made of ceramics or metals. The aim of this study was to carry out a comparative analysis of the strength parameters of a [...] Read more.
FRCs (Fiber-Reinforced Composites) are materials that are being used increasingly more often in dentistry as an alternative to traditional restorations made of ceramics or metals. The aim of this study was to carry out a comparative analysis of the strength parameters of a light-curable dental composite reinforced with one single band and two single bands of artificial fibers. The specimens for the strength tests were prepared in accordance with the guidelines of the PN-EN ISO 4049:2019-07 international standard. The test material covered specimens of composite reinforced with single (one or two) bands of fibers. The following bands of fibers were used: carbon (WGL), aramid (AMD) and hybrid carbon–aramid (WGL-AMD). The presence of one single band of aramid fibers caused a three-fold increase in deflection, with a simultaneous increase in the Young’s modulus of over 140%. The flexural strength of specimens reinforced with one single band of aramid fibers was higher by 280% than that control group specimens (KONT). To summarize the performed tests, the incorporation of carbon, aramid and hybrid carbon–aramid fibers into organic matrix has a significant impact on the values of the mechanical parameters of dental composites. The results indicate that particular attention should be paid to aramid fibers, which have rarely been used in dentistry so far. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop