Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = light spectrum manipulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2080 KiB  
Review
Multiple Signals Can Be Integrated into Pathways of Blue-Light-Mediated Floral Transition: Possible Explanations on Diverse Flowering Responses to Blue Light Manipulation
by Yun Kong and Youbin Zheng
Agronomy 2025, 15(7), 1534; https://doi.org/10.3390/agronomy15071534 - 25 Jun 2025
Cited by 1 | Viewed by 391
Abstract
Blue light (BL) plays a crucial role in regulating floral transition and can be precisely manipulated in controlled-environment agriculture (CEA). However, previous studies on BL-mediated flowering in CEA have produced conflicting results, likely due to species-specific responses and variations in experimental conditions (such [...] Read more.
Blue light (BL) plays a crucial role in regulating floral transition and can be precisely manipulated in controlled-environment agriculture (CEA). However, previous studies on BL-mediated flowering in CEA have produced conflicting results, likely due to species-specific responses and variations in experimental conditions (such as light spectrum and intensity) as summarized in our recent systematic review. This speculation still lacks a mechanistic explanation at the molecular level. By synthesizing recent advances in our understanding of the signaling mechanisms underlying floral transition, this review highlights how both internal signals (e.g., hormones, carbohydrates, and developmental stage) and external cues (e.g., light spectrum, temperature, nutrients, stress, and magnetic fields) are integrated into the flowering pathway mediated by BL. Key signal integration nodes have been identified, ranging from photoreceptors (e.g., cryptochromes) to downstream components such as transcription factors and central flowering regulator, FLOWERING LOCUS T (FT). This signal integration offers a potential mechanistic explanation for the previously inconsistent findings, which may arise from interspecies differences in photoreceptor composition and variation in the expression of downstream components influenced by hormonal crosstalk, environmental conditions, and developmental stage, depending on the specific context. This review provides novel molecular insights into how BL modulates floral transition through interactions with other signals. By systematically compiling and critically assessing recent research findings, we identify key research gaps and outline future directions, particularly the need for more studies in agriculturally important crops. Furthermore, this review proposes a conceptual framework for optimizing BL-based lighting strategies and exploring underexamined interaction factors in the regulation of flowering. Full article
Show Figures

Figure 1

23 pages, 8255 KiB  
Article
Growth and Floral Induction in Okra (Abelmoschus esculentus L.) Under Blue and Red LED Light and Their Alternation
by Yao Hervé Yao, Banah Florent Degni, Pascal Dupuis, Laurent Canale, Arouna Khalil Fanny, Cissé Théodore Haba and Georges Zissis
Horticulturae 2025, 11(5), 548; https://doi.org/10.3390/horticulturae11050548 - 19 May 2025
Cited by 1 | Viewed by 840
Abstract
Okra (Abelmoschus esculentus) is a tropical vegetable with high nutritional and economic value. Rich in fiber, vitamins (C, K, and B9), and minerals (magnesium, potassium, calcium, and iron), it contributes to food security in many tropical regions. Global production is estimated [...] Read more.
Okra (Abelmoschus esculentus) is a tropical vegetable with high nutritional and economic value. Rich in fiber, vitamins (C, K, and B9), and minerals (magnesium, potassium, calcium, and iron), it contributes to food security in many tropical regions. Global production is estimated at 11.5 million tons in 2023, 62% of which will come from India. Nigeria, Mali, Sudan, Pakistan, and Côte d’Ivoire are also among the major producers. Given its economic importance, optimizing its growth through controlled methods such as greenhouse cultivation and light-emitting diode (LED) lighting is a strategic challenge. Energy-efficient LED horticultural lighting offers promising prospects, but each plant variety reacts differently depending on the light spectrum, intensity, and duration of exposure (photoperiod). This study evaluated the effects of different LED spectra on okra’s flowering after 30 days of growth using B (blue, 445 nm) and R (red, 660 nm) LED lights and red-blue alternating in a three-day cycle (R3B3) by alternating the photoperiod from 14 to 10 h. Outdoor and greenhouse conditions served as controls. The results show that the R3B3 treatment improves germination in terms of both speed and percentage. However, plant growth (height, stem diameter, and leaf area) remains higher in the control group. R3B3 and red light stimulate leaf and node development. Flowering occurs earlier in the control group (51 days) and later under LED, particularly blue (73 days). Fruit diameter after petal fall was also larger in the control group. These results confirm the sensitivity of okra to photoperiod and light quality, and highlight the potential of spectral and photoperiod manipulation to regulate flowering in controlled-environment agriculture. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

13 pages, 6904 KiB  
Article
Considering Grayscale Process and Material Properties for Robust Multilevel Diffractive Flat Optics
by Diogo E. Aguiam, Ana Dias, Manuel J. L. F. Rodrigues, Aamod Shanker, Filipe Camarneiro, Joana D. Santos, Pablo Valentim, Joao Cunha and Patrícia C. Sousa
Photonics 2024, 11(12), 1200; https://doi.org/10.3390/photonics11121200 - 20 Dec 2024
Viewed by 875
Abstract
Arbitrarily designed flat optics directly manipulate the light wavefront to reproduce complex optical functions, enabling more compact optical assemblies and microsystem integration. Phase-shifting micro-optical devices rely on locally tailoring the optical path length of the wavefront through binary or multilevel surface relief micro- [...] Read more.
Arbitrarily designed flat optics directly manipulate the light wavefront to reproduce complex optical functions, enabling more compact optical assemblies and microsystem integration. Phase-shifting micro-optical devices rely on locally tailoring the optical path length of the wavefront through binary or multilevel surface relief micro- and nanostructures. Considering the resolution and tolerances of the production processes and the optical properties of the substrate and coating materials is crucial for designing robust multilevel diffractive flat optics. In this work, we evaluate the impact of the grayscale laser lithography resolution and geometry constraints on the efficiency of surface-relief diffractive lenses, and we analyze the process parameter space that limit lens performance. We introduce a spectral bandwidth metric to help evaluate the broad-spectrum performance of different materials. We simulate and experimentally observe that the diffractive focusing is dominated by the periodic wavelength-dependent phase discontinuities arising in the profile transitions of multilevel diffractive lenses. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

18 pages, 2742 KiB  
Article
Night Interruption with Red and Far-Red Light Optimizes the Phytochemical Composition, Enhances Photosynthetic Efficiency, and Increases Biomass Partitioning in Italian Basil
by Soheil Fallah, Sasan Aliniaeifard, Mahboobeh Zare Mehrjerdi, Shima Mirzaei and Nazim S. Gruda
Plants 2024, 13(22), 3145; https://doi.org/10.3390/plants13223145 - 8 Nov 2024
Cited by 4 | Viewed by 1819
Abstract
Controlled environment agriculture is a promising solution to address climate change and resource limitations. Light, the primary energy source driving photosynthesis and regulating plant growth, is critical in optimizing produce quality. However, the impact of specific light spectra during night interruption on improving [...] Read more.
Controlled environment agriculture is a promising solution to address climate change and resource limitations. Light, the primary energy source driving photosynthesis and regulating plant growth, is critical in optimizing produce quality. However, the impact of specific light spectra during night interruption on improving phytochemical content and produce quality remains underexplored. This study investigated the effects of red (peak wavelength at 660 nm) and far-red night interruption (peak wavelength at 730 nm) on photosynthetic efficiency, biomass distribution, and phytochemical production in Italian basil (Ocimum basilicum L.). Treatments included red light, far-red light, a combination of both, and a control without night interruption. Red light significantly increased chlorophyll a by 16.8%, chlorophyll b by 20.6%, and carotenoids by 11%, improving photosynthetic efficiency and nutritional quality. Red light also elevated anthocyanin levels by 15.5%, while far-red light promoted flavonoid production by 43.56%. Although red light enhanced biomass, the primary benefit was improved leaf quality, with more biomass directed to leaves over roots. Far-red light reduced transpiration, enhancing post-harvest water retention and shelf life. These findings demonstrate that red and far-red night interruption can optimize phytochemical content, produce quality, and post-harvest durability, offering valuable insights for controlled environment agriculture. Future research should focus on refining night interruption light strategies across a broader range of crops to enhance produce quality and shelf life in controlled environment agriculture. Full article
Show Figures

Figure 1

15 pages, 14562 KiB  
Article
Multiple Broadband Infrared Topological Photonic Crystal Valley States Based on Liquid Crystals
by Jinying Zhang, Bingnan Wang, Rui Wang, Jiacheng Wang, Xinye Wang and Yexiaotong Zhang
Materials 2024, 17(21), 5212; https://doi.org/10.3390/ma17215212 - 25 Oct 2024
Cited by 1 | Viewed by 956
Abstract
Spectral tunable technology has to meet the requirements of strong robustness and wide spectral range. We propose a method for the transmission and manipulation of infrared topological photonic crystal valley states based on tunable refractive index method that exhibits broad-spectrum and multi-band characteristics, [...] Read more.
Spectral tunable technology has to meet the requirements of strong robustness and wide spectral range. We propose a method for the transmission and manipulation of infrared topological photonic crystal valley states based on tunable refractive index method that exhibits broad-spectrum and multi-band characteristics, along with a tunable emission angle. With this structure, different rotational directions of vortex light sources can independently excite the K valley and K′ valley within the frequency band ranging from 75.64 THz to 99.61 THz. At frequencies from 142.60 THz to 171.12 THz, it is possible to simultaneously excite both the K valley and K′ valley. The dual refractive index tunable design allows for the adjustment of the emission angle at a fixed frequency, enabling control over the independent excitation of either a single K valley or K′ valley, as well as their simultaneous excitation. This capability has significant implications for photonic computation and tunable filtering, offering enhanced operational flexibility and expanded functionality for future optical communications and integrated optical circuits. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

12 pages, 4387 KiB  
Article
Design and Fabrication of Continuous Surface Optical Field Modulator for Angular Spectrum Discreteness Compensation
by Min Xiao, Axiu Cao, Cheng Xu, Hui Pang, Yongqi Fu and Qiling Deng
Micromachines 2024, 15(8), 952; https://doi.org/10.3390/mi15080952 - 25 Jul 2024
Viewed by 1209
Abstract
The light homogenizing element is a crucial component of the illumination system of the lithography machine. Its primary purpose is to realize the uniform distribution of energy. However, it suffers from a common issue, which is angular spectrum discreteness, which significantly impacts light [...] Read more.
The light homogenizing element is a crucial component of the illumination system of the lithography machine. Its primary purpose is to realize the uniform distribution of energy. However, it suffers from a common issue, which is angular spectrum discreteness, which significantly impacts light uniformity. To address this, we design and fabricate random micro-cylindrical lens arrays to obtain a small-angle Gaussian optical field, which can compensate for the angular spectrum discreteness. By adjusting the pitches and curvature radii of the micro-cylindrical lenses separately, we are able to manipulate the divergence angle of the emitted sub-beams, enabling precise angular spectrum modulation. By using mask-moving technology, the angular spectrum modulator is fabricated to generate a Gaussian illumination field. The surface profile is measured and determined with a structural roughness below 10 nm. Furthermore, optical test experiments on the modulator have been conducted, achieving an angle error of less than 0.02° and a balance better than 0.5%. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

17 pages, 3025 KiB  
Article
Anion and Cation Co-Doping of NiO for Transparent Photovoltaics and Smart Window Applications
by Chrysa Aivalioti, Emmanouil G. Manidakis, Nikolaos T. Pelekanos, Maria Androulidaki, Katerina Tsagaraki and Elias Aperathitis
Crystals 2024, 14(7), 629; https://doi.org/10.3390/cryst14070629 - 8 Jul 2024
Cited by 1 | Viewed by 1436
Abstract
Materials engineering based on metal oxides for manipulating the solar spectrum and producing solar energy have been under intense investigation over the last years. In this work, we present NiO thin films double doped with niobium (Nb) and nitrogen (N) as cation and [...] Read more.
Materials engineering based on metal oxides for manipulating the solar spectrum and producing solar energy have been under intense investigation over the last years. In this work, we present NiO thin films double doped with niobium (Nb) and nitrogen (N) as cation and anion dopants (NiO:(Nb,N)) to be used as p-type layers in all oxide transparent solar cells. The films were grown by sputtering a composite Ni-Nb target on room-temperature substrates in plasma containing 50% Ar, 25% O2, and 25% N2gases. The existence of Nb and N dopants in the NiO structure was confirmed by the Energy Dispersive X-Ray and X-Ray Photoelectron Spectroscopy techniques. The nominally undoped NiO film, which was deposited by sputtering a Ni target and used as the reference film, was oxygen-rich, single-phase cubic NiO, having a visible transmittance of less than 20%. Upon double doping with Nb and N the visible transmittance of NiO:(Nb,N) film increased to 60%, which was further improved after thermal treatment to around 85%. The respective values of the direct band gap in the undoped and double-doped films were 3.28 eV and 3.73 eV just after deposition, and 3.67 eV and 3.76 eV after thermal treatment. The changes in the properties of the films such as structural disorder, direct and indirect energy band gaps, Urbach tail states, and resistivity were correlated with the incorporation of Nb and N in their structure. The thermally treated NiO:(Nb,N) film was used to form a diode with a spin-coated two-layer, mesoporous on top of a compact, TiO2 film. The NiO:(Nb,N)/TiO2heterojunction exhibited visible transparency of around 80%, showed rectifying characteristics and the diode’s parameters were deduced using the I-V method. The diode revealed photovoltaic behavior upon illumination with UV light exhibiting a short circuit current density of 0.2 mA/cm2 and open-circuit voltage of 500 mV. Improvements of the output characteristics of the NiO:(Nb,N)/TiO2 UV-photovoltaic by proper engineering of the individual layers and device processing procedures are addressed. Transparent NiO:(Nb,N) films can be potential candidates in all-oxide ultraviolet photovoltaics for tandem solar cells, smart windows, and other optoelectronic devices. Full article
(This article belongs to the Special Issue Nanomaterials for Environmental and Solar Energy Applications)
Show Figures

Figure 1

15 pages, 1350 KiB  
Article
A Draft Design of a Zero-Power Experiment for Molten Salt Fast Reactor Studies
by Bruno Merk, Omid Noori-kalkhoran, Lakshay Jain, Daliya Aflyatunova, Andrew Jones, Lewis Powell, Anna Detkina, Michael Drury, Dzianis Litskevich, Marco Viebach and Carsten Lange
Energies 2024, 17(11), 2678; https://doi.org/10.3390/en17112678 - 31 May 2024
Cited by 2 | Viewed by 1175
Abstract
The UK government and many international experts have pointed out that nuclear energy has an important role to play in the transition towards a decarbonised energy system since it is the only freely manageable very low-carbon energy technology with 24/7 availability to complement [...] Read more.
The UK government and many international experts have pointed out that nuclear energy has an important role to play in the transition towards a decarbonised energy system since it is the only freely manageable very low-carbon energy technology with 24/7 availability to complement renewables. Besides current investments in light water reactor technologies, we need innovation for improved fuel usage and reduced waste creation, like that offered by iMAGINE, for the required broad success of nuclear technologies. To allow for quick progress in innovative technologies like iMAGINE and their regulation, a timely investment into urgently needed experimental infrastructure and expertise development will be required to assure the availability of capacities and capabilities. The initial steps to start the development of such a new reactor physics experimental facility to investigate molten salt fast reactor technology are discussed, and a stepwise approach for the development of the experimental facility is described. The down selection for the choice for a diverse control and shutdown system is described through manipulating the reflector (control) and splitting the core (shutdown). The developed innovative core design of having the two core parts in two different rooms opens completely new opportunities and will allow for the manifestation of the request for separated operational and experimental crews, as nowadays requested by regulators into the built environment. The proposed physical separation of safety-relevant operational systems from the experimental room should on the one hand help to ease the access to the facility for visiting experimental specialists. On the other hand, the location of all safety-relevant systems in a now separated access-controlled area for the operational team will limit the risk of misuse through third party access. The planned experimental programme is described with the major steps as follows: core criticality experiments, followed by experiments to determine the neutron flux, neutron spectrum and power distribution as well as experiments to understand the effect of changes in reactivity and flux as a function of salt density, temperature and composition change. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

18 pages, 4497 KiB  
Article
Colored Shading Nets Differentially Affect the Phytochemical Profile, Antioxidant Capacity, and Fruit Quality of Piquin Peppers (Capsicum annuum L. var. glabriusculum)
by Yamir Jiménez-Viveros and Juan Ignacio Valiente-Banuet
Horticulturae 2023, 9(11), 1240; https://doi.org/10.3390/horticulturae9111240 - 17 Nov 2023
Cited by 3 | Viewed by 2024
Abstract
Piquin pepper fruits, a semi-domesticated wild pepper species highly valued in Mexico, currently face the threat of unsustainable harvesting practices that endanger the species. For this reason, it is necessary to establish sustainable agricultural practices for the cultivation of these peppers. Solar radiation, [...] Read more.
Piquin pepper fruits, a semi-domesticated wild pepper species highly valued in Mexico, currently face the threat of unsustainable harvesting practices that endanger the species. For this reason, it is necessary to establish sustainable agricultural practices for the cultivation of these peppers. Solar radiation, a critical determinant in crop production, plays a crucial role in plant development, influencing a spectrum of physiological and morphological processes, including the synthesis of phytochemicals. Our study evaluated the effect of light manipulation through colored shading nets on the phytochemical profile, antioxidant capacity, and fruit quality of semi-domesticated piquin peppers at two maturation stages: immature and mature (green and red fruits). Our hypothesis posits that these shading treatments may induce changes in these fruits’ phytochemical composition and antioxidant properties, as well as quality. Our results indicate that the shading treatments and maturity stage have significant on capsaicinoid and carotenoid levels, with the highest levels observed in mature fruits. Notably, red fruits grown under black shading treatments resulted in the highest capsaicinoid levels. Carotenoid levels were higher in the black shading treatment during the first cycle, while in the second cycle, the blue shading treatment showed elevated carotenoid levels, suggesting that high irradiance conditions could reduce carotenoid contents. Although no significant differences were observed among the treatments in green fruits, in red fruits, both black and blue treatments exhibited the highest total phenolic compounds in both production cycles. Furthermore, the antioxidant capacity revealed that red fruits exhibited higher antioxidant levels than green fruits. Color analysis showed that red fruits had higher chroma and hue angle values, indicating their brighter and more intense red color than green fruits. The morphological changes in fruit width, length, and weight can be attributed to shading treatments and maturation stages. These results indicate the potential of piquin peppers to act as rich sources of bioactive compounds, emphasizing the benefits of shading as an effective strategy to improve the quality and quantity of phytochemical compounds in piquin peppers. Our findings provide substantial insights into the intricate relationship between maturation, shading treatments, and phytochemical composition, offering a path to improve the nutritional value and quality of piquin peppers. Full article
(This article belongs to the Special Issue Effects of Light Quantity and Quality on Horticultural Crops)
Show Figures

Figure 1

13 pages, 5642 KiB  
Article
Laser Ablation of Silicon Nanoparticles and Their Use in Charge-Coupled Devices for UV Light Sensing via Wavelength-Shifting Properties
by Algirdas Lazauskas, Dovilė Gimžauskaitė, Mindaugas Ilickas, Liutauras Marcinauskas, Mindaugas Aikas, Brigita Abakevičienė and Dmytro Volyniuk
Nanomaterials 2023, 13(22), 2915; https://doi.org/10.3390/nano13222915 - 8 Nov 2023
Cited by 2 | Viewed by 3641
Abstract
This study explores the controlled laser ablation and corresponding properties of silicon nanoparticles (Si NP) with potential applications in ultraviolet (UV) light sensing. The size distribution of Si NPs was manipulated by adjusting the laser scanning speed during laser ablation of a silicon [...] Read more.
This study explores the controlled laser ablation and corresponding properties of silicon nanoparticles (Si NP) with potential applications in ultraviolet (UV) light sensing. The size distribution of Si NPs was manipulated by adjusting the laser scanning speed during laser ablation of a silicon target in a styrene solution. Characterization techniques, including transmission electron microscopy, Raman spectroscopy, and photoluminescence analysis, were employed to investigate the Si NP structural and photophysical properties. Si NP produced at a laser scanning speed of 3000 mm/s exhibited an average diameter of ~4 nm, polydispersity index of 0.811, and a hypsochromic shift in the Raman spectrum peak position. Under photoexcitation at 365 nm, these Si NPs emitted apparent white light, demonstrating their potential for optoelectronic applications. Photoluminescence analysis revealed biexponential decay behavior, suggesting multiple radiative recombination pathways within the nanoscale structure. Furthermore, a thin film containing Si NP was utilized as a passive filter for a 2nd generation CCD detector, expanding the functionality of the non-UV-sensitive detectors in optics, spectrometry, and sensor technologies. Full article
Show Figures

Figure 1

18 pages, 2378 KiB  
Article
Photosynthesis, Yield and Quality in Wild Rocket (Diplotaxis tenuifolia L.) under Photoluminescent Greenhouse Covers
by Roberta Paradiso, Ida Di Mola, Stefano Conti, Lucia Ottaiano, Eugenio Cozzolino, Massimo Rippa, Pasquale Mormile, Giuseppe Melchionna, Antonino Testa, Luca Beltrame and Mauro Mori
Agronomy 2023, 13(9), 2372; https://doi.org/10.3390/agronomy13092372 - 12 Sep 2023
Cited by 2 | Viewed by 1815
Abstract
Manipulation of light spectral composition is a useful tool to drive morphological, physiological and metabolic responses in several crops, ultimately improving yield and quality. Novel materials for greenhouse covering are being developed in order to make a better use of the available sunlight: [...] Read more.
Manipulation of light spectral composition is a useful tool to drive morphological, physiological and metabolic responses in several crops, ultimately improving yield and quality. Novel materials for greenhouse covering are being developed in order to make a better use of the available sunlight: among these are the cover films or panels incorporating fluorescent additives which are able to convert UV solar radiation into visible light. In this research, we compared the physiological traits and the agronomical performance of wild rocket grown in pots in the winter–spring season, under four different greenhouse prototypes covered with poly-methyl-methacrylate (PMMA)-based panels. PMMA panels doped at 3% (Dop3) or 7% (Dop7) w/w with a blend of rare-earth elements (partially converting the solar UV radiation to red and blue wavelengths) were compared with an undoped (UD) and a whitewashed (WW) PMMA greenhouse. The rocket yield was higher in Dop3 (+30%), while it was unaffected in Dop7 and lower in WW (−39%), compared to the control (6.06 kg m−2). The leaf greenness decreased while both the ABTS and the hydrophilic antioxidant activities increased under the doped and the whitewashed greenhouses. The Dop3 treatment provided the best results in terms of yield and quality of greenhouse wild rocket in winter–spring cycle. However, the analysis of OJIP kinetics of chlorophyll fluorescence revealed that the main factor affecting the photosynthetic performance was the light intensity inside each greenhouse rather than the modulation of light spectrum, because of the different shading properties of the doping and whitewashing treatments. Although these results did not allow us to distinguish between the combined effects of shading and light spectrum modulation, the use of photoluminescent covers can be foreseen as a promising innovation in greenhouse horticulture. Full article
(This article belongs to the Special Issue Innovations in Greenhouse Horticulture for Producing More With Less)
Show Figures

Figure 1

26 pages, 9007 KiB  
Review
Light–Matter Complex Interactions in Stereolithographies
by Thomas Doualle, Laurent Gallais and Jean-Claude André
Appl. Sci. 2023, 13(11), 6844; https://doi.org/10.3390/app13116844 - 5 Jun 2023
Cited by 3 | Viewed by 1993
Abstract
Since its inception in 1984, 3D printing has revolutionized manufacturing by leveraging the additivity principle and simple material–energy coupling. Stereolithography, as the pioneering technology, introduced the concept of photopolymerization with a single photon. This groundbreaking approach not only established the essential criteria for [...] Read more.
Since its inception in 1984, 3D printing has revolutionized manufacturing by leveraging the additivity principle and simple material–energy coupling. Stereolithography, as the pioneering technology, introduced the concept of photopolymerization with a single photon. This groundbreaking approach not only established the essential criteria for additive processes employing diverse localized energies and materials, including solid, pasty, powdery, organic, and mineral substances, but also underscored the significance of light–matter interactions in the spatial and temporal domains, impacting various critical aspects of stereolithography’s performance. This review article primarily focuses on exploring the intricate relationship between light and matter in stereolithography, aiming to elucidate operational control strategies for fabrication processes, encompassing voxel size manipulation. Furthermore, advancements in light excitation modes, transitioning from one-photon to two-photon mechanisms, have unlocked new material and creative possibilities. Notable advantages include the elimination of layering (true 3D printing) and the ability to fabricate objects using silica glass. Although these volumetric 3D printing methods deviate from conventional additive manufacturing concepts and possess narrower application scopes, they offer reduced manufacturing and design timeframes along with enhanced spatial resolution in select cases. These complex light–matter interactions form the cornerstone of this comprehensive review, shedding light on operational control strategies and considerations in stereolithography. By comprehensively analyzing the impact of light–matter interactions, including the novel two-photon excitation, this review highlights the transformative potential of stereolithography for rapid and precise fabrication. While these techniques may occupy a smaller niche within the broader spectrum of 3D printing technologies, they serve as valuable additions to the array of 3D devices available in the market. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

11 pages, 3015 KiB  
Article
Synthesis of Metal/SU-8 Nanocomposites through Photoreduction on SU-8 Substrates
by Yan-Jun Huang, Wen-Huei Chang, Yi-Jui Chen and Chun-Hung Lin
Nanomaterials 2023, 13(11), 1784; https://doi.org/10.3390/nano13111784 - 1 Jun 2023
Cited by 2 | Viewed by 2086
Abstract
The paper presents a simple, fast, and cost-effective method for creating metal/SU-8 nanocomposites by applying a metal precursor drop onto the surface or nanostructure of SU-8 and exposing it to UV light. No pre-mixing of the metal precursor with the SU-8 polymer or [...] Read more.
The paper presents a simple, fast, and cost-effective method for creating metal/SU-8 nanocomposites by applying a metal precursor drop onto the surface or nanostructure of SU-8 and exposing it to UV light. No pre-mixing of the metal precursor with the SU-8 polymer or pre-synthesis of metal nanoparticles is required. A TEM analysis was conducted to confirm the composition and depth distribution of the silver nanoparticles, which penetrate the SU-8 film and uniformly form the Ag/SU-8 nanocomposites. The antibacterial properties of the nanocomposites were evaluated. Moreover, a composite surface with a top layer of gold nanodisks and a bottom layer of Ag/SU-8 nanocomposites was produced using the same photoreduction process with gold and silver precursors, respectively. The reduction parameters can be manipulated to customize the color and spectrum of various composite surfaces. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles)
Show Figures

Graphical abstract

13 pages, 3349 KiB  
Article
Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures
by Huihai Wu, Xiaochuan Liu, Keyong Zhu and Yong Huang
Nanomaterials 2023, 13(8), 1425; https://doi.org/10.3390/nano13081425 - 20 Apr 2023
Cited by 4 | Viewed by 2315
Abstract
Two-dimensional (2D) materials and their vertically stacked heterostructures have attracted much attention due to their novel optical properties and strong light-matter interactions in the infrared. Here, we present a theoretical study of the near-field thermal radiation of 2D vdW heterostructures vertically stacked of [...] Read more.
Two-dimensional (2D) materials and their vertically stacked heterostructures have attracted much attention due to their novel optical properties and strong light-matter interactions in the infrared. Here, we present a theoretical study of the near-field thermal radiation of 2D vdW heterostructures vertically stacked of graphene and monolayer polar material (2D hBN as an example). An asymmetric Fano line shape is observed in its near-field thermal radiation spectrum, which is attributed to the interference between the narrowband discrete state (the phonon polaritons in 2D hBN) and a broadband continuum state (the plasmons in graphene), as verified by the coupled oscillator model. In addition, we show that 2D van der Waals heterostructures can achieve nearly the same high radiative heat flux as graphene but with markedly different spectral distributions, especially at high chemical potentials. By tuning the chemical potential of graphene, we can actively control the radiative heat flux of 2D van der Waals heterostructures and manipulate the radiative spectrum, such as the transition from Fano resonance to electromagnetic-induced transparency (EIT). Our results reveal the rich physics and demonstrate the potential of 2D vdW heterostructures for applications in nanoscale thermal management and energy conversion. Full article
(This article belongs to the Special Issue Next-Generation Infrared Optoelectronic Nanomaterials and Devices)
Show Figures

Figure 1

16 pages, 2895 KiB  
Article
Enhancement of a Graphene-Based Near-Field Thermophotovoltaic System by Optimization Algorithms and Dynamic Regulations
by Yitao Sheng
Photonics 2023, 10(2), 137; https://doi.org/10.3390/photonics10020137 - 29 Jan 2023
Cited by 4 | Viewed by 2077
Abstract
Thermophotovoltaics (TPVs), a heat recovery technique, is faced with low efficiency and power density. It has been proven that graphene helps add new functionalities to optical components and improve their performance for heat transfer. In this work, I study Near-field radiative heat transfer [...] Read more.
Thermophotovoltaics (TPVs), a heat recovery technique, is faced with low efficiency and power density. It has been proven that graphene helps add new functionalities to optical components and improve their performance for heat transfer. In this work, I study Near-field radiative heat transfer in TPVs based on a composite nanostructure composed of Indium Tin Oxide (ITO) sheet and a narrow bandgap photovoltaic cell made from Indium Arsenide (InAs). I introduce a new way to calculate nonradiative recombination (NR) and compare the performance with and without the NR being considered. By comparing graphene modulated on the emitter (G-E), on the receiver (G-R), and on both the emitter and the receiver (G-ER), I find the G-ER case can achieve the highest current density. However, constrained by the bandgap energy of the cell, this case is far lower than the G-E case when it comes to efficiency. After applying variant particle swarm optimization (VPSO) and dynamic optimization, the model is optimized up to 43.63% efficiency and 11 W/cm2 electric power at a 10 nm vacuum gap with a temperature difference of 600 K. Compared with before optimization, the improvement is 8.97% and 7.2 W/cm2, respectively. By analyzing the emission spectrum and the transmission coefficient, I find that after optimization the system can achieve higher emissivity above the bandgap frequency, thus achieving more efficient conversion of light to electricity. In addition, I analyze the influence of temperature difference by varying it from 300 K to 900 K, indicating the optimized model at a 900 K temperature difference can achieve 49.04% efficiency and 52 W/cm2 electric power. By comparing the results with related works, this work can achieve higher conversion efficiency and electric power after the optimization of relevant parameters. My work provides a method to manipulate the near-field TPV system with the use of a graphene-based emitter and promises to provide references in TPV systems that use low bandgap energy cells. Full article
Show Figures

Figure 1

Back to TopTop