Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,252)

Search Parameters:
Keywords = level of emergency management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 636 KB  
Review
Audiovestibular Dysfunction in Hyper-IgE Syndrome: A Systematic Review of Characteristics, Pathophysiology, Diagnosis, and Management
by Jiann-Jy Chen, Chih-Wei Hsu, Brendon Stubbs, Tien-Yu Chen, Chih-Sung Liang, Yen-Wen Chen, Bing-Yan Zeng and Ping-Tao Tseng
Int. J. Mol. Sci. 2025, 26(20), 9932; https://doi.org/10.3390/ijms26209932 (registering DOI) - 12 Oct 2025
Abstract
Hyper-IgE syndrome (HIES) is a rare genetic immunodeficiency characterized by elevated serum IgE levels and associated immune dysregulation, manifesting in recurrent infections, eczema, and skeletal abnormalities. Emerging evidence suggests a link between HIES and audiovestibular dysfunction, potentially mediated by IgE-driven inflammation in the [...] Read more.
Hyper-IgE syndrome (HIES) is a rare genetic immunodeficiency characterized by elevated serum IgE levels and associated immune dysregulation, manifesting in recurrent infections, eczema, and skeletal abnormalities. Emerging evidence suggests a link between HIES and audiovestibular dysfunction, potentially mediated by IgE-driven inflammation in the inner ear, which is not immunologically privileged. However, the nature of this association remains poorly understood. This systematic review synthesizes current evidence on the characteristics, pathophysiology, diagnostic approaches, and management of audiovestibular dysfunction in HIES patients. Literature searches across PubMed, Embase, ClinicalKey, Web of Science, and ScienceDirect (up to 6 August 2025) were conducted in accordance with PRISMA guidelines. Key findings indicate that HIES-related audiovestibular issues, including sensorineural hearing loss and vestibular impairment, may arise from IgE-mediated endolymphatic sac inflammation, leading to hydrops and hair cell damage. Diagnostic tools such as audiometry, electrocochleography, and allergen challenge tests show promise, with elevated IgE correlating with abnormal otoacoustic emissions and prolonged auditory brainstem response latencies. Treatment focuses on immunomodulation (e.g., corticosteroids, dupilumab) to mitigate IgE effects, though evidence is limited to case reports. A proposed schematic diagram illustrates pathophysiology, emphasizing IgE’s role in inner ear toxicity. Timely recognition and intervention may prevent progression to permanent hearing loss or vestibular disability, improving quality of life. Future research should explore genetic–immunologic mechanisms and prospective trials for targeted therapies. Trial registration: PROSPERO CRD420251120600. Full article
(This article belongs to the Special Issue Hearing Loss: Molecular Biological Insights, 2nd Edition)
9 pages, 897 KB  
Article
Assessment of Cervical IL-6 Levels and Neonatal Inflammatory Response in Preterm Birth Following Preterm Premature Rupture of Membranes
by Gusztav Labossa, Tamas Koszegi, Balint Farkas, Bernadett Nagy, Rita Jakabfi-Csepregi, Nelli Farkas and Kalman Kovacs
Curr. Issues Mol. Biol. 2025, 47(10), 838; https://doi.org/10.3390/cimb47100838 (registering DOI) - 12 Oct 2025
Abstract
Background: Preterm premature rupture of membranes (PPROM) is a leading cause of preterm delivery, occurring in 40–50% of cases, with a 3–4% overall incidence. During expectant management, chorioamnionitis is typically monitored using serum inflammatory markers (e.g., leukocyte count, CRP), though cervical interleukin-6 (IL-6) [...] Read more.
Background: Preterm premature rupture of membranes (PPROM) is a leading cause of preterm delivery, occurring in 40–50% of cases, with a 3–4% overall incidence. During expectant management, chorioamnionitis is typically monitored using serum inflammatory markers (e.g., leukocyte count, CRP), though cervical interleukin-6 (IL-6) has emerged as a promising local marker. This study investigated the correlation between cervical IL-6 and maternal and neonatal inflammatory parameters. Methods: This prospective non-randomized clinical trial was performed with 51 patients with expectantly managed PPROM. Samples were obtained twice a week using cervical swabs placed into a stabilizer solution. Cervical IL-6 levels were measured by routine automated chemiluminescence immunoassay, with reference to albumin levels. Maternal serum C-reactive protein (CRP) levels and leukocyte counts and neonatal serum CRP and procalcitonin (PCT) levels were also determined. Spearman correlations of the IL-6 level with other markers and clinicopathological parameters were examined. Results: Cervical IL-6 levels correlated more strongly with neonatal CRP and PCT levels on the first day after delivery than with maternal serum markers while showing no significant association with the PPROM-to-delivery interval. Conclusion: Cervical IL-6 level determination may help to inform the timing of labor induction in cases of PPROM, with consideration of the maternal and neonatal conditions. We believe that the monitoring of the cervical IL-6 level could enable good prediction of perinatal inflammation, although more data are needed to support this hypothesis. Full article
(This article belongs to the Section Molecular Medicine)
19 pages, 664 KB  
Article
Occurrence and Health Risk Assessment of Per- and Polyfluoroalkyl Substances in Yogurt Across Lebanese Governorates
by Sandra Sarkis, Maha Hoteit, Nikolaos Tzenios, Tony Tannous, Mireille Harmouche-Karaki, Khalil Helou and Joseph Matta
Foods 2025, 14(20), 3472; https://doi.org/10.3390/foods14203472 (registering DOI) - 11 Oct 2025
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants of emerging concern due to their widespread use and potential adverse health effects. This study assessed the concentrations of key PFAS compounds in yogurt samples collected from eleven Lebanese governorates. Results revealed notable geographic [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants of emerging concern due to their widespread use and potential adverse health effects. This study assessed the concentrations of key PFAS compounds in yogurt samples collected from eleven Lebanese governorates. Results revealed notable geographic variability, with the Bekaa region exhibiting the highest PFAS levels, particularly PFHpA, PFOA, PFHxS, PFOS, and PFPeA, while Jbeil showed the lowest concentrations. Health risk assessment using estimated daily intake (EDI), risk quotients (RQ), and cumulative hazard index (HI) indicated all individual compound exposures below established safety thresholds. However, elevated RQs for PFOS and PFOA and an average HI of 0.71 suggest potential chronic exposure concerns in high-burden regions. These findings emphasize the importance of continued monitoring and risk management to protect public health and inform environmental policies addressing PFAS contamination in Lebanon. Full article
Show Figures

Figure 1

32 pages, 5864 KB  
Article
Monitoring Temperate Typical Steppe Degradation in Inner Mongolia: Integrating Ecosystem Structure and Function
by Xinru Yan, Dandan Wei, Jinzhong Yang, Weiling Yao and Shufang Tian
Sustainability 2025, 17(20), 9015; https://doi.org/10.3390/su17209015 (registering DOI) - 11 Oct 2025
Abstract
Under the combined effects of climate change, overexploitation, and intense grazing, temperate steppe in northern China is experiencing increasing deterioration, which is typified by a shift from structural degradation to functional disruption. Accurately tracking steppe degradation using remote sensing technology has emerged as [...] Read more.
Under the combined effects of climate change, overexploitation, and intense grazing, temperate steppe in northern China is experiencing increasing deterioration, which is typified by a shift from structural degradation to functional disruption. Accurately tracking steppe degradation using remote sensing technology has emerged as a crucial scientific concern. Prior research failed to integrate ecosystem structure and function and lacked reference baselines, relying only on individual indicators to quantify degradation. To resolve these gaps, this study established a novel degradation evaluation index system integrating ecosystem structure and function, incorporating vegetation community distribution and proportions of degradation-indicator species to define reference states and quantify degradation severity. Analyzed spatiotemporal evolution and drivers across the temperate typical steppe (2013–2022). Key findings reveal (1) non-degraded and slightly degraded areas dominated (75.57% mean coverage), showing an overall fluctuating improvement trend; (2) minimal transitions between degradation levels, with stable conditions prevailing (59.52% unchanged area), indicating progressive degradation reversal; and (3) natural factors predominated as degradation drivers. The integrated structural–functional framework enables more sensitive detection of early degradation signals, thereby informing more effective steppe restoration management. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

19 pages, 675 KB  
Review
Salivary and Microbiome Biomarkers in Periodontitis: Advances in Diagnosis and Therapy—A Narrative Review
by Casandra-Maria Radu, Carmen Corina Radu and Dana Carmen Zaha
Medicina 2025, 61(10), 1818; https://doi.org/10.3390/medicina61101818 (registering DOI) - 11 Oct 2025
Abstract
Background and Objectives: Periodontitis is a common chronic inflammatory disease and a leading cause of tooth loss worldwide. Traditional diagnostic methods, such as probing and radiographic assessment, are retrospective and fail to detect ongoing disease activity. In recent years, salivary biomarkers and oral [...] Read more.
Background and Objectives: Periodontitis is a common chronic inflammatory disease and a leading cause of tooth loss worldwide. Traditional diagnostic methods, such as probing and radiographic assessment, are retrospective and fail to detect ongoing disease activity. In recent years, salivary biomarkers and oral microbiome profiling have emerged as promising tools for earlier detection and precision-based management. The aim of this review is to synthesize current evidence on salivary and microbiome-derived biomarkers in periodontitis and to evaluate their translational potential in diagnostics and therapy. Materials and Methods: A narrative review was performed using PubMed, Scopus, and Web of Science to identify studies published between 2020 and 2025. Search terms included periodontitis, salivary biomarkers, oral microbiome, dysbiosis, and precision therapy. Priority was given to systematic reviews, meta-analyses, and translational studies that addressed diagnostic or therapeutic applications. Eligible publications included English-language original studies and reviews reporting on the diagnostic or therapeutic relevance of salivary or microbiome biomarkers in periodontitis. Results: Salivary biomarkers such as cytokines, matrix metalloproteinases (MMPs), oxidative stress markers, microRNAs, and extracellular vesicles (EVs) show consistent associations with disease activity and treatment outcomes. Oral microbiome studies reveal that both classical pathogens and community-level dysbiosis contribute to disease risk. Translational advances include chairside immunoassays, biosensors, lab-on-a-chip devices, and artificial intelligence (AI)-driven analyses. Biomarker-guided therapies—such as microbiome modulation, natural bioactive compounds, host-response modulation, and smart biomaterials—are being evaluated with increasing frequency in translational studies. Conclusions: By integrating salivary and microbiome biomarkers with novel diagnostic technologies and emerging therapies, this review complements existing systematic evidence and offers a translational roadmap toward precision periodontology. Full article
38 pages, 1890 KB  
Article
The Potential for Sample Testing at the Pen Level to Inform Prudent Antimicrobial Selection for Bovine Respiratory Disease Treatment: Investigations Using a Feedlot Simulation Tool
by Dana E. Ramsay, Wade McDonald, Sheryl P. Gow, Lianne McLeod, Simon J. G. Otto, Nathaniel D. Osgood and Cheryl L. Waldner
Antibiotics 2025, 14(10), 1009; https://doi.org/10.3390/antibiotics14101009 (registering DOI) - 11 Oct 2025
Abstract
Background: Antimicrobial drugs are used to treat bacterial diseases in livestock production systems, including bovine respiratory disease (BRD) in feedlot cattle. It is recommended that therapeutic antimicrobial use (AMU) in food animals be informed by diagnostic tests to limit the emergence of antimicrobial [...] Read more.
Background: Antimicrobial drugs are used to treat bacterial diseases in livestock production systems, including bovine respiratory disease (BRD) in feedlot cattle. It is recommended that therapeutic antimicrobial use (AMU) in food animals be informed by diagnostic tests to limit the emergence of antimicrobial resistance (AMR) and preserve the effectiveness of available drugs. Recent evidence demonstrates preliminary support for the pen as a prospective target for AMR testing-based interventions in higher-risk cattle. Methods: A previously reported agent-based model (ABM) was modified and then used in this study to investigate the potential for different pen-level sampling and laboratory testing-informed BRD treatment strategies to favorably impact selected antimicrobial stewardship and management outcomes in the western Canadian context. The incorporation of sample testing to guide treatment choice was hypothesized to reduce BRD relapses, subsequent AMU treatments and resultant AMR in sentinel pathogen Mannheimia haemolytica. The ABM was extended to include a discrete event simulation (DES) workflow that models the testing process, including the time at sample collection (0 or 13 days on feed) and the type of AMR diagnostic test (antimicrobial susceptibility testing or long-read metagenomic sequencing). Candidate testing scenarios were simulated for both a test-only control and testing-informed treatment (TI) setting (n = 52 total experiments). Key model outputs were generated for both the pen and feedlot levels and extracted to data repositories. Results: There was no effect of the TI strategy on the stewardship or economic outcomes of interest under baseline ecological and treatment conditions. Changes in the type and number of uses by antimicrobial class were observed when baseline AMR in M. haemolytica was assumed to be higher at feedlot arrival, but there was no corresponding impact on subsequent resistance or morbidity measures. The impacts of sample timing and diagnostic test accuracy on AMR test positivity and other outputs were subsequently explored with a theoretical “extreme” BRD treatment protocol that maximized selection pressure for AMR. Conclusions: The successful implementation of a pen-level sampling and diagnostic strategy would be critically dependent on many interrelated factors, including the BRD treatment protocol, the prevalences of resistance to the treatment classes, the accuracy of available AMR diagnostic tests, and the selected “treatment change” thresholds. This study demonstrates how the hybrid ABM-DES model can be used for future experimentation with interventions proposed to limit AMR risk in the context of BRD management. Full article
18 pages, 604 KB  
Article
The Moderating Role of Resilience in the Relationship Between Occupational Stressors and Psychological Distress Among Aviation Pilots in Pakistan
by Ali Ijaz, Anila Amber Malik, Tayyeba Ahmad, Waqas Hassan, Sofia Mastrokoukou and Claudio Longobardi
Eur. J. Investig. Health Psychol. Educ. 2025, 15(10), 206; https://doi.org/10.3390/ejihpe15100206 (registering DOI) - 11 Oct 2025
Abstract
Background: Aviation is one of the most demanding professions, exposing pilots to persistent stressors such as fatigue, irregular schedules, and high safety responsibility. These conditions heighten vulnerability to depression, anxiety, and stress (DAS), yet the protective mechanisms mitigating such effects remain less well [...] Read more.
Background: Aviation is one of the most demanding professions, exposing pilots to persistent stressors such as fatigue, irregular schedules, and high safety responsibility. These conditions heighten vulnerability to depression, anxiety, and stress (DAS), yet the protective mechanisms mitigating such effects remain less well understood. Objective: This study examined the roles of resilience, coping strategies, and fatigue in predicting DAS among commercial airline pilots. Method: A sample of 200 pilots completed validated self-report measures: the Connor–Davidson Resilience Scale (CD-RISC), the Coping Inventory for Stressful Situations (CISS), the Fatigue Severity Scale (FSS), and the Depression Anxiety Stress Scale (DASS-21). Data were analyzed using bivariate correlations, hierarchical multiple regression, and mediation/moderation analyses via the PROCESS macro. Results: Resilience was negatively correlated with total DAS scores (r = −0.46, p < 0.001), while fatigue (r = 0.42, p < 0.001) and avoidance coping (r = 0.38, p < 0.001) were positively correlated. The regression model accounted for 46% of the variance in DAS (R2 = 0.46). Task-focused coping predicted lower stress levels, whereas avoidance coping predicted higher anxiety and depression. Resilience moderated the relationship between stress and depression, buffering the impact of stress on mood outcomes. Mediation analyses indicated that coping styles partially explained the protective effect of resilience. ANOVA results confirmed that pilots with high resilience reported significantly lower depression scores than those with medium or low resilience, F(2, 197) = 6.72, p < 0.01. Conclusions: Resilience emerged as both a direct and indirect buffer against psychological strain in aviation. These findings underscore the importance of promoting adaptive coping and resilience training, alongside effective fatigue management, to enhance pilot well-being and maintain safety in aviation systems. Full article
Show Figures

Figure 1

33 pages, 13616 KB  
Review
Mapping the Evolution of New Energy Vehicle Fire Risk Research: A Comprehensive Bibliometric Analysis
by Yali Zhao, Jie Kong, Yimeng Cao, Hui Liu and Wenjiao You
Fire 2025, 8(10), 395; https://doi.org/10.3390/fire8100395 - 10 Oct 2025
Abstract
To gain a comprehensive understanding of the current research landscape in the field of new energy vehicle (NEV) fires and to explore its knowledge base and emerging trends, bibliometric methods—such as co-occurrence, clustering, and co-citation analyses—were employed to examine the relevant literature. A [...] Read more.
To gain a comprehensive understanding of the current research landscape in the field of new energy vehicle (NEV) fires and to explore its knowledge base and emerging trends, bibliometric methods—such as co-occurrence, clustering, and co-citation analyses—were employed to examine the relevant literature. A research knowledge framework was established, encompassing four primary themes: thermal management and performance optimization of power batteries, battery materials and their safety characteristics, thermal runaway (TR) and fire risk assessment, and fire prevention and control strategies. The key research frontiers in this domain could be classified into five categories: mechanisms and propagation of TR, development of high-safety battery materials and flame-retardant technologies, thermal management and thermal safety control, intelligent early warning and fault diagnosis, and fire suppression and firefighting techniques. The focus of research has gradually shifted from passive identification of causes and failure mechanisms to proactive approaches involving thermal control, predictive alerts, and integrated system-level fire safety solutions. As the field advances, increasing complexity and interdisciplinary integration have emerged as defining trends. Future research is expected to benefit from broader cross-disciplinary collaboration. These findings provide a valuable reference for researchers seeking a rapid overview of the evolving landscape of NEV fire-related studies. Full article
(This article belongs to the Special Issue Fire Safety and Sustainability)
Show Figures

Figure 1

22 pages, 1049 KB  
Review
Traumatic Brain Injury: Advances in Diagnostic Techniques and Treatment Modalities
by Lori Zarmer, Maaz S. Khan, Glenn Islat, Hanan Alameddin, Maria Massey, Saki Kazui and Rabail Chaudhry
J. Clin. Med. 2025, 14(20), 7145; https://doi.org/10.3390/jcm14207145 - 10 Oct 2025
Abstract
Background/Objectives: Traumatic brain injury (TBI) is a major global cause of death and disability, with long-term cognitive, behavioral, and functional consequences. Despite its high burden, management is complicated by heterogeneous presentations and limited evidence. This review summarizes recent advances in monitoring, therapeutic strategies, [...] Read more.
Background/Objectives: Traumatic brain injury (TBI) is a major global cause of death and disability, with long-term cognitive, behavioral, and functional consequences. Despite its high burden, management is complicated by heterogeneous presentations and limited evidence. This review summarizes recent advances in monitoring, therapeutic strategies, neuroprotection, and rehabilitation, while highlighting future directions toward individualized and globalized care. Methods: This paper is a narrative review of clinical trials, systematic reviews, and observational studies, focusing on invasive and non-invasive monitoring, pharmacologic and non-pharmacologic interventions, neuroprotective agents, stem cell therapy, and advanced rehabilitation modalities. Results/Findings: Our review focuses on emerging monitoring techniques, including brain tissue oxygenation, cerebral microdialysis, and multimodal strategies, that provide detailed insights but lack standardized application. Interventions such as anti-inflammatory agents, hypothermia, hyperosmolar therapies, and metabolic suppression show mixed efficacy, with few therapies supported by high-level evidence. Novel agents like erythropoietin and progesterone demonstrate neuroprotective potential in preclinical models but remain inconclusive in clinical trials. Stem cell therapies and extracellular vesicle approaches are promising in early studies. Rehabilitation is expanding with virtual reality, robotics, and neurostimulation to promote neuroplasticity. Personalized medicine approaches incorporating biomarkers and machine learning may refine prognostication and guide therapy. Global inequities persist, particularly in low-resource settings. Conclusions: TBI care is shifting toward individualized, multimodal, and technology-driven strategies. While emerging therapies show promise, high-quality randomized trials and global implementation strategies are needed to improve outcomes and reduce disparities. Full article
(This article belongs to the Special Issue Clinical Advances in Therapy of Trauma and Surgical Critical Care)
Show Figures

Figure 1

21 pages, 14964 KB  
Article
An Automated Framework for Abnormal Target Segmentation in Levee Scenarios Using Fusion of UAV-Based Infrared and Visible Imagery
by Jiyuan Zhang, Zhonggen Wang, Jing Chen, Fei Wang and Lyuzhou Gao
Remote Sens. 2025, 17(20), 3398; https://doi.org/10.3390/rs17203398 - 10 Oct 2025
Abstract
Levees are critical for flood defence, but their integrity is threatened by hazards such as piping and seepage, especially during high-water-level periods. Traditional manual inspections for these hazards and associated emergency response elements, such as personnel and assets, are inefficient and often impractical. [...] Read more.
Levees are critical for flood defence, but their integrity is threatened by hazards such as piping and seepage, especially during high-water-level periods. Traditional manual inspections for these hazards and associated emergency response elements, such as personnel and assets, are inefficient and often impractical. While UAV-based remote sensing offers a promising alternative, the effective fusion of multi-modal data and the scarcity of labelled data for supervised model training remain significant challenges. To overcome these limitations, this paper reframes levee monitoring as an unsupervised anomaly detection task. We propose a novel, fully automated framework that unifies geophysical hazards and emergency response elements into a single analytical category of “abnormal targets” for comprehensive situational awareness. The framework consists of three key modules: (1) a state-of-the-art registration algorithm to precisely align infrared and visible images; (2) a generative adversarial network to fuse the thermal information from IR images with the textural details from visible images; and (3) an adaptive, unsupervised segmentation module where a mean-shift clustering algorithm, with its hyperparameters automatically tuned by Bayesian optimization, delineates the targets. We validated our framework on a real-world dataset collected from a levee on the Pajiang River, China. The proposed method demonstrates superior performance over all baselines, achieving an Intersection over Union of 0.348 and a macro F1-Score of 0.479. This work provides a practical, training-free solution for comprehensive levee monitoring and demonstrates the synergistic potential of multi-modal fusion and automated machine learning for disaster management. Full article
Show Figures

Figure 1

30 pages, 27154 KB  
Article
The Modeling and Detection of Vascular Stenosis Based on Molecular Communication in the Internet of Things
by Zitong Shao, Pengfei Zhang, Xiaofang Wang and Pengfei Lu
J. Sens. Actuator Netw. 2025, 14(5), 101; https://doi.org/10.3390/jsan14050101 - 10 Oct 2025
Viewed by 38
Abstract
Molecular communication (MC) has emerged as a promising paradigm for nanoscale information exchange in Internet of Bio-Nano Things (IoBNT) environments, offering intrinsic biocompatibility and potential for real-time in vivo monitoring. This study proposes a cascaded MC channel framework for vascular stenosis detection, which [...] Read more.
Molecular communication (MC) has emerged as a promising paradigm for nanoscale information exchange in Internet of Bio-Nano Things (IoBNT) environments, offering intrinsic biocompatibility and potential for real-time in vivo monitoring. This study proposes a cascaded MC channel framework for vascular stenosis detection, which integrates non-Newtonian blood rheology, bell-shaped constriction geometry, and adsorption–desorption dynamics. Path delay and path loss are introduced as quantitative metrics to characterize how structural narrowing and molecular interactions jointly affect signal propagation. On this basis, a peak response time-based delay inversion method is developed to estimate both the location and severity of stenosis. COMSOL 6.2 simulations demonstrate high spatial resolution and resilience to measurement noise across diverse vascular configurations. By linking nanoscale transport dynamics with system-level detection, the approach establishes a tractable pathway for the early identification of vascular anomalies. Beyond theoretical modeling, the framework underscores the translational potential of MC-based diagnostics. It provides a foundation for non-invasive vascular health monitoring in IoT-enabled biomedical systems with direct relevance to continuous screening and preventive cardiovascular care. Future in vitro and in vivo studies will be essential to validate feasibility and support integration with implantable or wearable biosensing devices, enabling real-time, personalized health management. Full article
Show Figures

Figure 1

17 pages, 1033 KB  
Review
Towards Carbon-Neutral Hydrogen: Integrating Methane Pyrolysis with Geothermal Energy
by Ayann Tiam, Marshall Watson and Talal Gamadi
Processes 2025, 13(10), 3195; https://doi.org/10.3390/pr13103195 - 8 Oct 2025
Viewed by 189
Abstract
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in [...] Read more.
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in which an enhanced geothermal system (EGS) provides base-load preheating and isothermal holding, while either electrical or solar–thermal input supplies the final temperature rise to the catalytic set-point. The work addresses four main objectives: (i) integrating field-scale geothermal operating envelopes to define heat-integration targets and duty splits; (ii) assessing scalability through high-pressure reactor design, thermal management, and carbon separation strategies that preserve co-product value; (iii) developing a techno-economic analysis (TEA) framework that lists CAPEX and OPEX, incorporates carbon pricing and credits, and evaluates dual-product economics for hydrogen and carbon black; and (iv) reorganizing state-of-the-art advances chronologically, linking molten media demonstrations, catalyst development, and integration studies. The process synthesis shows that allocating geothermal heat to the largest heat-capacity streams (feed, recycle, and melt/salt hold) reduces electric top-up demand and stabilizes reactor operation, thereby mitigating coking, sintering, and broad particle size distributions. High-pressure operation improves the hydrogen yield and equipment compactness, but it also requires corrosion-resistant materials and careful thermal-stress management. The TEA indicates that the levelized cost of hydrogen is primarily influenced by two factors: (a) electric duty and the carbon intensity of power, and (b) the achievable price and specifications of the carbon co-product. Secondary drivers include the methane price, geothermal capacity factor, and overall conversion and selectivity. Overall, geothermal-assisted methane pyrolysis emerges as a practical pathway to turquoise hydrogen, if the carbon quality is maintained and heat integration is optimized. The study offers design principles and reporting guidelines intended to accelerate pilot-scale deployment. Full article
Show Figures

Figure 1

24 pages, 2257 KB  
Article
Hybrid Renewable Energy Systems: Integration of Urban Mobility Through Metal Hydrides Solution as an Enabling Technology for Increasing Self-Sufficiency
by Lorenzo Bartolucci, Edoardo Cennamo, Stefano Cordiner, Vincenzo Mulone and Alessandro Polimeni
Energies 2025, 18(19), 5306; https://doi.org/10.3390/en18195306 - 8 Oct 2025
Viewed by 233
Abstract
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most [...] Read more.
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most studies have focused either on stationary applications or on mobility, seldom addressing their integration withing a single framework. In particular, the potential of Metal Hydride (MH) tanks remains largely underexplored in the context of sector coupling, where the same storage unit can simultaneously sustain household demand and provide in-house refueling for light-duty fuel-cell vehicles. This study presents the design and analysis of a residential-scale HRES that combines photovoltaic generation, a PEM electrolyzer, a lithium-ion battery and MH storage intended for direct integration with a fuel-cell electric microcar. A fully dynamic numerical model was developed to evaluate system interactions and quantify the conditions under which low-pressure MH tanks can be effectively integrated into HRES, with particular attention to thermal management and seasonal variability. Two simulation campaigns were carried out to provide both component-level and system-level insights. The first focused on thermal management during hydrogen absorption in the MH tank, comparing passive and active cooling strategies. Forced convection reduced absorption time by 44% compared to natural convection, while avoiding the additional energy demand associated with thermostatic baths. The second campaign assessed seasonal operation: even under winter irradiance conditions, the system ensured continuous household supply and enabled full recharge of two MH tanks every six days, in line with the hydrogen requirements of the light vehicle daily commuting profile. Battery support further reduced grid reliance, achieving a Grid Dependency Factor as low as 28.8% and enhancing system autonomy during cold periods. Full article
Show Figures

Figure 1

13 pages, 1564 KB  
Article
Pan-Resistant HIV-1 Drug Resistance Among Highly Treated Patients with Virological Failure on Dolutegravir-Based Antiretroviral Therapy in Zimbabwe
by Tendai Washaya, Benjamin Chimukangara, Justin Mayini, Sandra Bote, Nyasha Chin’ombe, Shungu Munyati and Justen Manasa
Viruses 2025, 17(10), 1348; https://doi.org/10.3390/v17101348 - 8 Oct 2025
Viewed by 534
Abstract
The HIV-1 epidemic continues to challenge global public health, especially in sub-Saharan Africa. The rise in drug-resistant viruses, particularly pan-resistant strains, threatens treatment effectiveness, hindering progress toward UNAIDS viral suppression goals. This is critical in low-to-middle income countries (LMICs) like Zimbabwe, where treatment [...] Read more.
The HIV-1 epidemic continues to challenge global public health, especially in sub-Saharan Africa. The rise in drug-resistant viruses, particularly pan-resistant strains, threatens treatment effectiveness, hindering progress toward UNAIDS viral suppression goals. This is critical in low-to-middle income countries (LMICs) like Zimbabwe, where treatment options and access to drug resistance testing are limited. This cross-sectional study analyzed 102 genotypes from patients with HIV-1 RNA ≥ 1000 copies/mL after at least 6 months on a dolutegravir (DTG)-based ART. HIV-1 genotyping and drug resistance interpretation were performed using the Stanford HIV Drug Resistance Database. Overall, 62% of genotypes harbored at least one drug resistance mutation, with 27% showing integrase strand transfer inhibitor (INSTI)-associated mutations. High-level resistance to DTG and cabotegravir was found in 14% and 23% of integrase sequences, respectively, primarily driven by G118R and E138K/T mutations. Pan-resistance was observed in 18% of complete genotypes, with one case of four class resistance. These results highlight the emergence of INSTI resistance in LMICs. The study underscores the urgent need for enhanced HIV drug resistance testing, continuous surveillance, and strategic optimization of ART regimens in resource-constrained settings to ensure effective HIV management. Full article
Show Figures

Figure 1

20 pages, 1133 KB  
Review
Exercise, Epigenetics, and Body Composition: Molecular Connections
by Ashley Williams, Danielle D. Wadsworth and Thangiah Geetha
Cells 2025, 14(19), 1553; https://doi.org/10.3390/cells14191553 - 6 Oct 2025
Viewed by 438
Abstract
Exercise plays a crucial role in promoting overall health by activating molecular pathways that contribute to the prevention and management of chronic diseases, slowing epigenetic aging, improving body composition, and reducing the risk of obesity. In skeletal muscle, these benefits are largely mediated [...] Read more.
Exercise plays a crucial role in promoting overall health by activating molecular pathways that contribute to the prevention and management of chronic diseases, slowing epigenetic aging, improving body composition, and reducing the risk of obesity. In skeletal muscle, these benefits are largely mediated by exercise-induced transcriptional and epigenetic responses. Recent advances in epigenetics have intensified interest in understanding how physical activity influences long-term health and body composition at the molecular level. Epigenetic modifications, which regulate gene expression without altering the DNA sequence, are key mechanisms in this process. Emerging research has provided deeper insights into the processes such as DNA methylation, histone modification, and non-coding RNAs, and their connection to exercise. While numerous studies have demonstrated the influence of exercise on the epigenome, fewer have directly examined how these molecular changes relate to alterations in fat mass, lean body mass, and other components of body composition. This comprehensive review synthesizes the current evidence on the interplay between exercise, epigenetic regulation, and body composition, with a focus on adolescents and adults. We highlight key genes involved in metabolism, fat storage, muscle development, and epigenetic aging, and explore how their regulation may contribute to individual variability in exercise response. Understanding these molecular pathways may provide valuable insights for optimizing exercise interventions aimed at improving health outcomes across the lifespan. Full article
Show Figures

Figure 1

Back to TopTop