Monitoring Temperate Typical Steppe Degradation in Inner Mongolia: Integrating Ecosystem Structure and Function
Abstract
1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Sources and Preprocessing
3. Study Method
3.1. Steppe Degradation Indicators and Weights
3.1.1. Indicators of Steppe Ecosystem Structure
3.1.2. Indicators of Steppe Ecosystem Function
3.1.3. Indicator Weights
3.2. Hydrothermal Zone Delineation
3.3. Establishment of Degradation Baseline
3.4. Degradation Delineation
3.5. Analysis Methods
3.5.1. Trend Analysis
3.5.2. Coefficient of Variation Analysis
3.5.3. Degradation Detection
3.6. Drivers of Steppe Degradation
4. Results
4.1. Characteristics of Spatial and Temporal Changes in the Composite Degradation Index
4.2. Spatial and Temporal Analysis of the Current Status of Steppe Degradation
4.2.1. Time Series Segmentation and Residual Trend Method Results
4.2.2. Results of Community Distribution Changes
4.2.3. Extraction of Degradation Indicator Species and Establishment of Reference Baseline
4.2.4. Spatial and Temporal Analysis of Degradation
4.3. Steppe Degradation Driving Factor Analysis
5. Discussion
5.1. Steppe Degradation Assessment Methodology
5.2. Steppe Degradation Reference Baseline
5.3. Dynamic Changes in Steppe Degradation
5.4. Drivers of Degradation
5.5. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting Global Grassland Degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- O’Mara, F.P. The Role of Grasslands in Food Security and Climate Change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Kemp, D.R.; Han, G.; Hau, X.; Michalk, D.L.; Hou, F.; Wu, J.; Zhang, Y. Innovative Grassland Management Systems for Environmental and Livelihood Benefits. Proc. Natl. Acad. Sci. USA 2013, 110, 8369–8374. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.; Liu, X.; Yu, M. Thresholds of Key Disaster-Inducing Factors and Drought Simulation in the Xilinguole Grassland. Ecol. Inform. 2021, 64, 101380. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Yu, M.; Zhao, H.; Zhu, Z. Productivity Response Characteristics of Different Grasslands to Flash Drought and Their Relationship with Drought Tolerance. Ecol. Indic. 2024, 159, 111761. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P.; Hu, X.; Ding, Y.; Peng, T.; Zhi, Q.; Bademu, Q.; Li, W.; Guan, X.; Li, J. Evaluation of grassland degradation status and vegetation characteristics changes in Hulunbuir. Biodivers. Sci. 2025, 33, 40–51. [Google Scholar] [CrossRef]
- Han, X.; Li, Y.; Du, X.; Li, Y.; Wang, Z.; Jiang, S.; Li, Q. Effect of Grassland Degradation on Soil Quality and Soil Biotic Community in a Semi-Arid Temperate Steppe. Ecol. Process. 2020, 9, 63. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Zhu, G.; Huang, C.; Ma, C.; Tan, M.; Zhong, J. Evaluating the Impact of Dynamic Changes in Grasslands on the Critical Ecosystem Service Value of Yanchi County in China from 2000 to 2015. Sustainability 2022, 14, 11762. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Gong, J.; Wang, H.; Dang, D.; Dou, H.; Li, S.; Liu, S. Comprehensive Grassland Degradation Monitoring by Remote Sensing in Xilinhot, Inner Mongolia, China. Sustainability 2020, 12, 3682. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C. Quantifying Grass Coverage Trends to Identify the Hot Plots of Grassland Degradation in the Tibetan Plateau during 2000–2019. Int. J. Environ. Res. Public Health 2021, 18, 416. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, H.; Zhang, X. Diagnosis of grassland degradation degree and its perspectives. Chin. J. Grassl. 2007, 29, 90–97. [Google Scholar]
- Duo, A.; Zhao, W.; Qu, X.; Jing, R.; Xiong, K. Spatio-Temporal Variation of Vegetation Coverage and Its Response to Climate Change in North China Plain in the Last 33 Years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, N.; Luo, L.; Li, X.; Ren, C.; Song, K.; Chen, J.M. Shrinkage and Fragmentation of Marshes in the West Songnen Plain, China, from 1954 to 2008 and Its Possible Causes. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 477–486. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Chen, Y.; Cheng, F.; Liu, G.; He, Z. Remote-Sensing Monitoring of Grassland Degradation Based on the GDI in Shangri-La, China. Remote Sens. 2019, 11, 3030. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, Y.; Wang, Y.; Zhao, X.; Yang, Y.; Tang, Z.; Wang, S.; Su, H.; Zhu, J.; Chang, J.; et al. Field-Based Estimation of Net Primary Productivity and Its above- and Belowground Partitioning in Global Grasslands. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006472. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation Based on Remote Sensing. Chin. J. Plant Ecol. 2007, 31, 413. [Google Scholar] [CrossRef]
- Adem, E.; Chaabani, A.; Yilmaz, N.; Boteva, S.; Zhang, L.; Elhag, M. Assessing the Impacts of Precipitation on Water Yield Estimation in Arid Environments: Case Study in the Southwestern Part of Saudi Arabia. Sustain. Chem. Pharm. 2024, 39, 101539. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of Water Conservation Function of Danjiang River Basin in Qinling Mountains, China Based on InVEST Model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains; Agriculture Handbook No. 282; United States Department of Agriculture: Washington, DC, USA, 1965. [Google Scholar]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Zou, Z.; Yun, Y.; Sun, J. Entropy Method for Determination of Weight of Evaluating Indicators in Fuzzy Synthetic Evaluation for Water Quality Assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Abdi, H. Coefficient of Variation. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; p. 267. ISBN 978-3-642-04897-5. [Google Scholar]
- Qiu, T.; Du, X. Graph Neural Networks Combined with PCA for Predicting Blast Load Time Series on Structures. Reliab. Eng. Syst. Saf. 2025, 264, 111430. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, C.; Zhang, B.; Ma, J.; Yin, L. Introduction Risk Assessment for Quarantine Pests by Environmental Monitoring, Object Detection and Monte Carlo Simulation. Comput. Electron. Agric. 2025, 233, 110132. [Google Scholar] [CrossRef]
- Makowski, D. Uncertainty and Sensitivity Analysis in Quantitative Pest Risk Assessments; Practical Rules for Risk Assessors. NeoBiota 2013, 18, 157–171. [Google Scholar] [CrossRef]
- Yang, Y.; Song, G.; Lu, S. Assessment of Land Ecosystem Health with Monte Carlo Simulation: A Case Study in Qiqihaer, China. J. Clean. Prod. 2020, 250, 119522. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, X.-S. Estimation of water and thermal product index and its application to the study of vegetation-climate interaction in China. Acta Bot. Sin. 1997, 39, 1147–1159. [Google Scholar]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M.; Allen, R.G.; Pereira, L.S.; Martin, S. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; p. 300. [Google Scholar]
- He, P.; Zhang, D.; Chen, W.; Jia, B. Spatio-Temporal Distribution Estimation and Analysis of Post-Earthquake Casualties in Urban Areas: A Case Study in Chenghua District, Chengdu. Int. J. Disaster Risk Reduct. 2025, 123, 105477. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; Liu, Y. Detecting Dryland Degradation Using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND). Remote Sens. Environ. 2017, 197, 43–57. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, C.; Tian, Y. Spatio-temporal greenness and anthropogenic analysis in Shaanxi based on MODIS NDVI from 2001 to 2018. Acta Ecol. Sin. 2021, 41, 1571–1582. [Google Scholar] [CrossRef]
- Fensholt, R.; Horion, S.; Tagesson, T.; Ehammer, A.; Grogan, K.; Tian, F.; Huber, S.; Verbesselt, J.; Prince, S.D.; Tucker, C.J.; et al. Assessing Drivers of Vegetation Changes in Drylands from Time Series of Earth Observation Data. In Remote Sensing Time Series: Revealing Land Surface Dynamics; Kuenzer, C., Dech, S., Wagner, W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 183–202. ISBN 978-3-319-15967-6. [Google Scholar]
- GB 19377-2003; Parameters for Degradation, Sandification and Salification of Rangelands. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2003.
- Gao, W.; Zheng, C.; Liu, X.; Lu, Y.; Chen, Y.; Wei, Y.; Ma, Y. NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 1982 to 2020: A Case Study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 108745. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, F.; Guo, L.; Dong, P.; Cheng, C.; Kumar, P.; Johnson, B.A.; Chan, N.W.; Shi, J. Contributions of Climate Change and Human Activities to Grassland Degradation and Improvement from 2001 to 2020 in Zhaosu County, China. J. Environ. Manag. 2023, 348, 119465. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wang, S.; Cui, D.; Wang, L.; Peng, J. Applying Deep-Learning Enhanced Fusion Methods for Improved NDVI Reconstruction and Long-Term Vegetation Cover Study: A Case of the Danjiang River Basin. Ecol. Indic. 2023, 155, 111088. [Google Scholar] [CrossRef]
- Jumai, M.; Kasimu, A.; Liang, H.; Tang, L.; Aizizi, Y.; Zhang, X. A Study on the Spatial and Temporal Variation of Summer Surface Temperature in the Bosten Lake Basin and Its Influencing Factors. Land 2023, 12, 1185. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.; Huang, J. Distinguishing between Human-Induced and Climate-Driven Vegetation Changes: A Critical Application of RESTREND in Inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Liu, C.; John, M.; Tian, Y.; Huang, H.; Jiang, J.; Fu, X.; Zhang, Z. Detecting Land Degradation in Eastern China Grasslands with Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and GIMMS NDVI3g Data. Remote Sens. 2019, 11, 1014. [Google Scholar] [CrossRef]
- Wang, S.; Jia, L.; Cai, L.; Wang, Y.; Zhan, T.; Huang, A.; Fan, D. Assessment of Grassland Degradation on the Tibetan Plateau Based on Multi-Source Data. Remote Sens. 2022, 14, 6011. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Yang, Y.; Zhou, W.; Gang, C.; Zhang, Y.; Li, J.; An, R.; Wang, K.; Odeh, I.; et al. Quantitative Assess the Driving Forces on the Grassland Degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 2016, 33, 32–44. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Huang, L.; Chen, C.; Lin, X.; Hu, Z.; Li, J. Grassland Degradation Remote Sensing Monitoring and Driving Factors Quantitative Assessment in China from 1982 to 2010. Ecol. Indic. 2017, 83, 303–313. [Google Scholar] [CrossRef]
- Wang, K.; Cao, C.; Xie, B.; Xu, M.; Yang, X.; Guo, H.; Duerler, R.S. Analysis of the Spatial and Temporal Evolution Patterns of Grassland Health and Its Driving Factors in Xilingol. Remote Sens. 2022, 14, 5179. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, J.; Wang, Y.; Li, Y.; Duo, J. State-of-the-Art and Challenges in Global Grassland Degradation Studies. Geogr. Sustain. 2025, 6, 100229. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Gao, Z.; Guo, Z.; Wang, B.; Hu, X.; Bai, L. Grassland Degradation and Restoration Monitoring and Driving Forces Analysis Based on Long Time-Series Remote Sensing Data in Xilin Gol League. Acta Ecol. Sin. 2017, 37, 219–228. [Google Scholar] [CrossRef]
- Tian, D.; Bai, X.; Qin, K. Spatio-Temporal Distribution of Grassland Degradation in the Qilian Mountain Area from 2013 to 2020 Based on Landsat 8 OLI Data. Bull. Surv. Mapp. 2025, 4, 152–157. [Google Scholar] [CrossRef]
- Zhou, Z.; Cheng, F.; Wang, J.; Yi, B. A Study on the Impact of Roads on Grassland Degradation in Shangri-La City. Sustainability 2023, 15, 7747. [Google Scholar] [CrossRef]
- Wu, N.; Liu, A.; Ye, R.; Yu, D.; Du, W.; Chaolumeng, Q.; Liu, G.; Yu, S. Quantitative Analysis of Relative Impacts of Climate Change and Human Activities on Xilingol Grassland in Recent 40 Years. Glob. Ecol. Conserv. 2021, 32, e01884. [Google Scholar] [CrossRef]
- Zhao, R.; Xiao, R.; Wan, H.; Liu, H.; Gao, S.; Liu, S.; Fu, Z.; Tan, C.; Wen, R.; Tang, H. Grassland change monitoring and driving force analysis in Xilingol League. China Environ. Sci. 2017, 37, 4734–4743. [Google Scholar]
- Li, J.; Cao, C.; Xu, M.; Yang, X.; Gao, X.; Wang, K.; Guo, H.; Yang, Y. A 20-Year Analysis of the Dynamics and Driving Factors of Grassland Desertification in Xilingol, China. Remote Sens. 2023, 15, 5716. [Google Scholar] [CrossRef]
- Batunacun Nendel, C.; Hu, Y.; Lakes, T. Land-Use Change and Land Degradation on the Mongolian Plateau from 1975 to 2015—A Case Study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar] [CrossRef]
- Li, P.; Bennett, J. Understanding Herders’ Stocking Rate Decisions in Response to Policy Initiatives. Sci. Total Environ. 2019, 672, 141–149. [Google Scholar] [CrossRef]
- Li, S.; Verburg, P.H.; Lv, S.; Wu, J.; Li, X. Spatial Analysis of the Driving Factors of Grassland Degradation under Conditions of Climate Change and Intensive Use in Inner Mongolia, China. Reg. Environ. Change 2012, 12, 461–474. [Google Scholar] [CrossRef]
Data Name | Resolution | Data Source |
---|---|---|
Digital Elevation data (DEM) | 30 m | STRM elevation data products (https://search.earthdata.nasa.gov) |
Normalized Difference Vegetation Index (NDVI) | 30 m | National Science & Technology Infrastructure (https://nesdc.org.cn) |
Land Surface Temperature (LST) | 1000 m | (https://search.earthdata.nasa.gov) |
Land Use Type | 30 m | China Annual Land Cover Dataset (CLCD) |
Soil Type | 1:1 million | Chinese soil dataset (v1.1) based on the World Soil Database (HWSD), (https://data.tpdc.ac.cn) |
Monthly Total Precipitation Monthly Mean Temperatures | 1000 m | ERA5 Dataset Google Earth Engine (GEE) cloud-based platform |
Evapotranspiration (ET) | 500 m | MODIS MOD16A2 Dataset Google Earth Engine (GEE) cloud-based platform |
ZY-1 02D and ZY-1 02E high-resolution data | 30 m | The China Aero Geophysical Survey and Remote Sensing Center for Natural Resources (AGRS) |
Grazing Intensity | 1000 m | National Science & Technology Infrastructure (https://nesdc.org.cn) |
Population Density | 1000 m | (https://landscan.ornl.gov/) |
Indicator | Weight |
---|---|
Soil Conservation | 0.2535 |
Water Conservation | 0.1923 |
Carbon Sequestration and Oxygen Release | 0.1175 |
Net primary productivity (NPP) | 0.1175 |
Fractional vegetation cover (FVC) | 0.0915 |
Temperature vegetation dryness index (TVDI) | 0.0652 |
Patch density (PD) | 0.0655 |
Shannon diversity index (SHDI) | 0.0970 |
Type of Changes | Form of Coding | Description |
---|---|---|
Perennial unchanged | Identical classification numbers | No change in degradation intensity |
No change in volatility | Classification numbers with endings same as the first | No change at the beginning or end of the degradation intensity |
Volatility rising | Classification numbers with endings bigger than the first | Last year of degradation > first year |
Volatility declining | Classification numbers with endings smaller than the first | Last year of degradation < first year |
Grade Name | Direction of Change | Significance |
---|---|---|
I1 | Slope > 0 | |
I2 | Slope > 0 | |
I3 | Slope > 0 | |
INC | Slope > 0 | |
D1 | Slope < 0 | |
D2 | Slope < 0 | |
D3 | Slope < 0 | |
DNC | Slope < 0 | |
NSC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wei, D.; Yang, J.; Yao, W.; Tian, S. Monitoring Temperate Typical Steppe Degradation in Inner Mongolia: Integrating Ecosystem Structure and Function. Sustainability 2025, 17, 9015. https://doi.org/10.3390/su17209015
Yan X, Wei D, Yang J, Yao W, Tian S. Monitoring Temperate Typical Steppe Degradation in Inner Mongolia: Integrating Ecosystem Structure and Function. Sustainability. 2025; 17(20):9015. https://doi.org/10.3390/su17209015
Chicago/Turabian StyleYan, Xinru, Dandan Wei, Jinzhong Yang, Weiling Yao, and Shufang Tian. 2025. "Monitoring Temperate Typical Steppe Degradation in Inner Mongolia: Integrating Ecosystem Structure and Function" Sustainability 17, no. 20: 9015. https://doi.org/10.3390/su17209015
APA StyleYan, X., Wei, D., Yang, J., Yao, W., & Tian, S. (2025). Monitoring Temperate Typical Steppe Degradation in Inner Mongolia: Integrating Ecosystem Structure and Function. Sustainability, 17(20), 9015. https://doi.org/10.3390/su17209015