Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = leukocyte reprogramming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 239 KB  
Review
Insights into the Anti-Inflammatory Effects of Soft Tissue Manipulation
by Jonathan W. Lowery, Basil Mustaklem, Connor Wakefield, Hailey Brown, Madeline M. Sasse, Samuel Baule, Sierra Street, Liza Pradhan, Simran Sandhu, Carmela L. Marciano, David C. Eland, Mary Terry Loghmani and Tien-Min Gabriel Chu
Biology 2025, 14(10), 1421; https://doi.org/10.3390/biology14101421 - 15 Oct 2025
Viewed by 333
Abstract
Soft tissue manipulation (STM) is widely used by physical therapists, massage therapists, athletic trainers, and osteopathic physicians to manage musculoskeletal pain, yet its biological mechanisms remain poorly understood. Preclinical studies indicate that STM can alter immune cell behavior in animal models, increasing anti-inflammatory [...] Read more.
Soft tissue manipulation (STM) is widely used by physical therapists, massage therapists, athletic trainers, and osteopathic physicians to manage musculoskeletal pain, yet its biological mechanisms remain poorly understood. Preclinical studies indicate that STM can alter immune cell behavior in animal models, increasing anti-inflammatory cytokines (IL-4, IL-10) and reducing chemokines such as RANTES/CCL5. Single-cell transcriptomic analyses suggest mechanical treatment may reprogram stromal cells and shift immune cell recruitment in aged or inflamed tissues. However, many of these mechanistic findings have yet to be confirmed in human studies. Early clinical trials show massage therapy can modify circulating leukocytes and reduce cytokine responses, but direct tissue-level evidence in human subjects remains limited. This narrative review summarizes existing insights and emphasizes the need for future clinical investigations targeting populations with chronic inflammation, repetitive-use injuries, post-surgical fibrosis, or age-related muscle decline. We advocate for studies incorporating tissue or fluid sampling, cytokine profiling, and molecular assays such as flow cytometry or transcriptomics to characterize STM’s immunological effects in people. Rather than simply easing symptoms, STM may act as a precision mechanical stimulus that recalibrates immune tone and promotes tissue repair. Bridging basic science with clinical research will be essential to establish STM as a biologically informed, mechanobiology-based therapeutic strategy. Full article
21 pages, 4556 KB  
Article
AGS-v PLUS, a Mosquito Salivary Peptide Vaccine, Modulates the Response to Aedes Mosquito Bites in Humans
by Liam Barningham, Ian M. Carr, Siân Jossi, Megan Cole, Aiyana Ponce, Mara Short, Claudio Meneses, Joshua R. Lacsina, Jesus G. Valenzuela, Fabiano Oliveira, Matthew B. Laurens, DeAnna J. Friedman-Klabanoff, Olga Pleguezuelos, Lucy F. Stead and Clive S. McKimmie
Vaccines 2025, 13(10), 1026; https://doi.org/10.3390/vaccines13101026 - 30 Sep 2025
Viewed by 1069
Abstract
Background: The global health burden of mosquito-borne viruses, including dengue, yellow fever, Zika, and chikungunya, is rising due to climate change and globalisation, which favour mosquito habitat expansion. The genetic diversity of these viruses complicates the development of virus-specific vaccines or antivirals, highlighting [...] Read more.
Background: The global health burden of mosquito-borne viruses, including dengue, yellow fever, Zika, and chikungunya, is rising due to climate change and globalisation, which favour mosquito habitat expansion. The genetic diversity of these viruses complicates the development of virus-specific vaccines or antivirals, highlighting the need for pan-viral strategies. As the common vector for these pathogens, mosquitoes and specifically their salivary proteins represent a promising target for such interventions. Mosquito saliva, secreted into the skin during biting, has immunomodulatory effects that can enhance host susceptibility to infection, but these mechanisms are not well defined in humans. Methods: The objective of this study was to determine whether AGS-v PLUS, a vaccine targeting mosquito salivary antigens, could modulate the human skin immune response to mosquito biting and potentially promote antiviral bystander immunity. In a Phase I trial, healthy volunteers were vaccinated with AGS-v PLUS (with or without adjuvant) or placebo, and three weeks later, they were exposed to bites from Aedes albopictus and Aedes aegypti mosquitoes. Skin biopsies from bitten and unbitten sites were analysed by transcriptomic profiling. Results: In placebo recipients, mosquito biting elicited a marked adaptive immune response at 48 h, characterised by CD4+ Th1 and CD8+ T cell signatures and leukocyte recruitment. While responses to Ae. aegypti and Ae. albopictus bites were broadly similar, those to Ae. albopictus were stronger. Vaccination with AGS-v PLUS, particularly with adjuvant, enhanced Th1 and CD8+ T cell-associated gene expression while suppressing pathways linked to neutrophilic inflammation and epithelial stress, which together may provide enhanced antiviral capacity. Conclusions: These findings demonstrate that targeting the host response to mosquito saliva via vaccination can reprogram the skin’s immune response to mosquito bites, supporting a novel and broadly applicable pan-viral strategy to mitigate the impact of arboviral diseases. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

20 pages, 3793 KB  
Article
Chemoresistance Evolution in Ovarian Cancer Delineated by Single-Cell RNA Sequencing
by Yuanmei Wang, Zongfu Tang, Haoyu Li, Run Zhou, Hao Wu, Xiaoping Cen, Yi Zhang, Wei Dong and Huanming Yang
Int. J. Mol. Sci. 2025, 26(14), 6760; https://doi.org/10.3390/ijms26146760 - 15 Jul 2025
Viewed by 1392
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive gynecological malignancy characterized by intraperitoneal spread and chemotherapy resistance. Chemotherapies have demonstrated limited effectiveness in HGSOC, underscoring the urgent need to evaluate how the tumor microenvironment (TME) was reshaped by chemotherapy in different sites of [...] Read more.
High-grade serous ovarian cancer (HGSOC) is an aggressive gynecological malignancy characterized by intraperitoneal spread and chemotherapy resistance. Chemotherapies have demonstrated limited effectiveness in HGSOC, underscoring the urgent need to evaluate how the tumor microenvironment (TME) was reshaped by chemotherapy in different sites of tumor foci. In this study, we performed single-cell transcriptomic analysis to explore the TME in samples obtained from various sites of tumor foci, with or without the history of Neoadjuvant chemotherapy (NACT). We discovered that chemotherapy reshaped the tumor immune microenvironment, evident through the reduction in human leukocyte antigen (HLA) diversity and the increase in PDCD1/CD274 in CD8_ANXA1, LAMP3+ dendritic cell (DC_LAMP3), and EREG+ monocytes (mono_EREG). Moreover, cancer.cell.2, cancer-associated C3+ fibroblasts (CAF_C3), and Fibrocyte_CD34, which are prone to accumulate in the metastatic site and post-NACT group, harbored poor clinical outcome, reflected in the immune exclusion and tumor progression signaling. Cell–cell communication identified a stronger interaction between cancer.cell.2 and CAF_C3, as well as Fibrocyte_CD34, in post-NACT samples, indicating that chemotherapy reshapes pre-existing cell clusters in a site-dependent manner. Our findings suggest that chemotherapy and sites of foci were critical for the transcriptional reprogramming of pre-existed cell clusters. Our study offers a single-cell phenotype data substrate from which to develop a personalized combination of chemotherapy and immunotherapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

29 pages, 909 KB  
Review
Unraveling the Role of Tumor-Infiltrating Immune Cells in Head and Neck Squamous Cell Carcinoma: Implications for Antitumor Immune Responses and Immunotherapy
by Paula Constanza Arriola Benítez, Mariel Fusco, Ricardo Amorin, Carlos Rafael Picón, Flavia Piccioni, Lucia Victoria, Manglio Miguel Rizzo and Mariana Malvicini
Int. J. Mol. Sci. 2025, 26(13), 6337; https://doi.org/10.3390/ijms26136337 - 30 Jun 2025
Cited by 1 | Viewed by 1921
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous malignancy characterized by a complex tumor microenvironment (TME) that plays a critical role in disease progression and therapeutic resistance. Tumor-infiltrating immune cells, including T lymphocytes, macrophages, dendritic cells, and myeloid-derived suppressor cells, [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous malignancy characterized by a complex tumor microenvironment (TME) that plays a critical role in disease progression and therapeutic resistance. Tumor-infiltrating immune cells, including T lymphocytes, macrophages, dendritic cells, and myeloid-derived suppressor cells, exhibit dual functions, either promoting or suppressing tumor growth depending on their phenotype and interactions within the TME. The presence of immune evasion mechanisms, such as the loss of human leukocyte antigen (HLA) expression, upregulation of immune checkpoint molecules, and metabolic reprogramming (hypoxia-induced glycolysis and lactate accumulation), further contributes to immune suppression and poor treatment responses. While immune checkpoint inhibitors (ICIs) have revolutionized the treatment of recurrent/metastatic HNSCC, response rates remain highly variable, underscoring the need for biomarker-driven patient selection and combinatorial therapeutic strategies. This review provides a comprehensive analysis of the role of immune cells in the TME of HNSCC, discusses the mechanisms underlying immune escape, and explores emerging immunotherapeutic and epigenetic-targeting approaches aimed at enhancing antitumor immune responses and improving clinical outcomes. Full article
Show Figures

Figure 1

14 pages, 3517 KB  
Article
In Utero Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin Impairs the Ability of Mice to Clear a Pseudomonas aeruginosa Infection in Adulthood
by Victoria R. Stephens, Julia K. Bohannon, Kaylon L. Bruner-Tran, Xenia D. Davis, Mary A. Oliver, Margaret A. McBride, Sharareh Ameli, Jelonia T. Rumph, Jennifer A. Gaddy, Edward R. Sherwood and Kevin G. Osteen
Microbiol. Res. 2025, 16(5), 91; https://doi.org/10.3390/microbiolres16050091 - 26 Apr 2025
Viewed by 952
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to several pathologies in human health, especially those involving the immune system. The vast majority of studies have focused on cells and functions of the adaptive immune system with little investigation of the impact of [...] Read more.
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to several pathologies in human health, especially those involving the immune system. The vast majority of studies have focused on cells and functions of the adaptive immune system with little investigation of the impact of EDCs on innate immunity. While EDC exposure remains a threat throughout the lifetime of an individual, the most detrimental effects on human health occur during critical stages of development, such as in utero. Fetal development is not only associated with growth and tissue remodeling but also with the establishment of key processes, including those of the immune system. Unfortunately, due to fetal plasticity, developmental exposure to certain EDCs, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can affect mammalian health well into adulthood by altering fetal programming. Herein, we hypothesize that in utero exposure to TCDD induces developmental reprogramming of the innate immune system that subsequently impacts the adult response to infection. To interrogate our hypothesis, we challenged adult mice with and without a history of in utero TCDD exposure with 1 × 108 CFU Pseudomonas aeruginosa via intraperitoneal injection. Results revealed a significant decrease in the number of innate leukocytes at the site of infection six hours after inoculation in toxicant-exposed mice compared to unexposed mice. The reduction in the number of phagocytes correlated with a reduction in bacterial clearance in toxicant-exposed mice. We also noted a decreased ability of peritoneal immune cells from toxicant-exposed mice to produce chemokines necessary for immune cell recruitment. Taken together, our results indicate that in utero EDC exposure impairs the innate immune response to a bacterial infection in adult offspring, particularly in males. Full article
Show Figures

Figure 1

62 pages, 4356 KB  
Review
Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy
by Nada Oršolić and Maja Jazvinšćak Jembrek
Nutrients 2024, 16(21), 3741; https://doi.org/10.3390/nu16213741 - 31 Oct 2024
Cited by 18 | Viewed by 5418
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced [...] Read more.
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial–mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients’ quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers. Full article
(This article belongs to the Special Issue Effects of Phytochemicals on Human Health)
Show Figures

Figure 1

12 pages, 262 KB  
Review
Overcoming Graft Rejection in Induced Pluripotent Stem Cell-Derived Inhibitory Interneurons for Drug-Resistant Epilepsy
by Cameron P. Beaudreault, Richard Wang, Carrie Rebecca Muh, Ashley Rosenberg, Abigail Funari, Patty E. McGoldrick, Steven M. Wolf, Ariel Sacknovitz and Sangmi Chung
Brain Sci. 2024, 14(10), 1027; https://doi.org/10.3390/brainsci14101027 - 16 Oct 2024
Cited by 3 | Viewed by 3240
Abstract
Background: Cell-based therapies for drug-resistant epilepsy using induced pluripotent stem cell-derived inhibitory interneurons are now in early-phase clinical trials, building on findings from trials in Parkinson’s disease (PD) and Huntington’s disease (HD). Graft rejection and the need for immunosuppressive therapy post-transplantation pose potential [...] Read more.
Background: Cell-based therapies for drug-resistant epilepsy using induced pluripotent stem cell-derived inhibitory interneurons are now in early-phase clinical trials, building on findings from trials in Parkinson’s disease (PD) and Huntington’s disease (HD). Graft rejection and the need for immunosuppressive therapy post-transplantation pose potential barriers to more epilepsy patients becoming potential candidates for inhibitory interneurons transplantation surgery. Objectives: The present literature review weighs the evidence for and against human leukocyte antigen (HLA)-mediated graft rejection in PD and HD and examines the potential advantages and drawbacks to five broad approaches to cell-based therapies, including autologous cell culture and transplantation, in vivo reprogramming of glial cells using viral vectors, allogeneic transplantation using off-the-shelf cell lines, transplantation using inhibitory interneurons cultured from HLA-matched cell lines, and the use of hypoimmunogenic-induced pluripotent stem cell-derived inhibitory interneurons. The impact of surgical technique and associated needle trauma on graft rejection is also discussed. Methods: Non-systematic literature review. Results: While cell-based therapies have enjoyed early successes in treating a host of central nervous system disorders, the immunologic reaction against surgical procedures and implanted materials has remained a major obstacle. Conclusions: Adapting cell-based therapies using iPSC-derived inhibitory interneurons for epilepsy surgery will similarly require surmounting the challenge of immunogenicity. Full article
(This article belongs to the Special Issue Application of Surgery in Epilepsy)
16 pages, 3280 KB  
Article
Monocytes as Targets for Immunomodulation by Regional Citrate Anticoagulation
by Giovana Seno Di Marco, Achmet Imam Chasan, Göran Ramin Boeckel, Katrin Beul, Hermann Pavenstädt, Johannes Roth and Marcus Brand
Int. J. Mol. Sci. 2024, 25(5), 2900; https://doi.org/10.3390/ijms25052900 - 1 Mar 2024
Viewed by 1952
Abstract
Immune alterations in end-stage renal patients receiving hemodialysis are complex and predispose patients to infections. Anticoagulation may also play an immunomodulatory role in addition to the accumulation of uremic toxins and the effects of the dialysis procedure. Accordingly, it has been recently shown [...] Read more.
Immune alterations in end-stage renal patients receiving hemodialysis are complex and predispose patients to infections. Anticoagulation may also play an immunomodulatory role in addition to the accumulation of uremic toxins and the effects of the dialysis procedure. Accordingly, it has been recently shown that the infection rate increases in patients under regional citrate anticoagulation (RCA) compared with systemic heparin anticoagulation (SHA). We hypothesized that RCA affects the immune status of hemodialysis patients by targeting monocytes. In a cohort of 38 end-stage renal patients undergoing hemodialysis, we demonstrated that whole blood monocytes of patients receiving RCA—but not SHA—failed to upregulate surface activation markers, like human leukocyte antigen class II (HLA-DR), after stressful insults, indicating a state of deactivation during and immediately after dialysis. Additionally, RNA sequencing (RNA-seq) data and gene set enrichment analysis of pre-dialysis monocytes evidenced a great and complex difference between the groups given that, in the RCA group, monocytes displayed a dramatic transcriptional change with increased expression of genes related to the cell cycle regulation, cellular metabolism, and cytokine signaling, compatible with the reprogramming of the immune response. Transcriptomic changes in pre-dialysis monocytes signalize the lasting nature of the RCA-related effects, suggesting that monocytes are affected even beyond the dialysis session. Furthermore, these findings demonstrate that RCA—but not SHA—impairs the response of monocytes to activation stimuli and alters the immune status of these patients with potential clinical implications. Full article
(This article belongs to the Special Issue Renal Dysfunction, Uremic Compounds, and Other Factors 2.0)
Show Figures

Figure 1

12 pages, 715 KB  
Review
Amino Acid Metabolism in Leukocytes Showing In Vitro IgG Memory from SARS-CoV2-Infected Patients
by Giuseppina Fanelli, Veronica Lelli, Sara Rinalducci and Anna Maria Timperio
Diseases 2024, 12(3), 43; https://doi.org/10.3390/diseases12030043 - 23 Feb 2024
Cited by 1 | Viewed by 3067
Abstract
The immune response to infectious diseases is directly influenced by metabolic activities. COVID-19 is a disease that affects the entire body and can significantly impact cellular metabolism. Recent studies have focused their analysis on the potential connections between post-infection stages of SARS-CoV2 and [...] Read more.
The immune response to infectious diseases is directly influenced by metabolic activities. COVID-19 is a disease that affects the entire body and can significantly impact cellular metabolism. Recent studies have focused their analysis on the potential connections between post-infection stages of SARS-CoV2 and different metabolic pathways. The spike S1 antigen was found to have in vitro IgG antibody memory for PBMCs when obtaining PBMC cultures 60–90 days post infection, and a significant increase in S-adenosyl homocysteine, sarcosine, and arginine was detected by mass spectrometric analysis. The involvement of these metabolites in physiological recovery from viral infections and immune activity is well documented, and they may provide a new and simple method to better comprehend the impact of SARS-CoV2 on leukocytes. Moreover, there was a significant change in the metabolism of the tryptophan and urea cycle pathways in leukocytes with IgG memory. With these data, together with results from the literature, it seems that leukocyte metabolism is reprogrammed after viral pathogenesis by activating certain amino acid pathways, which may be related to protective immunity against SARS-CoV2. Full article
Show Figures

Figure 1

14 pages, 3141 KB  
Article
Whole Blood Reactivity to Viral and Bacterial Pathogens after Non-Emergent Cardiac Surgery during the Acute and Convalescence Periods Demonstrates a Distinctive Profile of Cytokines Production Compared to the Preoperative Baseline in Cohort of 108 Patients, Suggesting Immunological Reprogramming during the 28 Days Traditionally Recognized as the Post-Surgical Recovery Period
by Krzysztof Laudanski, Da Liu, Lioudmila Karnatovskaia, Sanghavi Devang, Amal Mathew and Wilson Y. Szeto
Biomedicines 2024, 12(1), 28; https://doi.org/10.3390/biomedicines12010028 - 21 Dec 2023
Cited by 3 | Viewed by 1816
Abstract
The release of danger signals from tissues in response to trauma during cardiac surgery creates conditions to reprogram the immune system to subsequent challenges posed by pathogens in the postoperative period. To demonstrate this, we tested immunoreactivity before surgery as the baseline (t [...] Read more.
The release of danger signals from tissues in response to trauma during cardiac surgery creates conditions to reprogram the immune system to subsequent challenges posed by pathogens in the postoperative period. To demonstrate this, we tested immunoreactivity before surgery as the baseline (tbaseline), followed by subsequent challenges during the acute phase (t24h), convalescence (t7d), and long-term recovery (t3m). For 108 patients undergoing elective heart surgery, whole blood was stimulated with lipopolysaccharide (LPS), Influenza A virus subtype N2 (H3N2), or the Flublok™ vaccine to represent common pathogenic challenges. Leukocytosis, platelet count, and serum C-reactive protein (CRP) were used to measure non-specific inflammation. Cytokines were measured after 18 h of stimulation to reflect activation of the various cell types (activated neutrophils–IL-8; activated T cells-IL-2, IFNγ, activated monocyte (MO)-TNFα, IL-6, and deactivated or atypically activated MO and/or T cells–M-CSF, IL-10). IL-2 and IL-10 were increased at t7d, while TNFα was suppressed at t24h when LPS was utilized. Interestingly, M-CSF and IL-6 production was elevated at seven days in response to all stimuli compared to baseline. While some non-specific markers of inflammation (white cell count, IL-6, and IL-8) returned to presurgical levels at t3m, CRP and platelet counts remained elevated. We showed that surgical stimulus reprograms leukocyte response to LPS with only partial restoration of non-specific markers of inflammation. Full article
(This article belongs to the Special Issue Sepsis: From Pathophysiology to Novel Therapeutic Approach)
Show Figures

Figure 1

15 pages, 4100 KB  
Article
LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS
by Belen Mendoza-Arroyo, Martha Cecilia Rosales-Hernández, Judith Pacheco-Yépez, Astrid Mayleth Rivera-Antonio, Yazmín Karina Márquez-Flores, Luz María Cárdenas-Jaramillo, Aldo Arturo Reséndiz-Albor, Ivonne Maciel Arciniega-Martínez, Teresita Rocío Cruz-Hernández and Edgar Abarca-Rojano
Metabolites 2023, 13(7), 843; https://doi.org/10.3390/metabo13070843 - 12 Jul 2023
Cited by 1 | Viewed by 1672
Abstract
Although the aetiology of inflammatory bowel diseases (IBDs) is still unknown, one of their main characteristics is that the immune system chronically affects the permeability of the intestinal lamina propria, in turn altering the composition of the microbiota. In this study, the TNBS [...] Read more.
Although the aetiology of inflammatory bowel diseases (IBDs) is still unknown, one of their main characteristics is that the immune system chronically affects the permeability of the intestinal lamina propria, in turn altering the composition of the microbiota. In this study, the TNBS rat model of colitis was used because it contains a complex inflammatory milieu of polymorphonuclear cells (PMN) and lymphocytes infiltrating the lamina propria. The aim of the present study was to investigate six dehydrogenases and their respective adaptations in the tissue microenvironment by quantifying enzymatic activities measured under substrate saturation conditions in epithelial cells and leukocytes from the lamina propria of rats exposed to TNBS. Our results show that in the TNBS group, an increased DAI score was observed due to the presence of haemorrhagic and necrotic areas in the colon. In addition, the activities of G6PDH and GADH enzymes were significantly decreased in the epithelium in contrast to the increased activity of these enzymes and increased lactate mediated by the LDH-A enzyme in leukocytes in the lamina propria of the colon. Over the past years, evidence has emerged illustrating how metabolism supports aspect of cellular function and how a metabolic reprogramming can drive cell differentiation and fate. Our findings show a metabolic reprogramming in colonic lamina propria leukocytes that could be supported by increased superoxide anion. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

21 pages, 1570 KB  
Review
Cancer Stem Cell Relationship with Pro-Tumoral Inflammatory Microenvironment
by Ferenc Sipos and Györgyi Műzes
Biomedicines 2023, 11(1), 189; https://doi.org/10.3390/biomedicines11010189 - 11 Jan 2023
Cited by 16 | Viewed by 4098
Abstract
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the [...] Read more.
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the immune microenvironment remains unexplored. Although evasion of the immune system by CSCs has been extensively studied, new research demonstrates that CSCs can also control and even profit from the immune response. This review provides an overview of the reciprocal interplay between CSCs and tumor-infiltrating immune cells, collecting pertinent data about how CSCs stimulate leukocyte reprogramming, resulting in pro-tumor immune cells that promote metastasis, chemoresistance, tumorigenicity, and even a rise in the number of CSCs. Tumor-associated macrophages, neutrophils, Th17 and regulatory T cells, mesenchymal stem cells, and cancer-associated fibroblasts, as well as the signaling pathways involved in these pro-tumor activities, are among the immune cells studied. Although cytotoxic leukocytes have the potential to eliminate CSCs, immune evasion mechanisms in CSCs and their clinical implications are also known. We intended to compile experimental findings that provide direct evidence of interactions between CSCs and the immune system and CSCs and the inflammatory milieu. In addition, we aimed to summarize key concepts in order to comprehend the cross-talk between CSCs and the tumor microenvironment as a crucial process for the effective design of anti-CSC therapies. Full article
(This article belongs to the Collection Recent Advances in Cancer Stem Cells)
Show Figures

Figure 1

24 pages, 10901 KB  
Article
Metabolomics and Lipidomics Screening Reveal Reprogrammed Signaling Pathways toward Cancer Development in Non-Alcoholic Steatohepatitis
by Eman A. Ahmed, Marwa O. El-Derany, Ali Mostafa Anwar, Essa M. Saied and Sameh Magdeldin
Int. J. Mol. Sci. 2023, 24(1), 210; https://doi.org/10.3390/ijms24010210 - 22 Dec 2022
Cited by 28 | Viewed by 6946
Abstract
With the rising incidence of hepatocellular carcinoma (HCC) from non-alcoholic steatohepatitis (NASH), identifying new metabolic readouts that function in metabolic pathway perpetuation is still a demand. The study aimed to compare the metabolic signature between NASH and NASH-HCC patients to explore novel reprogrammed [...] Read more.
With the rising incidence of hepatocellular carcinoma (HCC) from non-alcoholic steatohepatitis (NASH), identifying new metabolic readouts that function in metabolic pathway perpetuation is still a demand. The study aimed to compare the metabolic signature between NASH and NASH-HCC patients to explore novel reprogrammed metabolic pathways that might modulate cancer progression in NASH patients. NASH and NASH-HCC patients were recruited and screened for metabolomics, and isotope-labeled lipidomics were targeted and profiled using the EXION-LCTM system equipped with a Triple-TOFTM 5600+ system. Results demonstrated significantly (p ≤ 0.05) higher levels of triacylglycerol, AFP, AST, and cancer antigen 19-9 in NASH-HCC than in NASH patients, while prothrombin time, platelet count, and total leukocyte count were decreased significantly (p ≤ 0.05). Serum metabolic profiling showed a panel of twenty metabolites with 10% FDR and p ≤ 0.05 in both targeted and non-targeted analysis that could segregate NASH-HCC from NASH patients. Pathway analysis revealed that the metabolites are implicated in the down-regulation of necroptosis, amino acid metabolism, and regulation of lipid metabolism by PPAR-α, biogenic amine synthesis, fatty acid metabolism, and the mTOR signaling pathway. Cholesterol metabolism, DNA repair, methylation pathway, bile acid, and salts metabolism were significantly upregulated in NASH-HCC compared to the NASH group. Metabolite–protein interactions network analysis clarified a set of well-known protein encoding genes that play crucial roles in cancer, including PEMT, IL4I1, BAAT, TAT, CDKAL1, NNMT, PNP, NOS1, and AHCYL. Taken together, reliable metabolite fingerprints are presented and illustrated in a detailed map for the most predominant reprogrammed metabolic pathways that target HCC development from NASH. Full article
(This article belongs to the Special Issue Proteomics and Metabolomics Approaches on Cancer Research)
Show Figures

Graphical abstract

15 pages, 985 KB  
Review
Anti-Inflammatory Neutrophil Functions in the Resolution of Inflammation and Tissue Repair
by Waywen Loh and Sonja Vermeren
Cells 2022, 11(24), 4076; https://doi.org/10.3390/cells11244076 - 16 Dec 2022
Cited by 48 | Viewed by 11032
Abstract
Neutrophils are highly abundant circulating leukocytes that are amongst the first cells to be recruited to sites of infection or sterile injury. Their ability to generate and release powerful cytotoxic products ties with their role in host defence from bacterial and fungal infections. [...] Read more.
Neutrophils are highly abundant circulating leukocytes that are amongst the first cells to be recruited to sites of infection or sterile injury. Their ability to generate and release powerful cytotoxic products ties with their role in host defence from bacterial and fungal infections. Neutrophilic inflammation is tightly regulated to limit the amount of ‘bystander injury’ caused. Neutrophils were in the past regarded as short-lived, indiscriminate killers of invading microorganisms. However, this view has changed quite dramatically in recent years. Amongst other insights, neutrophils are now recognised to also have important anti-inflammatory functions that are critical for the resolution of inflammation and return to homeostasis. This minireview focusses on anti-inflammatory neutrophil functions, placing a particular focus on recent findings linked to neutrophil cell death, several types of which may be anti-inflammatory (apoptosis, secondary necrosis, and neutrophil extracellular traps). These are discussed together with features that may further promote the clearance of dead cells by efferocytosis and reprogramming of macrophages to promote resolution and repair. Full article
(This article belongs to the Special Issue New Insights into Neutrophil Biology)
Show Figures

Figure 1

13 pages, 5758 KB  
Review
Pluripotent Stem Cells in Clinical Cell Transplantation: Focusing on Induced Pluripotent Stem Cell-Derived RPE Cell Therapy in Age-Related Macular Degeneration
by Yi-Ping Yang, Yu-Jer Hsiao, Kao-Jung Chang, Shania Foustine, Yu-Ling Ko, Yi-Ching Tsai, Hsiao-Yun Tai, Yu-Chieh Ko, Shih-Hwa Chiou, Tai-Chi Lin, Shih-Jen Chen, Yueh Chien and De-Kuang Hwang
Int. J. Mol. Sci. 2022, 23(22), 13794; https://doi.org/10.3390/ijms232213794 - 9 Nov 2022
Cited by 14 | Viewed by 7996
Abstract
Human pluripotent stem cells (PSCs), including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), represent valuable cell sources to replace diseased or injured tissues in regenerative medicine. iPSCs exhibit the potential for indefinite self-renewal and differentiation into various cell types [...] Read more.
Human pluripotent stem cells (PSCs), including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), represent valuable cell sources to replace diseased or injured tissues in regenerative medicine. iPSCs exhibit the potential for indefinite self-renewal and differentiation into various cell types and can be reprogrammed from somatic tissue that can be easily obtained, paving the way for cell therapy, regenerative medicine, and personalized medicine. Cell therapies using various iPSC-derived cell types are now evolving rapidly for the treatment of clinical diseases, including Parkinson’s disease, hematological diseases, cardiomyopathy, osteoarthritis, and retinal diseases. Since the first interventional clinical trial with autologous iPSC-derived retinal pigment epithelial cells (RPEs) for the treatment of age-related macular degeneration (AMD) was accomplished in Japan, several preclinical trials using iPSC suspensions or monolayers have been launched, or are ongoing or completed. The evolution and generation of human leukocyte antigen (HLA)-universal iPSCs may facilitate the clinical application of iPSC-based therapies. Thus, iPSCs hold great promise in the treatment of multiple retinal diseases. The efficacy and adverse effects of iPSC-based retinal therapies should be carefully assessed in ongoing and further clinical trials. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop