Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,763)

Search Parameters:
Keywords = less-is-better effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1722 KiB  
Article
Spectrum-Based Method for Detecting Seepage in Concrete Cracks of Dams
by Jinmao Tang, Yifan Xu, Zhenchao Liu, Xile Wang, Shuai Niu, Dongyang Han and Xiaobin Cao
Water 2025, 17(14), 2130; https://doi.org/10.3390/w17142130 (registering DOI) - 17 Jul 2025
Abstract
Cracks and seepage in dam structures pose a serious risk to their safety, yet traditional inspection methods often fall short when it comes to detecting shallow or early-stage fractures. This study proposes a new approach that uses spectral response analysis to quickly identify [...] Read more.
Cracks and seepage in dam structures pose a serious risk to their safety, yet traditional inspection methods often fall short when it comes to detecting shallow or early-stage fractures. This study proposes a new approach that uses spectral response analysis to quickly identify signs of seepage in concrete dams. Researchers developed a three-layer model—representing the concrete, a seepage zone, and water—to better understand how cracks affect the way electrical signals behave, thereby inverting the state of the dam based on how electrical signals behave in actual engineering measurements. Through computer simulations and lab experiments, the team explored how changes in the resistivity and thickness of the seepage layer, along with the resistivity of surrounding water, influence key indicators like impedance and signal angle. The results show that the “spectrum-based method” can effectively detect seepage in concrete cracks of dams, and the measurement method of the “spectral quadrupole method” based on the “spectrum-based method” is highly sensitive to these variations, making it a promising tool for spotting early seepage. Field tests backed up the lab findings, confirming that this method is significantly better than traditional techniques at detecting cracks less than a meter deep and identifying early signs of water intrusion. It could provide dam inspectors with a more reliable way to monitor structural health and prevent potential failures. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

14 pages, 4871 KiB  
Article
Study on Laser Surface Texturing and Wettability Control of Silicon Nitride Ceramic
by Hong-Jian Wang, Jing-De Huang, Bo Wang, Yang Zhang and Jin Wang
Micromachines 2025, 16(7), 819; https://doi.org/10.3390/mi16070819 (registering DOI) - 17 Jul 2025
Abstract
Silicon nitride (Si3N4) ceramic is widely used in the production of structural components. The surface wettability is closely related to the service life of materials. Laser surface texturing is considered an effective method for controlling surface wettability by processing [...] Read more.
Silicon nitride (Si3N4) ceramic is widely used in the production of structural components. The surface wettability is closely related to the service life of materials. Laser surface texturing is considered an effective method for controlling surface wettability by processing specific patterns. This research focused on the laser surface texturing of a Si3N4 ceramic, employing rectangular patterns instead of the typical dimple designs, as these had promising applications in heat transfer and hydrodynamic lubrication. The effects of scanning speed and number of scans on the change of the morphologies and dimensions of the grooves were investigated. The results indicated that the higher scanning speed and fewer number of scans resulted in less damage to the textured surface. As the scanning speed increased, the width and depth of the grooves decreased significantly first, and then fluctuated. Conversely, increasing the number of scans led to an increase in the width and depth of the grooves, eventually stabilizing. The analysis of the elemental composition of different areas on the textured surface presented a notable increase in oxygen content at the grooves, while Si and N levels decreased. It was mainly caused by the chemical reaction between Si3N4 ceramic and oxygen during laser surface texturing in an air environment. This study also assessed the wettability of the textured surface, finding that the contact angle of the water droplet was significantly affected by the groove dimensions. After laser surface texturing, the contact angle increased from 35.51 ± 0.33° to 57.52 ± 1.83°. Improved wettability was associated with smaller groove volume, indicating better hydrophilicity at lower scanning speed and enhanced hydrophobicity with a fewer number of scans. Full article
(This article belongs to the Special Issue Advances in Digital Manufacturing and Nano Fabrication)
Show Figures

Figure 1

14 pages, 1359 KiB  
Article
Delving into the Perception, Use, and Context of Duloxetine in Clinical Practice: An Analysis Based on the Experience of Healthcare Professionals
by Oscar Fraile-Martinez, Cielo Garcia-Montero, Miguel Angel Alvarez-Mon, Miguel A. Ortega, Melchor Alvarez-Mon and Javier Quintero
Brain Sci. 2025, 15(7), 757; https://doi.org/10.3390/brainsci15070757 (registering DOI) - 17 Jul 2025
Abstract
Background and objectives: Duloxetine is widely used for the treatment of major depressive disorder (MDD), generalized anxiety disorder (GAD), and various types of neuropathic pain. While its efficacy is well documented in clinical trials, less is known about how it is perceived and [...] Read more.
Background and objectives: Duloxetine is widely used for the treatment of major depressive disorder (MDD), generalized anxiety disorder (GAD), and various types of neuropathic pain. While its efficacy is well documented in clinical trials, less is known about how it is perceived and utilized in routine psychiatric practice. To address this knowledge gap, we conducted a cross-sectional observational study involving 80 psychiatrists from Spain to assess real-world clinical attitudes toward duloxetine. Methods: Participants completed a 20-item multiple-choice questionnaire that examined familiarity, perceived efficacy in multiple conditions (MDD, GAD, neuropathic pain, somatization, and quality of life), and perspectives on tolerability, safety, adherence, and overall satisfaction. Results: Survey results indicated that a large majority of psychiatrists frequently prescribe duloxetine, particularly for patients with MDD and comorbid chronic pain. Notably, 94% rated it as either “more effective” or “much more effective” for diabetic peripheral neuropathic pain. Psychiatrists reported a high perceived efficacy of duloxetine: 94% rated it as “more effective” or “much more effective” for diabetic peripheral neuropathy, and 93% gave similarly positive ratings for general neuropathic pain. For somatization, 70% found it “effective” or “very effective”, and 83% observed improvements in quality of life for many of their patients. Psychiatrists generally reported favorable perceptions of duloxetine’s tolerability profile: 97.5% rated it as the antidepressant associated with the least weight gain, and 82.5% perceived fewer sexual side effects compared to other options. Sedation and gastrointestinal side effects were generally considered mild or less severe. In terms of treatment adherence, 69% rated it as “better” or “much better” than other antidepressants, and 80% found its combination with other antidepressants to be “favorable” or “very favorable”. Overall satisfaction was high, with 99% of psychiatrists reporting being either “satisfied” or “very satisfied” with its use. The side effect profile was generally viewed as manageable, with low perceived rates of weight gain, sedation, and sexual dysfunction. Furthermore, 96% of respondents expressed a willingness to recommend duloxetine to their colleagues. Conclusions: Psychiatrists reported highly favorable attitudes toward duloxetine, viewing it as a flexible treatment option in routine care. However, these findings reflect clinicians’ subjective perceptions rather than objective clinical outcomes and should be interpreted accordingly. Full article
(This article belongs to the Special Issue Anxiety, Depression and Stress)
Show Figures

Figure 1

22 pages, 5335 KiB  
Article
An Italian Study of PM0.5 Toxicity: In Vitro Investigation of Cytotoxicity, Oxidative Stress, Intercellular Communication, and Extracellular Matrix Metalloproteases
by Nathalie Steimberg, Giovanna Mazzoleni, Jennifer Boniotti, Milena Villarini, Massimo Moretti, Annalaura Carducci, Marco Verani, Tiziana Grassi, Francesca Serio, Sara Bonetta, Elisabetta Carraro, Alberto Bonetti, Silvia Bonizzoni, Umberto Gelatti and the MAPEC_LIFE Study Group
Int. J. Mol. Sci. 2025, 26(14), 6769; https://doi.org/10.3390/ijms26146769 - 15 Jul 2025
Viewed by 67
Abstract
Particulate matter (PM), mainly PM0.5, represents a significant concern for human health, particularly relating to lung homeostasis, and more research is required to ascertain its tissue tropism and the molecular pathways involved. In this study, we first focus on classical in [...] Read more.
Particulate matter (PM), mainly PM0.5, represents a significant concern for human health, particularly relating to lung homeostasis, and more research is required to ascertain its tissue tropism and the molecular pathways involved. In this study, we first focus on classical in vitro toxicological endpoints (cytotoxicity and cell growth) in human bronchial and alveolar epithelial cell lines mimicking the two pulmonary target tissues. Air samples were collected in five Italian cities (Brescia, Lecce, Perugia, Pisa, Turin) during winter and spring. To better decipher the PM0.5 effects on pulmonary cells, a further winter sampling was performed in Brescia, and studies were extended to assess tumour promotion, oxidative stress, and the activity of Matrix metalloproteases (MMP). The results confirmed that the effect of air pollution is linked to the seasons (winter is usually more cytotoxic than spring) and is correlated with the peculiar characteristics of the cities studied (meteoclimatic conditions, economic/anthropogenic activities). Alveolar cells were often less sensitive than bronchial cells. All PM samples from Brescia inhibited intercellular communication mediated by gap junctions (GJIC), increased the total content in glutathione, and decreased the reduced form of glutathione, whereas the Reactive Oxygen Species (ROS) content was almost constant. Long-term treatments at higher doses of PM decreased MMP2 and MMP9 activity. Taken together, the results confirmed that PM is cytotoxic and can potentially act as tumour promoters, but the mechanisms involved in oxidative stress and lung homeostasis are dose- and time-dependent and quite complex. Full article
(This article belongs to the Special Issue The Influence of Environmental Factors on Disease and Health Outcomes)
Show Figures

Figure 1

11 pages, 224 KiB  
Article
Randomized Trial of Midazolam Plus Meperidine Versus Midazolam Plus Fentanyl Versus Placebo for Colonoscopic Sedation
by Miltiadis K. Moutzoukis, Ioannis V. Mitselos, Nikoletta Karavasili, Vasileios Theopistos, Alexandros Skamnelos, Dimitrios Sigounas, Varvara Pantazi, Panagiota Moschou and Dimitrios K. Christodoulou
Gastrointest. Disord. 2025, 7(3), 46; https://doi.org/10.3390/gidisord7030046 - 11 Jul 2025
Viewed by 147
Abstract
Objective: A combination of midazolam and opioid is usually used to achieve conscious sedation and analgesia during colonoscopy, but many patients may tolerate the procedure well without any sedation. This randomized trial aimed to compare the efficacy and recovery time of 3 different [...] Read more.
Objective: A combination of midazolam and opioid is usually used to achieve conscious sedation and analgesia during colonoscopy, but many patients may tolerate the procedure well without any sedation. This randomized trial aimed to compare the efficacy and recovery time of 3 different regimens consisting of (a) midazolam plus meperidine (b) midazolam plus fentanyl and (c) placebo. The endoscopists’ and patients’ satisfaction was assessed by an appropriate questionnaire. Methods: A total 248 consecutive, unselected patients attending outpatient colonoscopy at a University Hospital were enrolled with informed consent and were randomized to receive (a) midazolam with meperidine [group A] (b) midazolam with fentanyl [group B] or (c) placebo [group C]. Data for procedure times, perceived patient’s discomfort (using a relative patient questionnaire) and physician’s satisfaction from the procedure were collected. Patients and all endoscopy staff directly involved with the procedure except the research nurse were blinded to the regimens used. Results: The mean age of the patients was 58 ± 15 years (range 19–85 years) and 130 were males. The completion rate and time to reach cecum did not differ among the three groups. The recovery time was significantly shorter in group C (placebo, 10.4 ± 2.9 min) compared to the other groups (p < 0.000), but it was also shorter in group B (midazolam plus fentanyl, 43.0 ± 9.3 min) compared to group A (midazolam plus pethidine, 50.1 ± 9.0 min) (p = 0.001). Patients of group B (midazolam plus fentanyl) experienced less pain and discomfort than patients of group A (midazolam plus meperidine) (p = 0.02) and patients of group A experienced less pain than patients of group C (placebo). Many more patients in group B were extremely or very satisfied by the procedure(86.7%) compared to group A (59.7%) and group C (44.5%) (p = 0.001). Adverse events were mild in all groups and slightly less in group B. Conclusions: Sedation with midazolam and fentanyl was more effective, better tolerated and led to slightly faster recovery time than sedation with midazolam and meperidine. According to our findings and the literature, the most appropriate regimen for conscious sedation during colonoscopy is the combination of midazolam and fentanyl. However, both sedation regimens were proven to be effective and safe and even a significant proportion of unsedated patients could tolerate the procedure fairly well. Full article
28 pages, 8538 KiB  
Article
Deep-Learning Integration of CNN–Transformer and U-Net for Bi-Temporal SAR Flash-Flood Detection
by Abbas Mohammed Noori, Abdul Razzak T. Ziboon and Amjed N. AL-Hameedawi
Appl. Sci. 2025, 15(14), 7770; https://doi.org/10.3390/app15147770 - 10 Jul 2025
Viewed by 282
Abstract
Flash floods are natural disasters that have significant impacts on human life and economic damage. The detection of flash floods using remote-sensing techniques provides essential data for subsequent flood-risk assessment through the preparation of flood inventory samples. In this research, a new deep-learning [...] Read more.
Flash floods are natural disasters that have significant impacts on human life and economic damage. The detection of flash floods using remote-sensing techniques provides essential data for subsequent flood-risk assessment through the preparation of flood inventory samples. In this research, a new deep-learning approach for bi-temporal flash-flood detection in Synthetic Aperture Radar (SAR) is proposed. It combines a U-Net convolutional network with a Transformer model using a compact Convolutional Tokenizer (CCT) to improve the efficiency of long-range dependency learning. The hybrid model, namely CCT-U-ViT, naturally combines the spatial feature extraction of U-Net and the global context capability of Transformer. The model significantly reduces the number of basic blocks as it uses the CCT tokenizer instead of conventional Vision Transformer tokenization, which makes it the right fit for small flood detection datasets. This model improves flood boundary delineation by involving local spatial patterns and global contextual relations. However, the method is based on Sentinel-1 SAR images and focuses on Erbil, Iraq, which experienced an extreme flash flood in December 2021. The experimental comparison results show that the proposed CCT-U-ViT outperforms multiple baseline models, such as conventional CNNs, U-Net, and Vision Transformer, obtaining an impressive overall accuracy of 91.24%. Furthermore, the model obtains better precision and recall with an F1-score of 91.21% and mIoU of 83.83%. Qualitative results demonstrate that CCT-U-ViT can effectively preserve the flood boundaries with higher precision and less salt-and-pepper noise compared with the state-of-the-art approaches. This study underscores the significance of hybrid deep-learning models in enhancing the precision of flood detection with SAR data, providing valuable insights for the advancement of real-time flood monitoring and risk management systems. Full article
Show Figures

Figure 1

23 pages, 3933 KiB  
Article
Evaluations on the Properties of Polymer and Nanomaterials Modified Bitumen Under Different Aging Conditions
by Shaban Ismael Albrka Ali, Khalifa Salem Gallouz, Ikenna D. Uwanuakwa, Mustafa Alas and Mohd Rosli Mohd Hasan
Nanomaterials 2025, 15(14), 1071; https://doi.org/10.3390/nano15141071 - 10 Jul 2025
Viewed by 195
Abstract
This research evaluates the rheological and mechanical properties of polymer- and nanomaterials-modified bitumen by incorporating nanosilica (NSA), nanoclay (NCY), and Acrylonitrile Styrene Acrylate (ASA) at 5% by weight of the bitumen. The samples were prepared at 165 °C for one hour to obtain [...] Read more.
This research evaluates the rheological and mechanical properties of polymer- and nanomaterials-modified bitumen by incorporating nanosilica (NSA), nanoclay (NCY), and Acrylonitrile Styrene Acrylate (ASA) at 5% by weight of the bitumen. The samples were prepared at 165 °C for one hour to obtain homogeneous blends. All samples were subjected to short- and long-term aging to simulate the effects of different operating conditions. The research conducted a series of tests, including consistency, frequency sweep, and multiple creep stress and recovery (MSCR) using the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The results showed that all modified bitumen outperformed the neat bitumen. The frequency sweep showed a higher complex modulus (G*) and lower phase angle (δ), indicating enhanced viscoelastic properties and, thus, higher resistance to permanent deformation. The BBR test revealed that the bitumen modified with NCY5% has a creep stiffness of 47.13 MPa, a 51.5% improvement compared to the neat bitumen, while the NSA5% has the highest m-value, a 28.5% enhancement compared with the neat bitumen. The MSCR showed that the modified blends have better recovery properties and, therefore, better resistance to permanent deformation under repeated loadings. The aging index demonstrated that the modified bitumen is less vulnerable to aging and maintains their good flexibility and resistance to permanent deformations. Finally, these results showed that adding 5% polymer and nanomaterials improved the bitumen’s’ performance before and after aging by reducing permanent deformation and enhancing crack resistance at low temperatures, thus extending the pavement service life and making them an effective alternative for improving pavement performance in various climatic conditions and under high traffic loads. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

26 pages, 48866 KiB  
Article
TiO2 Nanoparticles Obtained by Laser Sintering When Added to Methacrylate Photopolymer Resin Improve Its Physicochemical Characteristics and Impart Antibacterial Properties
by Aleksandr V. Simakin, Dmitriy E. Burmistrov, Ilya V. Baimler, Ann V. Gritsaeva, Dmitriy A. Serov, Maxim E. Astashev, Pavel Chapala, Shamil Z. Validov, Fatikh M. Yanbaev and Sergey V. Gudkov
Inorganics 2025, 13(7), 233; https://doi.org/10.3390/inorganics13070233 - 10 Jul 2025
Viewed by 275
Abstract
In this paper, titanium oxide nanoparticles (TiO2-NPs) with complex surface topologies were obtained for the first time using simple procedures applied in laser sintering. Based on the obtained nanoparticles and polymethyl methacrylate-like photopolymer resin, a composite material (MPR/TiO2-NPs) for [...] Read more.
In this paper, titanium oxide nanoparticles (TiO2-NPs) with complex surface topologies were obtained for the first time using simple procedures applied in laser sintering. Based on the obtained nanoparticles and polymethyl methacrylate-like photopolymer resin, a composite material (MPR/TiO2-NPs) for 3D printing was created using the MSLA technology. Products made of the material containing from 0.001 to 0.1% wt. TiO2-NPs didn’t contain internal defects and were less brittle than the resin without nanoparticles. Products made of the MPR/TiO2-NPs material were well polished; after polishing, areas with a variation in the surface profile height of less than 10 nm were found on the surfaces. Nanoparticles in the volume of products made of the material are apparently unevenly distributed; there are alternating areas of micrometer sizes with slightly higher and slightly lower concentrations of nanoparticles. Spectroscopy showed that adding the developed nanoparticles promoted better polymerization of the MPR resin. The addition of nanoparticles to the material slightly increased its ability to generate active forms of oxygen and damage biomacromolecules. At the same time, the resulting material exhibits significant antibacterial properties and doen’t affect the growth and reproduction of animal cells. The created material can be a very effective basis for the additive manufacturing of products with improved physical and chemical properties and balanced biological activity. Full article
Show Figures

Figure 1

17 pages, 2328 KiB  
Article
Investigating Performance of an Embedded Machine Learning Solution for Classifying Postural Behaviors
by Bruno Andò, Salvatore Baglio, Mattia Manenti, Valeria Finocchiaro, Vincenzo Marletta, Sreeraman Rajan, Ebrahim Ali Nehary, Valeria Dibilio, Mario Zappia and Giovanni Mostile
Sensors 2025, 25(14), 4262; https://doi.org/10.3390/s25144262 - 9 Jul 2025
Viewed by 175
Abstract
Postural instability is one of the main critical aspects to be monitored in the case of degenerative diseases, and is also a predictor of potential falls. This paper presents a multi-layer perceptron approach for the classification of four different classes of postural behaviors [...] Read more.
Postural instability is one of the main critical aspects to be monitored in the case of degenerative diseases, and is also a predictor of potential falls. This paper presents a multi-layer perceptron approach for the classification of four different classes of postural behaviors that is implemented by an embedded sensing architecture. The robustness of the methodology against noisy data and the effects of using different sets of classification features have been investigated. In the case of noisy input data, a reliability index of almost 100% has been obtained, with a negligible drop (less than 5%) being shown for the whole range of noise levels that was investigated. Such an achievement substantiates the better robustness of this approach with respect to threshold-based algorithms, which have been also considered for the sake of comparison. Full article
(This article belongs to the Section Wearables)
Show Figures

Graphical abstract

26 pages, 2643 KiB  
Article
Systematic Comparison of Different Compartmental Models for Predicting COVID-19 Progression
by Marwan Shams Eddin, Hussein El Hajj, Ramez Zayyat and Gayeon Lee
Epidemiologia 2025, 6(3), 33; https://doi.org/10.3390/epidemiologia6030033 - 8 Jul 2025
Viewed by 333
Abstract
Background/Objectives: The COVID-19 pandemic highlighted the critical need for accurate predictive models to guide public health interventions and optimize healthcare resource allocation. This study evaluates how the complexity of compartmental infectious disease models influences their forecasting accuracy and utility for pandemic resource [...] Read more.
Background/Objectives: The COVID-19 pandemic highlighted the critical need for accurate predictive models to guide public health interventions and optimize healthcare resource allocation. This study evaluates how the complexity of compartmental infectious disease models influences their forecasting accuracy and utility for pandemic resource planning. Methods: We analyzed a range of compartmental models, including simple susceptible-infected-recovered (SIR) models and more complex frameworks incorporating asymptomatic carriers and deaths. These models were calibrated and tested using real-world COVID-19 data from the United States to assess their performance in predicting symptomatic and asymptomatic infection counts, peak infection timing, and resource demands. Both adaptive models (updating parameters with real-time data) and non-adaptive models were evaluated. Results: Numerical results show that while more complex models capture detailed disease dynamics, simpler models often yield better forecast accuracy, especially during early pandemic stages or when predicting peak infection periods. Adaptive models provided the most accurate short-term forecasts but required substantial computational resources, making them less practical for long-term planning. Non-adaptive models produced stable long-term forecasts useful for strategic resource allocation, such as hospital bed and ICU planning. Conclusions: Model selection should align with the pandemic stage and decision-making horizon. Simpler models are effective for rapid early-stage interventions, adaptive models excel in short-term operational forecasting, and non-adaptive models remain valuable for long-term resource planning. These findings can inform policymakers on selecting appropriate modeling approaches to improve pandemic response effectiveness. Full article
Show Figures

Figure 1

14 pages, 2414 KiB  
Review
Large Submandibular Duct Sialolith Removal Using a Diode Laser: Description of the Technique Based on Two Cases and Narrative Review of the Literature
by Giuseppe D’Albis, Marta Forte, Alfonso Manfuso, Alexandra Artin, Mariachiara Fioriello, Adriano Di Grigoli, Luisa Limongelli and Saverio Capodiferro
Surgeries 2025, 6(3), 53; https://doi.org/10.3390/surgeries6030053 - 7 Jul 2025
Viewed by 215
Abstract
Background/Objectives: The introduction of innovative technologies for the management of oral diseases has revolutionized treatment approaches, offering less invasive options and improved outcomes. Among oral cavity diseases, sialolithiasis is the most common disorder of the salivary glands. It involves the formation of [...] Read more.
Background/Objectives: The introduction of innovative technologies for the management of oral diseases has revolutionized treatment approaches, offering less invasive options and improved outcomes. Among oral cavity diseases, sialolithiasis is the most common disorder of the salivary glands. It involves the formation of calculi or stones within the salivary ducts, primarily affecting the submandibular gland due to its tortuous duct and the alkaline nature of its saliva. In particular, laser-assisted techniques have shown significant promise in enhancing the precision and safety in the management of sialolith removal. This article aims to present a case report and also explores the scientific evidence supporting these innovative methods, highlighting their benefits and limitations in clinical practice. Methods: This research was conducted using PubMed and Scopus search engines with a combination of relevant keywords, including laser, laser-assisted, laser treatment in combination with sialolith, sialolith removal, and sialoadenectomy. Selected articles were carefully reviewed to identify studies reporting data on the effectiveness of laser-assisted sialolith removal. Results: Results from the literature review indicate a growing interest in the application of diode laser and CO2, with evidence suggesting improved clinical outcomes and reduced postoperative pain compared to traditional methods. Conclusions: Although lasers offer enhanced safety and reduced morbidity and bleeding, which ensures optimal visibility, certain limitations must be considered, including the need for an adequate training period. Further randomized clinical trials and longer follow-up studies are needed to better evaluate their use in sialolith removal. Full article
(This article belongs to the Special Issue Oral Laser Surgery: Current Evidences and Perspectives)
Show Figures

Figure 1

10 pages, 3322 KiB  
Article
Adequate Irrigation Amount per Application Is Required to Secure Uniform Water Management in Drip Irrigation Systems
by Sooeon Lee, Lynne Seymour and Jongyun Kim
Agronomy 2025, 15(7), 1639; https://doi.org/10.3390/agronomy15071639 - 5 Jul 2025
Viewed by 276
Abstract
Soil moisture sensor-based drip irrigation enables efficient irrigation practices by delivering the required water to plants. However, efficiency must be accompanied by uniform water management and crop growth. This study examined the effect of different irrigation amounts (IAs) per application (5.5, 55, 110, [...] Read more.
Soil moisture sensor-based drip irrigation enables efficient irrigation practices by delivering the required water to plants. However, efficiency must be accompanied by uniform water management and crop growth. This study examined the effect of different irrigation amounts (IAs) per application (5.5, 55, 110, and 165 mL) on the uniformity of substrate volumetric water content (VWC) within an irrigation plot, and the corresponding effect on sweet basil growth uniformity. Sixty-four frequency domain reflectometry sensors monitored the VWC of each 440 mL pot, and drip irrigation was automatically applied at 0.3 m3·m−3. The 5.5 mL IA showed the highest water use efficiency; however, it also resulted in considerable non-uniform VWC (coefficient of variation, CV = 0.404). In contrast, the 110 and 165 mL IAs provided better VWC uniformity (CV = 0.073 and 0.075, respectively), suggesting that less frequent, but larger IAs improved VWC uniformity. Despite the differences in VWC uniformity among treatments, the growth and physiological responses were quite similar across the treatments. It was found that supplying 110 mL irrigation water via the soil moisture sensor-based drip irrigation system to sweet basil plants in 440 mL pots is optimal for achieving both water use efficiency and VWC uniformity. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

17 pages, 3477 KiB  
Article
Breaking Diagnostic Barriers: Vision Transformers Redefine Monkeypox Detection
by Gelan Ayana, Beshatu Debela Wako, So-yun Park, Jude Kong, Sahng Min Han, Soon-Do Yoon and Se-woon Choe
Diagnostics 2025, 15(13), 1698; https://doi.org/10.3390/diagnostics15131698 - 3 Jul 2025
Viewed by 330
Abstract
Background/Objective: The global spread of Monkeypox (Mpox) has highlighted the urgent need for rapid, accurate diagnostic tools. Traditional methods like polymerase chain reaction (PCR) are resource-intensive, while skin image-based detection offers a promising alternative. This study evaluates the effectiveness of vision transformers (ViTs) [...] Read more.
Background/Objective: The global spread of Monkeypox (Mpox) has highlighted the urgent need for rapid, accurate diagnostic tools. Traditional methods like polymerase chain reaction (PCR) are resource-intensive, while skin image-based detection offers a promising alternative. This study evaluates the effectiveness of vision transformers (ViTs) for automated Mpox detection. Methods: By fine-tuning a pre-trained ViT model on an Mpox lesion image dataset, a robust ViT-based transfer learning (TL) model was created. Performance was assessed relative to convolutional neural network (CNN)-based TL models and ViT models trained from scratch across key metrics: accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC). Furthermore, a transferability measure was utilized to assess the effectiveness of feature transfer to Mpox images. Results: The results show that the ViT model outperformed a CNN, achieving an AUC of 0.948 and an accuracy of 0.942 with a p-value of less than 0.05 across all metrics, highlighting its potential for accurate and scalable Mpox detection. Moreover, the ViT models yielded a better hypothesis margin-based transferability measure, highlighting its effectiveness in transferring useful learning weights to Mpox images. Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations also confirmed that the ViT model attends to clinically relevant features, supporting its interpretability and reliability for diagnostic use. Conclusions: The results from this study suggest that ViT offers superior accuracy, making it a valuable tool for Mpox early detection in field settings, especially where conventional diagnostics are limited. This approach could support faster outbreak response and improved resource allocation in public health systems. Full article
Show Figures

Figure 1

34 pages, 4523 KiB  
Article
Evaluating Prediction Performance: A Simulation Study Comparing Penalized and Classical Variable Selection Methods in Low-Dimensional Data
by Edwin Kipruto and Willi Sauerbrei
Appl. Sci. 2025, 15(13), 7443; https://doi.org/10.3390/app15137443 - 2 Jul 2025
Viewed by 328
Abstract
Variable selection is important for developing accurate and interpretable prediction models. While classical and penalized methods are widely used, few simulation studies provide meaningful comparisons. This study compares their predictive performance and model complexity in low-dimensional data. Three classical methods (best subset selection, [...] Read more.
Variable selection is important for developing accurate and interpretable prediction models. While classical and penalized methods are widely used, few simulation studies provide meaningful comparisons. This study compares their predictive performance and model complexity in low-dimensional data. Three classical methods (best subset selection, backward elimination, and forward selection) and four penalized methods (nonnegative garrote (NNG), lasso, adaptive lasso (ALASSO), and relaxed lasso (RLASSO)) were compared. Tuning parameters were selected using cross-validation (CV), Akaike information criterion (AIC), and Bayesian information criterion (BIC). Classical methods performed similarly and produced worse predictions than penalized methods in limited-information scenarios (small samples, high correlation, and low signal-to-noise ratio (SNR)), but performed comparably or better in sufficient-information scenarios (large samples, low correlation, and high SNR). Lasso was superior under limited information but was less effective in sufficient-information scenarios. NNG, ALASSO, and RLASSO outperformed lasso in sufficient-information scenarios, with no clear winner among them. AIC and CV produced similar results and outperformed BIC, except in sufficient-information settings, where BIC performed better. Our findings suggest that no single method consistently outperforms others, as performance depends on the amount of information in the data. Lasso is preferred in limited-information settings, whereas classical methods are more suitable in sufficient-information settings, as they also tend to select simpler models. Full article
(This article belongs to the Special Issue Machine Learning in Biomedical Sciences)
Show Figures

Figure 1

18 pages, 2438 KiB  
Article
Synergistic Effect of Organic Silane and Water Glass Solution on Simultaneously Enhancing the Structural Strength and Water Resistance of Loess Blocks for the Water Conservancy Projects
by Yueyang Xu, Bangzheng Jiang, Kai Zhang, Gang Zhang, Hao Jin, Jun Zhao, Xing Zhou, Li Xie and Hui Zhang
Coatings 2025, 15(7), 782; https://doi.org/10.3390/coatings15070782 - 2 Jul 2025
Viewed by 232
Abstract
Because the loess widely used in the channel water conservancy projects in the Loess Plateau has a loose structure, low mechanical strength, and is prone to collapse when immersed in water, its comprehensive properties, such as structural strength and water resistance, must be [...] Read more.
Because the loess widely used in the channel water conservancy projects in the Loess Plateau has a loose structure, low mechanical strength, and is prone to collapse when immersed in water, its comprehensive properties, such as structural strength and water resistance, must be greatly improved. Based on our previous work on the modification of Aga soil in Tibet, China, this study added hydrophobic n-dodecyltrimethoxysilane (WD10) to water glass solution (the main components are potassium silicate (K2SiO3) and silicic acid (H2SiO3) gel, referred to as PS) to obtain a composite coating PS-WD10, which was sprayed on the surface of loess blocks to achieve a full consolidation effect. We not only systematically investigated the morphology, chemical composition, and consolidation mechanism of the composite coating but also conducted in-depth and detailed research on its application performance such as friction resistance (structural strength), hydrophobicity, resistance to pure water and salt water immersion, and resistance to freeze–thaw cycles. The results showed that the PS-WD10 composite coating had better consolidation performance for loess blocks than the single coating of PS solution and WD10. For the loess block samples coated with the composite coatings, after 50 friction cycles, the weight loss rate was less than 15 wt%, and the water contact angle was above 120°. The main reason is that the good permeability of the PS solution and the excellent hydrophobicity of WD10 produce a good synergistic effect. The loess blocks coated with this composite coating are expected to replace traditional functional materials for water conservancy projects, such as cement and lime, in silt dam water conservancy projects, and also have better environmental protection and sustainability. Full article
Show Figures

Figure 1

Back to TopTop