Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (490)

Search Parameters:
Keywords = length-to-volume ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 645 KiB  
Article
Asymptotic Solution for Skin Heating by an Electromagnetic Beam at an Incident Angle
by Hongyun Wang, Shannon E. Foley and Hong Zhou
Electronics 2025, 14(15), 3061; https://doi.org/10.3390/electronics14153061 (registering DOI) - 31 Jul 2025
Abstract
We investigate the temperature evolution in the three-dimensional skin tissue exposed to a millimeter-wave electromagnetic beam that is not necessarily perpendicular to the skin surface. This study examines the effect of the beam’s incident angle. The incident angle influences the thermal heating in [...] Read more.
We investigate the temperature evolution in the three-dimensional skin tissue exposed to a millimeter-wave electromagnetic beam that is not necessarily perpendicular to the skin surface. This study examines the effect of the beam’s incident angle. The incident angle influences the thermal heating in two aspects: (i) the beam spot projected onto the skin is elongated compared to the intrinsic beam spot in a perpendicular cross-section, resulting in a lower power per skin area; and (ii) inside the tissue, the beam propagates at the refracted angle relative to the depth direction. At millimeter-wavelength frequencies, the characteristic penetration depth is sub-millimeter, whereas the lateral extent of the beam spans at least several centimeters in applications. We explore the small ratio of the penetration depth to the lateral length scale in a nondimensional formulation and derive a leading-term asymptotic solution for the temperature distribution. This analysis does not rely on a small incident angle and is therefore applicable to arbitrary angles of incidence. Based on the asymptotic solution, we establish scaling laws for the three-dimensional skin temperature, the skin surface temperature, and the skin volume in which thermal nociceptors are activated. Full article
Show Figures

Figure 1

22 pages, 4650 KiB  
Article
IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile
by Kai Wu, Peng Zhang, Jiejun Yuan, Xiaqing Qian and Runen Qi
Buildings 2025, 15(15), 2660; https://doi.org/10.3390/buildings15152660 - 28 Jul 2025
Viewed by 207
Abstract
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of [...] Read more.
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of foundation pile construction process quality is established to monitor the key parameters for quality control in the foundation pile construction process, such as pile length, position, verticality, water–cement ratio, grouting volume, drilling/lifting speed, etc. Next, the absolute gray relational degree analysis method and the analytic hierarchy process (AHP) entropy-weighted combination weighting method are used to divide the monitoring data into different levels and determine the weight coefficients for quality indicators during foundation pile construction. Last, the IoT monitoring and evaluation system of the foundation piles construction process quality is applied to engineering. The results indicate that the monitoring system is convenient and efficient, and the quality evaluation method is reliable. The construction process quality of cement-mixing piles is rated as excellent. The construction process quality of bored piles Z0103 and Z0232 is excellent, and pile Z0012 is qualified. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 1940 KiB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 225
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

12 pages, 839 KiB  
Article
Counting Limb Length Ratios in Roux-en-Y Gastric Bypass: A Demonstration of Safety and Feasibility Using a 25-Patient Case Series in a High-Volume Academic Center
by Doua Elamin, Mélissa V. Wills, Juan Aulestia, Valentin Mocanu, Andrew Strong, Jerry Dang, Xiaoxi Feng, Matthew Kroh, Ricard Corcelles and Salvador Navarrete
J. Clin. Med. 2025, 14(15), 5262; https://doi.org/10.3390/jcm14155262 - 25 Jul 2025
Viewed by 175
Abstract
Background: Despite being one of the most performed bariatric procedures, there is no consensus regarding optimal limb lengths for Roux-en-Y gastric bypass (RYGB), which may impact weight loss and obesity-related comorbidity resolution. We hypothesize that a ratio-adjusted small bowel to Roux and BP [...] Read more.
Background: Despite being one of the most performed bariatric procedures, there is no consensus regarding optimal limb lengths for Roux-en-Y gastric bypass (RYGB), which may impact weight loss and obesity-related comorbidity resolution. We hypothesize that a ratio-adjusted small bowel to Roux and BP limb lengths in RYGB results in superior outcomes. Objectives: This study aims to define total intestinal length (TIL) and the feasibility of its intraoperative measurement during RYGB. The findings will serve as a foundation for a subsequent randomized trial evaluating different limb length ratios and their effect on postoperative outcomes. Setting: This was a single-center prospective cohort study conducted at Cleveland Clinic Foundation-Main Campus, a tertiary referral center in the United States. Methods: Between January and June 2023, 25 patients with BMI > 40 undergoing RYGB were enrolled. Total small bowel length was measured intraoperatively, and feasibility of measurement was assessed. Patient outcomes, including total weight loss, 30-day complications, and comorbidities at 1 year were captured. Results: Mean preoperative BMI was 47.6 ± 8.0 kg/m2. Mean total small bowel length was 592 ± 93.3 cm, with a mean biliopancreatic (BP) limb length of 109 ± 29 cm (18.86% ± 5.84 of total length) and Roux limb length of 103 ± 15 cm (17.71% ± 3.06 of total length). Measurement added an average of 11.5 min to operative time. Measurement feasibility was rated as “moderate” or easier in 80% of cases. One-year postoperative outcomes included a mean total weight loss of 31% and significant reductions in antihypertensive and anti-diabetic medication use. Conclusions: Total small bowel length measurement during RYGB is safe and feasible. High variability in bowel length was observed, with no significant correlation to demographic factors. Establishing individualized limb length ratios may improve weight loss outcomes and comorbidity resolution. Further studies are warranted to evaluate the impact of tailored limb length strategies. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

25 pages, 5317 KiB  
Article
High Temperature and Ethinylestradiol May Reduce Body Growth, Liver and Hepatocyte Volumes and Lipid Droplets in Adult Male Guppies
by Margarida Vilaça, Sukanlaya Tantiwisawaruji, Maria João Rocha and Eduardo Rocha
Animals 2025, 15(14), 2152; https://doi.org/10.3390/ani15142152 - 21 Jul 2025
Viewed by 198
Abstract
Global warming raises surface water temperatures, impacting fish alongside pollutants, such as ubiquitous xenoestrogens. Combined stressor effects are poorly studied but likely to worsen impacts and hinder biota adaptation, warranting further research. Unadapted fish face heightened risks. The liver is a vital metabolic [...] Read more.
Global warming raises surface water temperatures, impacting fish alongside pollutants, such as ubiquitous xenoestrogens. Combined stressor effects are poorly studied but likely to worsen impacts and hinder biota adaptation, warranting further research. Unadapted fish face heightened risks. The liver is a vital metabolic organ, sensitive to temperature and xenoestrogens, eventually adjusting hepatocyte size and number to ensure survival, growth, and reproduction. This study assessed, for the first time, the impact of exposure (45 days) to thermal stress (29 °C versus 26 °C) and ethinylestradiol (EE2, 5 ng/L) on male guppies, primarily on body and quantitative liver morphology. Higher temperature reduced body mass (14%) and standard length (3.6%) gain. EE2 exposure reduced body mass increase (14%), hepatosomatic index (20%), and the volumes of the liver (32%), hepatocytes (16%), and their nuclei (17%). The nucleus-to-cytoplasm ratio and total hepatocyte number remained stable. No histopathological lesions existed. Guppies appear to have adapted to stressors by reducing hepatocyte size and utilizing lipid reserves, yet they exhibited deficits in body growth and hepatosomatic index. Gonadal maturation was unaffected. Only under EE2 at 29 °C did hepatocytes show minimal lipid droplet content (less vacuolation). This indicated exhausted reserves, reinforcing how heat and toxicants interact to exacerbate impacts. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Graphical abstract

21 pages, 4916 KiB  
Article
Fracture Competitive Propagation and Fluid Dynamic Diversion During Horizontal Well Staged Hydraulic Fracturing
by Yujie Yan, Yanling Wang, Hui Li, Qianren Wang and Bo Wang
Processes 2025, 13(7), 2252; https://doi.org/10.3390/pr13072252 - 15 Jul 2025
Viewed by 272
Abstract
This study addresses the challenge of non-uniform fracture propagation in multi-cluster staged fracturing of horizontal wells by proposing a three-dimensional dynamic simulation method for temporary plugging fracturing, grounded in a fully coupled fluid–solid damage theory framework. A Tubing-CZM (cohesive zone model) coupling model [...] Read more.
This study addresses the challenge of non-uniform fracture propagation in multi-cluster staged fracturing of horizontal wells by proposing a three-dimensional dynamic simulation method for temporary plugging fracturing, grounded in a fully coupled fluid–solid damage theory framework. A Tubing-CZM (cohesive zone model) coupling model was developed to enable real-time interaction computation of flow distribution and fracture propagation. Focusing on the Xinjiang X Block reservoir, this research systematically investigates the influence mechanisms of reservoir properties, engineering parameters (fracture spacing, number of perforation clusters, perforation friction), and temporary plugging parameters on fracture propagation morphology and fluid allocation. Our key findings include the following. (1) Increasing fracture spacing from 10 m to 20 m enhances intermediate fracture length by 38.2% and improves fracture width uniformity by 21.5%; (2) temporary plugging reduces the fluid intake heterogeneity coefficient by 76% and increases stimulated reservoir volume (SRV) by 32%; (3) high perforation friction (7.5 MPa) significantly optimizes fracture uniformity compared to low-friction (2.5 MPa) scenarios, balancing flow allocation ratios between edge and central fractures. The proposed dynamic flow diversion control criteria and quantified temporary plugging design standards provide critical theoretical foundations and operational guidelines for optimizing unconventional reservoir fracturing. Full article
(This article belongs to the Special Issue Complex Fluid Dynamics Modeling and Simulation, 2nd Edition)
Show Figures

Figure 1

15 pages, 33163 KiB  
Article
An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration
by Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi and Adam A. Stokes
Biomimetics 2025, 10(7), 455; https://doi.org/10.3390/biomimetics10070455 - 11 Jul 2025
Viewed by 422
Abstract
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an [...] Read more.
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology—particularly their hydraulic extension mechanism—we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure—a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Graphical abstract

19 pages, 7489 KiB  
Article
Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’
by Yun Pan, Daoyuan Chen, Yan Deng, Shunshun Wang, Feng Chen, Fei Wang, Luyu Xue, Yanru Duan, Yunxiao Guan, Jinliao Chen, Xiaotong Ji and Donghui Peng
Plants 2025, 14(14), 2092; https://doi.org/10.3390/plants14142092 - 8 Jul 2025
Viewed by 359
Abstract
Phalaenopsis is a widely cultivated ornamental plant of considerable economic value worldwide. However, traditional growing medium, sphagnum moss, is limited and non-renewable. It also decomposes slowly and is prone to environmental issues. Therefore, there is an urgent need to identify more environmentally friendly [...] Read more.
Phalaenopsis is a widely cultivated ornamental plant of considerable economic value worldwide. However, traditional growing medium, sphagnum moss, is limited and non-renewable. It also decomposes slowly and is prone to environmental issues. Therefore, there is an urgent need to identify more environmentally friendly and efficient alternatives. Biochar, a sustainable material with excellent physical and chemical properties, has been recognized as an effective promoter of plant growth. In this study, we investigated the influence of biochar derived from three raw materials (corn straw, bamboo, and walnut) mixed1 with coconut shell at ratios of 1:2, 1:10, and 4:1, on the growth of Phalaenopsis ‘Big Chili’. Over a 150-day controlled experiment, we evaluated multiple growth parameters, including plant height, crown width, total root length, total projected area, total surface area, and root volume. Compared to the traditional growing medium, the optimal biochar-coconut shell mixture (maize straw biochar: coconut shell = 1:2) increased plant height and crown width by 7.55% and 6.68%, respectively. Root metrics improved substantially, with total root length increasing by 10.96%, total projected area by 22.82%, total surface area by 22.14%, and root volume by 38.49%. Root biomass in the optimal treatment group increased by 42.47%, while aboveground and belowground dry weights increased by 6.16% and 77.11%, respectively. These improvements were closely associated with favorable substrate characteristics, including low bulk density, high total and water-holding porosity, moderate aeration, and adequate nutrient availability. These findings demonstrate that substrate characteristics critically influence plant performance and that biochar–coconut shell mixtures, particularly at a 1:2 ratio, represent a viable and sustainable alternative to sphagnum moss for commercial cultivation of Phalaenopsis. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

35 pages, 10135 KiB  
Article
Constitutive Model for Plain and Steel-Fibre-Reinforced Lightweight Aggregate Concrete Under Direct Tension and Pull-Out
by Hasanain K. Al-Naimi and Ali A. Abbas
Fibers 2025, 13(7), 84; https://doi.org/10.3390/fib13070084 - 23 Jun 2025
Viewed by 412
Abstract
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash [...] Read more.
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash (PFA), which is a by-product of coal-fired electricity power stations. Steel fibres were used with different aspect ratios and hooked ends with single, double and triple bends corresponding to 3D, 4D and 5D types of DRAMIX steel fibres, respectively. Key parameters such as the concrete compressive strength flck, fibre volume fraction Vf, number of bends nb, embedded length LE and inclination angle ϴf were considered. The fibres were added at volume fractions Vf of 1% and 2% to cover the practical range, and a direct tensile test was carried out using a purpose-built pull-out test developed as part of the present study. Thus, the tensile mechanical properties were established, and a generic constitutive tensile stress–crack width σ-ω model for both plain and fibrous lightweight concrete was created and validated against experimental data from the present study and from previous research found in the literature (including RILEM uniaxial tests) involving different types of lightweight aggregates, concrete strengths and steel fibres. It was concluded that the higher the number of bends nb and the higher the volume fraction Vf and concrete strength flck, the stronger the fibre–matrix interfacial bond and thus the more pronounced the enhancement provided by the fibres to the uniaxial tensile residual strength and ductility in the form of work and fracture energy. A fibre optimisation study was also carried out, and design recommendations are provided. Full article
Show Figures

Figure 1

14 pages, 1995 KiB  
Article
Mechanical and Bond-Slip Properties of Steel-Fiber-Reinforced Geopolymer Recycled-Aggregate Concrete
by Jianhua Ji, Zening Zhang, Yi Zhang and Xi Liu
Buildings 2025, 15(13), 2179; https://doi.org/10.3390/buildings15132179 - 22 Jun 2025
Viewed by 379
Abstract
Steel-fiber-reinforced geopolymer recycled-aggregate concrete (SFGRC) represents a promising low-carbon building material, yet data on its bond behavior remains scarce, limiting its structural application. To study the mechanical properties and bond strength of SFGRC, five groups of different mix proportions were designed. The main [...] Read more.
Steel-fiber-reinforced geopolymer recycled-aggregate concrete (SFGRC) represents a promising low-carbon building material, yet data on its bond behavior remains scarce, limiting its structural application. To study the mechanical properties and bond strength of SFGRC, five groups of different mix proportions were designed. The main variation parameters were the content of recycled aggregate and the volume content of steel fiber. The cube compressive strength, splitting tensile strength, and flexural strength tests of SFGRC were completed. The influence law of different anchorage lengths on the bond strength between steel bars and SFGRC was studied through the central pull-out test. A multi-parameter probability prediction model of bond strength based on Bayesian method was established. The results show that with the increase of the content of recycled aggregate, the compressive strength of the specimen shows a downward trend, but the tension-compression ratio is increased by 18–22% compared to concrete with natural aggregates at equivalent strength grades. The content of steel fiber can significantly improve the mechanical properties of SFGRC. The bond strength between steel bars and SFGRC is 14.82–17.57 MPa, and the ultimate slip is 0.30–0.38 mm. A probability prediction model of ultimate bond strength is established based on 123 sets of bond test data. The mean and covariance of the ratio of the predicted value of the probability model to the test value are 1.14 and 2.61, respectively. The model has high prediction accuracy, and continuity and can reasonably calculate the bond strength between steel bars and SFGRC. The developed Bayesian model provides a highly accurate and reliable tool for predicting SFGRC bond strength, facilitating its safe and optimized design in sustainable construction projects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 2571 KiB  
Article
Plasticity of Root Architecture and ROS–Auxin Regulation in Paeonia ostii Under Root-Zone Restriction
by Qiang Xing, Ruotong Zhao, Peng Zhou, Jun Qin, Heming Liu, Shuiyan Yu, Bin Zhao and Yonghong Hu
Plants 2025, 14(12), 1889; https://doi.org/10.3390/plants14121889 - 19 Jun 2025
Viewed by 401
Abstract
Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of Paeonia ostii exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis [...] Read more.
Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of Paeonia ostii exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis of biomass allocation and root architectural responses to the root-zone restriction (RZR) in P. ostii, comparing three container volumes (8.5, 17, and 34 L). While the total biomass increased with root zone volume (e.g., shoot biomass rose from 9.30 g to 59.94 g), RZR induced a 44.8% increase in root-to-shoot ratio, indicating carbon reallocation to enhance belowground resource acquisition. The principal component analysis identified root biomass, volume, and surface area as key plasticity drivers. Optimal root efficiency occurred at 26.09–28.23 L, where root length and tip/fork numbers peaked. Mechanistically, RZR elevated superoxide dismutase (SOD) activity by 49.74% but reduced catalase (CAT) by 74.24%, disrupting H2O2 homeostasis. Concurrently, auxin transporter genes (PIN1, AUX1) were upregulated, promoting root elongation and lateral branching through auxin redistribution. We hypothesize that ROS–auxin crosstalk mediates architectural reconfiguration to mitigate spatial stress, with thickened roots enhancing structural stability in restricted environments. The study underscores the need to optimize root zone volume in woody species cultivation, providing thresholds (e.g., >28 L for mature plants) to balance biomass yield and physiological costs in horticultural management. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

9 pages, 15356 KiB  
Article
Fabrication and Properties of ITTO Segments for Cylindrical Targets by Pressureless Oxygen Atmosphere Sintering Method
by Jiwen Xu, Fangzhou Wu, Yuan Yao, Ling Yang, Guisheng Zhu and Huarui Xu
Ceramics 2025, 8(2), 75; https://doi.org/10.3390/ceramics8020075 - 18 Jun 2025
Viewed by 333
Abstract
Cylindrical targets have a high utilization rate, but are difficult to manufacture. A large hollow ITTO segment with thin walls was prepared by cold isostatic pressure and two-stage sintering. The fabrication process yielded a segment with an outer diameter of 153 mm, an [...] Read more.
Cylindrical targets have a high utilization rate, but are difficult to manufacture. A large hollow ITTO segment with thin walls was prepared by cold isostatic pressure and two-stage sintering. The fabrication process yielded a segment with an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 700 mm, indicating a length to thickness ratio of up to 78. The dense and uniform green bodies ensure the achievement of high density and uniformity of the sintered body throughout its volume. The segment exhibited a high relative density of about 99.5% and a low resistivity of below 3.4 × 10−4 Ω·cm. The density and resistivity illustrate a minimal inhomogeneity along the length of the segment. The segment exhibits a cubic bixbyite phase and is characterized by densely packed fine grains with an average size of several microns. Therefore, these results establish a substantial foundation for the large-scale production of cylindrical ITTO segments. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

20 pages, 10249 KiB  
Article
The Effect of Cementation on Microstructural Evolution and Particle Characteristics of Calcareous Sand Under Triaxial Loading
by Wanying Wang, Jiepeng Huang, Degao Chen, Qingzi Luo and Bingxiang Yuan
Buildings 2025, 15(12), 2041; https://doi.org/10.3390/buildings15122041 - 13 Jun 2025
Viewed by 418
Abstract
Calcareous sands are widely distributed across the South China Sea’s continental shelf and coastlines. Understanding their mechanical behavior and microstructural evolution under cementation is critical for coastal engineering applications. While previous studies have investigated cemented calcareous sands, the comparative analyses of particle breakage [...] Read more.
Calcareous sands are widely distributed across the South China Sea’s continental shelf and coastlines. Understanding their mechanical behavior and microstructural evolution under cementation is critical for coastal engineering applications. While previous studies have investigated cemented calcareous sands, the comparative analyses of particle breakage and microstructural characteristics between cemented and pure sands remain limited. This study combines triaxial compression tests with X-ray CT scanning and Digital Volume Correlation analysis to systematically examine both material types. Pre- and post-loading CT scans enabled the detailed tracking of microstructural transformations. Results demonstrate that cemented specimens exhibit higher strength–stiffness properties with strain-softening behavior compared to pure sand under 200 kPa confining pressures. A quantitative analysis revealed greater particle breakage in cemented sand, while pure sand showed more pronounced increases in particle sphericity and the aspect ratio during deformation, accompanied by reduced porosity variation along specimen height (coefficient of variation decreased from 15.2% to 12.8% for pure sand. Microstructural analysis indicated moderate increases in pore sphericity and reduced anisotropy in both materials. Fractal dimension analysis demonstrated more significant structural reorganization in cemented sands. Both materials exhibited increases in key morphological parameters, including the throat equivalent radius, channel length, pore equivalent radius, and coordination number, with changes being more substantial in cemented sands. Within shear band regions, cemented sands displayed marked reductions in pore and throat quantities. These findings elucidate fundamental relationships between cementation effects and micro–macro mechanical responses, providing theoretical support for geotechnical applications involving calcareous sands. Full article
Show Figures

Figure 1

25 pages, 5850 KiB  
Article
Simulation-Based Modeling of the Impact of Left-Turn Bay Overflow on Signalized Intersection Capacity
by Deana Breški and Biljana Maljković
Sustainability 2025, 17(12), 5397; https://doi.org/10.3390/su17125397 - 11 Jun 2025
Viewed by 380
Abstract
The motorized vehicle methodology in the Highway Capacity Manual (HCM) does not account for the effect of left-turn bay overflow, which is stated as a limitation of the methodology. In this study, an adjustment factor was developed to quantify the impact of left-turn [...] Read more.
The motorized vehicle methodology in the Highway Capacity Manual (HCM) does not account for the effect of left-turn bay overflow, which is stated as a limitation of the methodology. In this study, an adjustment factor was developed to quantify the impact of left-turn bay length on the through lane capacity at signalized intersections. The adjustment factor was modeled based on a large number of scenarios generated using the CORSIM microsimulation model. These scenarios covered intersection geometries typical for two-phase signal control and included a wide range of traffic parameters (number of lanes, traffic volume, left-turn volume, left-turn bay length, cycle length, and green ratio). By comparing the capacity values obtained with a short left-turn bay to those with an infinitely long bay under identical other traffic conditions, it was possible to develop an adjustment factor that reflects the impact of turn bay overflow. A regression-based model was created and validated, showing very good agreement with the simulated values. The new adjustment factor provides an enhancement of the HCM estimation methodology that improves the accuracy of capacity and delay estimates in intersection evaluations as well as supports more effective intersection design and sustainable mobility. More accurate capacity estimation reduces congestion, travel delays, and vehicle stopping, directly contributing to sustainable transportation goals, lowering emissions, and supporting environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

31 pages, 2935 KiB  
Article
Comprehensive Assessment of Alfalfa Aluminum Stress Resistance Using Growth and Physiological Trait Analysis
by Nannan Tang, Xiangming Zeng, Jizhi Wei, Zhou Li, Xuechun Zhao, Jihui Chen, Xinyao Gu, Chao Chen and Rui Dong
Agriculture 2025, 15(11), 1168; https://doi.org/10.3390/agriculture15111168 - 29 May 2025
Viewed by 434
Abstract
Alfalfa (Medicago sativa L.) is an important perennial leguminous forage; however, its high sensitivity to aluminum (Al) stress severely restricts its cultivation in regions with acidic soil. Therefore, this study conducted an integrated assessment of Al stress tolerance by performing systematic evaluations [...] Read more.
Alfalfa (Medicago sativa L.) is an important perennial leguminous forage; however, its high sensitivity to aluminum (Al) stress severely restricts its cultivation in regions with acidic soil. Therefore, this study conducted an integrated assessment of Al stress tolerance by performing systematic evaluations of 11 growth and physiological parameters across 30 alfalfa cultivars under Al stress, and calculated the Al tolerance coefficients based on these parameters. The results revealed that Al stress markedly inhibited root growth and biomass accumulation in alfalfa, thereby triggering increased malondialdehyde (MDA) content in roots across most cultivars, the scope of increase is 0.19–183.07%. Moreover, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) increased by 7.50–121.44%, 2.50–135.89%, and 3.84–70.01%, respectively. Based on the comprehensive evaluation value (D) obtained via principal component analysis and membership function, the 30 alfalfa cultivars were categorized into four distinct groups: 4 highly Al-tolerant cultivars, 11 moderately high-Al-tolerant cultivars, 9 moderately low-Al-tolerant cultivars, and 6 low-Al-tolerant cultivars. Stepwise linear regression analysis identified root elongation rate, root-to-shoot ratio, root volume, SOD, MDA, CAT, root dry weight, POD, and root length as pivotal indicators for predicting and evaluating Al stress tolerance in alfalfa cultivars. The qRT-PCR analysis showed dynamic changes in ABC transporter gene expression in alfalfa roots over time under aluminum stress. Therefore, this study comprehensively evaluated Al tolerance by systematically investigating the morphophysiological effects of Al stress across 30 alfalfa cultivars using principal component analysis (PCA), membership function, and hierarchical clustering analysis. It provides a practical solution for expanding alfalfa planting in acid soil and improving feed production in acidic environments. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

Back to TopTop