Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,028)

Search Parameters:
Keywords = legume protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 863 KB  
Article
Evaluation of Lupin Varieties and Assessment of Adaptability to Neutral-pH Soils Via Recording of Morphological, Agronomical, and Seed Quality Characteristics
by Anna Pitsikoglou, Georgios C. Menexes, Zoi M. Parissi, Maria Irakli, Irini Nianiou-Obeidat, Eleni M. Abraham and Athanasios Mavromatis
Agronomy 2026, 16(3), 289; https://doi.org/10.3390/agronomy16030289 - 23 Jan 2026
Abstract
White lupin (Lupinus albus) is a very important legume crop, having seeds with high protein content but also quantities of antinutritional alkaloids. Regarding cultivation, it is sensitive to neutral or alkaline soil conditions, although it is well adapted to drought conditions. In [...] Read more.
White lupin (Lupinus albus) is a very important legume crop, having seeds with high protein content but also quantities of antinutritional alkaloids. Regarding cultivation, it is sensitive to neutral or alkaline soil conditions, although it is well adapted to drought conditions. In this study, the adaptability of 17 L. albus (14 commercial varieties and 3 advanced lines) genotypes to neutral-pH soils was investigated in relation to morphological, agronomical, and yield attributes. An extended characterization of seed composition for total alkaloids, trypsin inhibitors, phenolics, tannins, total nitrogen, NDF, ADF, and lignin was also performed. Furthermore, a prebreeding program consisting of 140 targeted crosses was initiated to develop new F1 combinations for genotypes with low alkaloid profiles; at the same time, controlled self-fertilization of elite lines was carried out. The results indicated that the morphological response of L. albus to neutral pH was positive and significantly genotypically dependent. Among the varieties tested, ‘Magnus’ and ‘Figaro’ showed low alkaloid and lignin contents. On the other hand, the advanced lines (LKAP, LKML, LKAU) had high antinutritional components, even though they were high-yielding. This research proposes a model of combined evaluation and selection processes for identification of particular genotypes that can perform well in neutral soils and provides the basis for breeding and producing low-alkaloid genotypes for multi-locational exploitation. Full article
13 pages, 380 KB  
Article
Effect of Vegetation Cover and Height on Soil and Plant Properties Across Managed and Unmanaged Agricultural Land in a Temperate Climate
by Sito-Obong U. Udofia, Lisa K. Williams, Alison P. Wills, Wing K. P. Ng, Tim Bevan and Matt J. Bell
Climate 2026, 14(2), 32; https://doi.org/10.3390/cli14020032 - 23 Jan 2026
Abstract
The aim of the study was to investigate the effect of vegetation cover and height on soil and plant nutrients across managed and unmanaged agricultural land in a temperate climate. Fresh soil and vegetation samples were collected during the years 2023 and 2024 [...] Read more.
The aim of the study was to investigate the effect of vegetation cover and height on soil and plant nutrients across managed and unmanaged agricultural land in a temperate climate. Fresh soil and vegetation samples were collected during the years 2023 and 2024 from 125 different land parcels in the southwest of the UK. Land was either managed for grazing and/or feed production or not managed for agricultural use, and had a range of grass, crop, legume, herb, and flower species. A linear mixed model was used to assess the effect of vegetation height (in cm) and cover (tonnes of dry matter per hectare) on soil and plant nutrients. The results showed plant dry matter (DM) digestibility, acid detergent fibre (ADF), water-soluble carbohydrate, and oil contents increased with vegetation height, and soil DM and neutral detergent fibre (NDF) decreased with vegetation height. The ratio of soil-to-plant OM reduced and ADF increased with increasing vegetation cover. Interactions between vegetation height and cover (i.e., density) were found for the ratio of soil-to-plant OM, ADF, NDF, DM, DM digestibility, oil, water-soluble carbohydrate, and crude protein nutrients. Measuring the interaction between soil and plant properties showed soil OM stocks increased and soil pH decreased with increased vegetation cover across agricultural land. Full article
Show Figures

Figure 1

21 pages, 56584 KB  
Article
Cross-Species Analysis of ABA-Induced Phosphosignaling Landscapes in Rice, Soybean, and Arabidopsis
by Hinano Takase, Sotaro Katagiri, Takuma Ide, Aina Nagano, Haruki Sakurai, Hana Kokubo, Taiki Yanagisawa, Masanori Okamoto and Taishi Umezawa
Proteomes 2026, 14(1), 4; https://doi.org/10.3390/proteomes14010004 - 20 Jan 2026
Viewed by 147
Abstract
Background: Abscisic acid (ABA) is a key phytohormone that regulates plant growth and stress responses through protein phosphorylation. While ABA-induced phosphosignaling has been extensively studied in Arabidopsis thaliana, its conservation and divergence across plant species remain unclear. Methods: Here, we performed phosphoproteomic [...] Read more.
Background: Abscisic acid (ABA) is a key phytohormone that regulates plant growth and stress responses through protein phosphorylation. While ABA-induced phosphosignaling has been extensively studied in Arabidopsis thaliana, its conservation and divergence across plant species remain unclear. Methods: Here, we performed phosphoproteomic analysis using LC-MS/MS in Arabidopsis, rice (Oryza sativa), and soybean (Glycine max) to compare ABA-responsive phosphorylation profiles among monocots, dicots, and legumes. Results: ABA treatments on Arabidopsis, rice, and soybean seedlings yielded approximately 24,604, 18,865, and 24,930 phosphopeptides, respectively. Comparative analyses revealed both conserved and species-specific ABA-responsive phosphoproteins. Conclusions: This work provides insights into the evolutionary diversification of ABA signaling and its potential applications in improving crop stress tolerance. Full article
(This article belongs to the Special Issue Plant Genomics and Proteomics)
Show Figures

Figure 1

21 pages, 5051 KB  
Article
High-Temperature Gelation and Structural Characterisation of Commercial Yellow Pea, Faba Bean, and Mungbean Protein–Starch Systems
by Niorie Moniharapon, Minqian Zhu, Lucinda Daborn and Sushil Dhital
Gels 2026, 12(1), 89; https://doi.org/10.3390/gels12010089 - 19 Jan 2026
Viewed by 132
Abstract
The heating of plant proteins at high temperatures is often associated with phase separation due to the aggregation of protein fractions, resulting in weak or discontinuous gels in liquid processing systems. This study examined the high-temperature gelation behaviour of commercial yellow pea, faba [...] Read more.
The heating of plant proteins at high temperatures is often associated with phase separation due to the aggregation of protein fractions, resulting in weak or discontinuous gels in liquid processing systems. This study examined the high-temperature gelation behaviour of commercial yellow pea, faba bean, and mungbean protein isolates and evaluated how different levels of dry-fractionated starch substitution tailor viscosity development and final gel strength. To characterise structural changes during heating, pasting behaviour was evaluated at 95 °C and 120 °C using a high-temperature Rapid Visco Analyser, while gel strength, temperature-ramp rheology, and thermal transitions were measured using a texture analyser, rheometer, and Differential Scanning Calorimetry. At 95 °C, all systems showed controlled pasting behaviour, with yellow pea exhibiting moderate viscosity development and clear recovery during cooling, mungbean generating the highest peak viscosity, and faba bean forming the strongest elastic network and gel structure. At 120 °C, yellow pea showed reduced stability, whereas faba bean and mungbean retained higher viscosity during heating. Starch addition improved the viscosity stability and gel strength across all proteins by limiting excessive aggregation and supporting network formation. These findings clarify how protein type and starch substitution affect high-temperature gelation, supporting the development of a heat-stable, clean-label plant-based gel system. Full article
(This article belongs to the Special Issue Gels: Diversity of Structures and Applications in Food Science)
Show Figures

Figure 1

19 pages, 585 KB  
Article
Diet and Lifestyle Factors Associated with Gastrointestinal Symptoms in Spanish Adults: Cross-Sectional Analysis of the 2023 Spanish National Health Survey
by Ángel López-Fernández-Roldán, Víctor Serrano-Fernández, José Alberto Laredo-Aguilera, Esperanza Barroso-Corroto, Laura Pilar De Paz-Montón and Juan Manuel Carmona-Torres
Nutrients 2026, 18(2), 299; https://doi.org/10.3390/nu18020299 - 17 Jan 2026
Viewed by 233
Abstract
Background/Objectives: Digestive problems are common in the general population and may be influenced by lifestyle, emotional status and diet. This study aimed to estimate the prevalence of digestive problems in Spanish adults and examined associated factors. Methods: Descriptive cross-sectional analysis of anonymized adult [...] Read more.
Background/Objectives: Digestive problems are common in the general population and may be influenced by lifestyle, emotional status and diet. This study aimed to estimate the prevalence of digestive problems in Spanish adults and examined associated factors. Methods: Descriptive cross-sectional analysis of anonymized adult microdata from the 2023 Spanish Health Survey was performed. Data were collected using a mixed-mode design (self-administered web questionnaire with interviewer-administered follow-up). Digestive problems were recoded by combining gastric ulcer, constipation, and prescribed use of laxatives, astringent drugs, and stomach medication. Therefore, digestive problems are primarily defined as the presence of gastric ulcers, diarrhea, and/or constipation. Variables included sociodemographic, Body Mass Index (BMI), smoking, alcohol intake, physical activity, Personal Health Questionnaire Depression Scale (PHQ-8), World Health Organization Well Being Index (WHO-5), and macronutrient intake estimated from a Food-Frequency Questionnaire using the Spanish Food Composition Database (BEDCA). Group comparisons and multivariable logistic regression were conducted (95% CI; significance level set at p < 0.05). Results: Of 34,148 participants, 13,518 provided information on digestive problems; among these respondents, 3860 (28.6%) reported having digestive issues. Prevalence ranged from 5.2% to 36.5% among national territories. Higher odds (OR) of digestive problems were associated with age (OR 1.026, 95% CI 1.023–1.029), female sex (OR 1.168, 1.070–1.276), non-smoking (OR 1.240, 1.005–1.531) and ex-smoking (OR 1.447, 1.272–1.647) compared to current smokers, higher PHQ-8 scores (OR 1.040, 1.029–1.051), greater protein intake (OR 1.016, 1.009–1.023), consumption of sweet pastries (OR 1.058, 1.039–1.077), and dairy products (OR 1.027, 1.002–1.053); in contrast, lower odds were associated with higher WHO-5 scores (OR 0.985, 0.982–0.987), total fiber intake (OR 0.968, 0.949–0.987), and legume consumption (OR 0.894, 0.856–0.933). Conclusions: Digestive problems show considerable variability in prevalence among survey-based Spanish sample. Digestive problems were associated with older age, female sex, depressive symptoms, high-protein intake, and higher consumption of sweet pastries and dairy products, whereas higher well-being scores, higher fiber intake and legume consumption were associated with lower odds of digestive problems. Full article
Show Figures

Figure 1

22 pages, 1966 KB  
Article
Germination Triggers Substantial Changes in GABA, Polyphenol, Sugar, and Organic Acid Content of Commonly Consumed Legumes
by Daniela Pencheva, Desislava Teneva, Zornica Todorova, Manol Ognyanov, Ani Petrova, Vasil Georgiev, Mariya Pimpilova and Petko Denev
Plants 2026, 15(2), 242; https://doi.org/10.3390/plants15020242 - 13 Jan 2026
Viewed by 326
Abstract
This study investigated the effects of germination on gamma-aminobutyric acid (GABA), free sugars, organic acids, polyphenols, protein content, and antioxidant activity in six legumes (mung beans, Dobrudzha beans, white beans, brown lentils, red lentils and chickpeas). Seeds were germinated for 5 days at [...] Read more.
This study investigated the effects of germination on gamma-aminobutyric acid (GABA), free sugars, organic acids, polyphenols, protein content, and antioxidant activity in six legumes (mung beans, Dobrudzha beans, white beans, brown lentils, red lentils and chickpeas). Seeds were germinated for 5 days at room temperature, with or without an initial freezing pretreatment at −18 °C for 20 h. Daily analysis revealed significant increases in GABA across all legumes, especially chickpeas, which showed an 18-fold rise to 210.5 mg/100 g dry weight (DW), alongside elevated glutamate decarboxylase activity. Total polyphenols increased 3.4-fold in white beans and chickpeas by day five. Antioxidant activity (ORAC) rose in parallel, reaching 123.8 and 83.3 µmol TE/g DW in germinated white beans and chickpeas, compared to 68.4 and 45.4 µmol TE/g DW in non-germinated controls. While protein content remained stable, levels of free sugars (notably maltose) increased during germination. Organic acids rose across all samples as well, with quinic acid being the most abundant and showing the sharpest increase. Initial freezing had a clear effect on enhancing GABA accumulation compared to non-treated seeds, but generally exerted neutral effects on other bioactive components. Overall, germination triggered biochemical transformations in seeds, enriching them with bioactive compounds and enhancing their nutritional and functional properties, with chickpeas emerging as a particularly rich source of GABA, polyphenols, and organic acids, supporting their potential in functional food development. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

14 pages, 1839 KB  
Data Descriptor
Whole-Genome Sequencing of Sinorhizobium Phage AP-202, a Novel Siphovirus from Agricultural Soil
by Marina L. Roumiantseva, Alexandra P. Kozlova, Victoria S. Muntyan, Maria E. Vladimirova, Alla S. Saksaganskaia, Andrey N. Gorshkov, Marsel R. Kabilov and Boris V. Simarov
Data 2026, 11(1), 15; https://doi.org/10.3390/data11010015 - 12 Jan 2026
Viewed by 180
Abstract
Bacteriophages are a key ecological factor in the legume rhizosphere, controlling bacterial populations and affecting introduced inoculant strains. Despite their importance, rhizobiophage genomic diversity remains poorly characterized. We report the complete genome of a novel predicted temperate Sinorhizobium phage, AP-202, isolated from agricultural [...] Read more.
Bacteriophages are a key ecological factor in the legume rhizosphere, controlling bacterial populations and affecting introduced inoculant strains. Despite their importance, rhizobiophage genomic diversity remains poorly characterized. We report the complete genome of a novel predicted temperate Sinorhizobium phage, AP-202, isolated from agricultural Chernozem. This siphovirus infects the symbiont Sinorhizobium meliloti. Its 121,599 bp dsDNA genome has a strikingly low GC content (27.1%), likely reflecting adaptive evolution and a strategy to evade host defenses. The linear genome is flanked by 240 bp direct terminal repeats (DTRs), and its DNA packaging follows a T7-like strategy. Annotation predicted 178 protein-coding genes and one tRNA. Functional analysis revealed a complete lysogeny module and a divergent, two-pronged codon-usage strategy for translational control. A significant part of the proteome (74.2%) comprises hypothetical proteins, with 50 CDSs having no database homologs, underscoring its genetic novelty. Complete-genome comparison shows minimal similarity to known rhizobiophages, defining AP-202 as a distinct lineage. Phenotypic analysis indicates AP-202 acts as a selective ecological filter, with host resistance being more prevalent in agricultural than in natural soils. The AP-202 genome provides a unique model for studying phage–host coevolution in the rhizosphere and is a valuable resource for comparative genomics and soil virome research. Full article
Show Figures

Figure 1

16 pages, 1555 KB  
Article
Effects of Different Mixing Ratios of Glycyrrhiza pallidiflora Maxim. and Leymus chinensis on Silage Fermentation Characteristics and Bacterial Community Structure
by Linlin Mu, Xu Zhuang, Dongmei Zhang, Junfeng Liu, Weibo Han, Guili Di, Zhongbao Shen and Jianli Wang
Agriculture 2026, 16(2), 189; https://doi.org/10.3390/agriculture16020189 - 12 Jan 2026
Viewed by 251
Abstract
Glycyrrhiza pallidiflora Maxim., a perennial legume with high biomass yield and good nutritional value, has potential as a forage resource. This study examined how mixing G. pallidiflora (C) with Leymus chinensis (Y) at varying ratios (C10Y0, C9Y1, C8Y2, C7Y3, C6Y4) affects silage fermentation, [...] Read more.
Glycyrrhiza pallidiflora Maxim., a perennial legume with high biomass yield and good nutritional value, has potential as a forage resource. This study examined how mixing G. pallidiflora (C) with Leymus chinensis (Y) at varying ratios (C10Y0, C9Y1, C8Y2, C7Y3, C6Y4) affects silage fermentation, chemical composition, and microbial community structure. All treatments were inoculated with Lactiplantibacillus plantarum (1 × 106 CFU/g fresh weight) and ensiled for 120 days. The results indicated that mixed silages markedly improved overall fermentation quality compared to the sole C silage (C10Y0). These mixed silages exhibited superior lactic acid (LA) concentrations, lower pH. Bacterial community profiling revealed that the addition of Y shifted the microbiota from a diverse community to one dominated by Lactobacillus. Although the C6Y4 and C7Y3 groups exhibited lower pH, they showed significantly elevated NH3-N contents, while their crude protein contents and the relative abundances of Lactobacillus were both lower than those of the C9Y1 and C8Y2 groups. Considering the core requirements of comprehensive quality, the mixing ratios of 9:1 (C9Y1) and 8:2 (C8Y2) demonstrated the optimal effects: at these ratios, the silage maintained a CP content of 12.84–14.48% DM, with NDF and ADF contents stabilized at 47.55–51.09% DM and 33.67–34.14% DM, respectively, and DM content of 28.85–31.32%; in terms of fermentation quality, the pH value decreased from 4.85 in the sole C silage (C10Y0) to 4.04–4.11, the LA content increased from 13.91 g/kg DM to 28.86–30.87 g/kg DM, the LA/AA ratio rose from 1.31 to 3.37–3.97, and the NH3-N content was reduced by 0.56–0.96% TN compared to the C10Y0 (decreasing to 4.16–4.45% TN), effectively inhibiting protein degradation; at the microbial level, the LAB count reached 9.03–9.05 log10 CFU/g FM, an increase of 2.12–2.14 compared to the C10Y0, with a relative abundance exceeding 80%, successfully suppressing the proliferation of undesirable bacteria such as Raoultella and Weissella and ensuring fermentation stability. This provides technical support for utilizing this plant as a viable alternative forage resource. Full article
(This article belongs to the Special Issue Assessment of Nutritional Value of Animal Feed Resources)
Show Figures

Figure 1

16 pages, 449 KB  
Article
Diet-Driven Modulation of Antibiotic Resistance Genes and Microbial Risk During the Bioconversion of Agro-Industrial Residues by Hermetia illucens
by Vesna Milanović, Andrea Marcelli, Alessio Ilari, Giorgia Rampanti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Andrea Osimani, Cristiana Garofalo, Ester Foppa Pedretti and Lucia Aquilanti
Sci 2026, 8(1), 11; https://doi.org/10.3390/sci8010011 - 8 Jan 2026
Viewed by 160
Abstract
Background: Hermetia illucens larvae provide a sustainable bioconversion pathway that transforms agro-industrial residues into protein- and nutrient-dense biomass and frass, suitable for animal feed and soil amendment, respectively. Nevertheless, the potential spread of antibiotic resistance (AR) genes and pathogenic microorganisms poses biosafety [...] Read more.
Background: Hermetia illucens larvae provide a sustainable bioconversion pathway that transforms agro-industrial residues into protein- and nutrient-dense biomass and frass, suitable for animal feed and soil amendment, respectively. Nevertheless, the potential spread of antibiotic resistance (AR) genes and pathogenic microorganisms poses biosafety concerns. This study examined the impact of four residue-based diet formulations; peas and chickpea (D1), peas and wheat (D2), onion and wheat (D3), and wheat with digestate (D4), on microbial safety during the bioconversion process. Methods: Enterococcus spp. (viable counts), Salmonella spp. (presence/absence), and 13 AR genes associated with resistance to tetracyclines, macrolide-lincosamide-streptogramin B, β-lactams, vancomycin, and aminoglycosides were quantified in single substrates, diets, larvae, and frass using qPCR. Results: Principal component analysis revealed diet-driven AR gene profiles. D1 lowered the levels of the greatest number of tested AR genes, particularly erm(B), tetracycline, and β-lactam genes in frass, as well as tet(O) and vanB in mature larvae. In contrast, D2 increased the AR gene levels in frass. All diets except D4 eliminated Salmonella spp. Enterococcus spp. loads varied by diet and larval stage, with D2 reducing counts in frass. Conclusions: Diet composition directly shapes microbial dynamics and AR gene dissemination, indicating that legume-based substrates may enhance biosafety in bioconversion systems. Full article
Show Figures

Figure 1

21 pages, 1635 KB  
Review
Exploring the Potential of Lupin Fermentation with Exopolysaccharide-Producing Lactic Acid Bacteria to Enhance Techno-Functional Properties
by Dhananga Senanayake, Peter J. Torley, Jayani Chandrapala and Netsanet Shiferaw Terefe
Fermentation 2026, 12(1), 34; https://doi.org/10.3390/fermentation12010034 - 6 Jan 2026
Viewed by 475
Abstract
Lupin (Lupinus spp.), a legume known for its high protein content, holds great promise as a sustainable protein source to meet future global demands. Despite its nutritional benefits, including substantial dietary fibre and bioactive compounds, lupin remains underutilised in human diets due [...] Read more.
Lupin (Lupinus spp.), a legume known for its high protein content, holds great promise as a sustainable protein source to meet future global demands. Despite its nutritional benefits, including substantial dietary fibre and bioactive compounds, lupin remains underutilised in human diets due to several techno-functional and sensory limitations. This review delves into the techno-functional limitations of lupin, which include poor foaming capacity, low water and oil absorption, inadequate emulsification properties, and poor solubility. Lupin’s techno-functional limits are tied to the compact, heat-stable nature of its conglutin storage proteins and high insoluble fibre content. While research has been conducted on fermenting other legumes such as soybeans, chickpeas, peas, and lentils with Exopolysaccharide (EPS) producing bacteria, its application to lupin remains largely unexplored. Crucially, this work is one of the first reviews to exclusively link lupin’s unique protein and fibre structure with the specific polymer chemistry of bacterial EPS as a targeted modification strategy. Current research findings suggest that EPS-producing Lactic Acid Bacteria (LAB) fermentation can significantly improve the techno-functional properties of legumes, indicating strong potential for similar benefits with lupin. The analysis highlights various studies demonstrating the ability of EPS-producing LAB to improve water retention, emulsification, and overall palatability of legume-based products. Furthermore, it emphasises the need for continued research in the realm of fermentation with EPS-producing bacteria to enhance the utilisation of lupin in food applications. By addressing these challenges, fermented lupin could become a more appealing and nutritious option, contributing significantly to global food security and nutrition. Full article
(This article belongs to the Special Issue Feature Review Papers on Fermentation for Food and Beverages 2025)
Show Figures

Figure 1

24 pages, 5920 KB  
Article
Genome- and Transcriptome-Wide Characterization of AP2/ERF Transcription Factor Superfamily Reveals Their Relevance in Stylosanthes scabra Vogel Under Water Deficit Stress
by Cínthia Carla Claudino Grangeiro Nunes, Agnes Angélica Guedes de Barros, Jéssica Barboza da Silva, Wilson Dias de Oliveira, Flávia Layse Belém Medeiros, José Ribamar Costa Ferreira-Neto, Roberta Lane de Oliveira-Silva, Eliseu Binneck, Reginaldo de Carvalho and Ana Maria Benko-Iseppon
Plants 2026, 15(1), 158; https://doi.org/10.3390/plants15010158 - 4 Jan 2026
Viewed by 552
Abstract
Stylosanthes scabra, a legume native to the Brazilian semiarid region, exhibits remarkable drought tolerance and represents a valuable model for studying molecular adaptation in legumes. Transcription factors of the AP2/ERF superfamily play central roles in plant development and stress response. This study [...] Read more.
Stylosanthes scabra, a legume native to the Brazilian semiarid region, exhibits remarkable drought tolerance and represents a valuable model for studying molecular adaptation in legumes. Transcription factors of the AP2/ERF superfamily play central roles in plant development and stress response. This study aimed to identify and characterize AP2/ERF genes in Stylosanthes scabra and to analyze their transcriptional response to root dehydration. Candidate genes were identified through a Hidden Markov Model (HMM) search using the AP2 domain profile (PF00847), followed by validation of conserved domains, physicochemical characterization, prediction of subcellular localization, phylogenetic and structural analyses, and functional annotation. A total of 295 AP2/ERF proteins were identified and designated as SscAP2/ERF, most of which were predicted to be localized in the nucleus. These proteins exhibited a wide range of molecular weights and isoelectric points, reflecting structural diversity, and were classified into four subfamilies: AP2, ERF, DREB, and RAV. Functional annotation revealed predominant roles in DNA binding and transcriptional regulation, while promoter analysis identified numerous stress-related cis-elements. A total of 32 transcripts were differentially expressed under 24 h of water deficit, and four selected genes had their expression patterns validated by qPCR. These findings provide new insights into the AP2/ERF gene subfamily in Stylosanthes scabra and lay the groundwork for future biotechnological approaches to enhance stress tolerance in legumes. Full article
Show Figures

Graphical abstract

27 pages, 1350 KB  
Review
Current Scenario and New Approaches for the Chemical, Technological, and Sensory Qualities of Plant-Based Milk and Fermented Milk Substitutes
by Rafaela Giuliana Hermelino Lima, Ziane da Conceição das Mercês, Ana Karolina Fortunato de Souza and Viviani Ruffo de Oliveira
Beverages 2026, 12(1), 6; https://doi.org/10.3390/beverages12010006 - 2 Jan 2026
Viewed by 450
Abstract
Interest in plant-based milk is rapidly growing worldwide. However, several challenges remain, such as low consumer acceptance, difficulty in matching cow milk’s nutritional profile, and poor stability. Since various groups benefit from consuming plant-based options, addressing these challenges is crucial. This study aimed [...] Read more.
Interest in plant-based milk is rapidly growing worldwide. However, several challenges remain, such as low consumer acceptance, difficulty in matching cow milk’s nutritional profile, and poor stability. Since various groups benefit from consuming plant-based options, addressing these challenges is crucial. This study aimed to analyze plant sources used in plant-based milk, evaluating their chemical, technological, and sensory characteristics, as well as processing methods and emerging trends. A literature search was conducted for studies published in English over the last ten years in Embase, Scopus, Lilacs, Fsta, Pubmed, and Google Scholar, selecting those best fitting the inclusion criteria. Legumes, cereals, pseudo-cereals, nuts, fruits, and seeds have been used as plant matrices, each contributing distinct attributes to the plant-based milk. Thus, using plant proteins —i.e., mixing different plant-based foods into a single formulation has proven effective in overcoming certain limitations. Additionally, germination and fermentation have improved the stability, nutritional quality, and sensory properties of plant-based milk, reinforcing their potential for future advancements in this field. Full article
(This article belongs to the Section Quality, Nutrition, and Chemistry of Beverages)
Show Figures

Figure 1

15 pages, 1916 KB  
Article
An Exploratory Study on the Impact of MIPEF-Assisted Extraction on Recovery of Proteins, Pigments, and Polyphenols from Sub-Standard Pea Waste
by Stella Plazzotta, Alberto Saitta, Sofia Melchior and Lara Manzocco
Foods 2026, 15(1), 128; https://doi.org/10.3390/foods15010128 - 1 Jan 2026
Viewed by 303
Abstract
The growing demand for sustainable protein sources has intensified the need for efficient valorisation of legume by-products. This study investigated the application of moderate intensity pulsed electric fields (MIPEF; 5 kV/cm, 4 μs, 500 pulses) as a green technology for assisting the co-extraction [...] Read more.
The growing demand for sustainable protein sources has intensified the need for efficient valorisation of legume by-products. This study investigated the application of moderate intensity pulsed electric fields (MIPEF; 5 kV/cm, 4 μs, 500 pulses) as a green technology for assisting the co-extraction of proteins, pigments, and polyphenols from industrial substandard peas (Pisum sativum L.). Aqueous pea dispersions (20 g/100 g) were subjected to alkalinization (pH 9–12), and MIPEF applied either before or after the pH adjustment. The highest protein recovery was achieved when MIPEF was applied after alkalinization at pH 9.0, due to the increased conductivity and energy input enhancing electroporation-driven protein release. Although higher pH levels increased energy delivery, they did not significantly improve protein extraction. Conversely, MIPEF application decreased total polyphenol and pigment concentrations in the extract, likely due to aggregation phenomena. Overall, these preliminary results indicate that combining mild alkalinization with MIPEF might represent a promising and energy-efficient approach for protein recovery from legume side-streams. Further optimization is required to improve protein recovery while preserving the stability of co-extracted bioactive compounds. Full article
(This article belongs to the Special Issue Different Strategies for the Reuse and Valorization of Food Waste)
Show Figures

Graphical abstract

17 pages, 1118 KB  
Article
Crop Growth and Yield in Three-Crop Mixtures and Sole Stands in an Organic System
by Chao Xiao, Ilja Koli, Shiromi Samiraja, Saku Juvonen, Laura Alakukku, Asko Simojoki and Pirjo S. A. Mäkelä
Agronomy 2026, 16(1), 94; https://doi.org/10.3390/agronomy16010094 - 29 Dec 2025
Viewed by 301
Abstract
Low yields remain a primary obstacle to the expansion of organic farming in Europe. While legume-based mixed cropping enhances land-use efficiency, three-crop mixtures remain understudied compared to binary systems. We evaluated the vegetative and generative growth of pea (Lathyrus oleraceus Lam.), oats [...] Read more.
Low yields remain a primary obstacle to the expansion of organic farming in Europe. While legume-based mixed cropping enhances land-use efficiency, three-crop mixtures remain understudied compared to binary systems. We evaluated the vegetative and generative growth of pea (Lathyrus oleraceus Lam.), oats (Avena sativa L.), and camelina (Camelina sativa (L.) Crantz.) in sole stands versus three-crop mixtures in southern Finland. Experiments were conducted over two years using varying relative seeding densities (including 50:20:30, 50:50:50, and 33:33:33). Biomass dynamics and seed quality were analyzed using analysis of variance (ANOVA), while interspecific interactions were quantified using the relative interaction index (RII) and land equivalent ratio (LER). In 2022, mixtures increased oat seed protein by 11% relative to sole crops, achieving a biomass LER of 1.17. In 2023, oats exhibited strong competitive dominance (RII > 0.3), which concurrently reduced camelina quality. Notably, the 33:33:33 mixture consistently achieved a biomass LER > 1.2 and marked improvements in pea growth rates. Across all mixtures, the seed yield LER reached 1.04. These results suggest that three-crop mixtures can enhance productivity in Nordic organic agriculture with minimal quality trade-offs. Practically, we recommend the equal seeding density (33:33:33) as the optimal configuration for maximizing resource use efficiency, though further optimization of species combinations is encouraged. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

20 pages, 916 KB  
Article
Development of a Meal-Planning Exchange List for Traditional Sweets and Appetizers in Gulf Cooperation Council Countries: Insights from Qatar
by Safa Abdul Majeed and Reema Tayyem
Nutrients 2026, 18(1), 117; https://doi.org/10.3390/nu18010117 - 29 Dec 2025
Viewed by 397
Abstract
Background & Aim: Sweets and appetizers are an integral part of the Gulf Cooperation Council (GCC) region’s cultural heritage but are often high in refined carbohydrates, sugars, and fats, contributing to the rising burden of obesity and type 2 diabetes. Qatar, as one [...] Read more.
Background & Aim: Sweets and appetizers are an integral part of the Gulf Cooperation Council (GCC) region’s cultural heritage but are often high in refined carbohydrates, sugars, and fats, contributing to the rising burden of obesity and type 2 diabetes. Qatar, as one of the fastest-developing GCC nations, exemplifies these nutrition-related challenges. Therefore, this study aimed to systematically develop a culturally adapted meal-planning exchange list for 34 commonly consumed Qatari and GCC sweets and appetizers to support nutrition counseling and diabetes management. Methods: This study is primarily methodological and developmental in scope, employing a descriptive observational design in which the units of analysis were the 34 selected traditional dishes. Standardized recipes were compiled for each dish, and serving sizes were determined. Macronutrient content (carbohydrates, protein, fat) was analyzed, variability across dishes was assessed, and nutrient data were validated against food processor software data. Results: The nutrient comparison analysis revealed strong correlations between collected nutrient data sources (r = 0.81–0.85, p < 0.05) and significant variability in macronutrient profiles. Fried and sugar-syrup-based items presented higher fat and carbohydrate content, while legume- and vegetable-based dishes contributed additional protein and fiber, demonstrating the dual role of traditional foods as both nutrient rich and energy dense. Conclusions: The developed exchange list provides a practical tool for culturally relevant nutrition guidance. It enables dietitians to plan individualized meals, promoting moderation, portion control, and adherence to dietary recommendations, thereby supporting diabetes and weight management initiatives across the GCC. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

Back to TopTop