Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = leather and footwear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8942 KiB  
Article
Evaluation of γ-Irradiation Effects on EPDM/SBS Blends for Durability and Recycling Potential
by Traian Zaharescu, Marius Bumbac, Cristina Mihaela Nicolescu, Maria Daniela Stelescu, Tunde Borbath and Istvan Borbath
Polymers 2025, 17(10), 1314; https://doi.org/10.3390/polym17101314 - 12 May 2025
Viewed by 523
Abstract
This study investigates the stability behavior of blends composed of ethylene-propylene-diene monomer (EPDM) and styrene-butadiene-styrene (SBS), focusing on the effects of γ-irradiation on these materials. FTIR, CL, and DSC analysis indicate that blends with more than 50% SBS demonstrate remarkable resistance to significant [...] Read more.
This study investigates the stability behavior of blends composed of ethylene-propylene-diene monomer (EPDM) and styrene-butadiene-styrene (SBS), focusing on the effects of γ-irradiation on these materials. FTIR, CL, and DSC analysis indicate that blends with more than 50% SBS demonstrate remarkable resistance to significant radiation doses. This study highlights that at increased γ-irradiation doses, specifically 100 and 150 kGy, structural changes in the polystyrene aromatic rings are detected, providing insights into the modifications induced by radiation exposure. Among the tested formulations, the blend containing 75% SBS demonstrated the best performance against γ-irradiation, showcasing superior mechanical and structural resistance to radiation-induced degradation. The results indicate that γ-irradiation leads to managed degradation within the SBS/EPDM mixtures: while EPDM experiences increased crosslinking, SBS proves resilient against crosslinking, thus bolstering the stability of EPDM under irradiation scenarios. Additionally, thermal analysis underlines the beneficial role of SBS by showing enhanced thermal stability in SBS-rich samples (SBS content higher than 50%) experiencing reduced thermal degradation through repeated heating cycles. This outcome suggests that the inclusion of SBS effectively reduces crosslinking and chain scission impacts, thereby enhancing consistency in thermal properties over multiple cycles. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

22 pages, 3787 KiB  
Article
Development of Smart pH-Sensitive Collagen-Hydroxyethylcellulose Films with Naproxen for Burn Wound Healing
by Elena-Emilia Tudoroiu, Mădălina Georgiana Albu Kaya, Cristina Elena Dinu-Pîrvu, Lăcrămioara Popa, Valentina Anuța, Mădălina Ignat, Emilia Visileanu, Durmuș Alpaslan Kaya, Răzvan Mihai Prisada and Mihaela Violeta Ghica
Pharmaceuticals 2025, 18(5), 689; https://doi.org/10.3390/ph18050689 - 7 May 2025
Cited by 1 | Viewed by 944
Abstract
Background: Developing versatile dressings that offer wound protection, maintain a moist environment, and facilitate healing represents an important therapeutic approach for burn patients. Objectives: This study presents the development of new smart pH-sensitive collagen-hydroxyethylcellulose films, incorporating naproxen and phenol red, designed [...] Read more.
Background: Developing versatile dressings that offer wound protection, maintain a moist environment, and facilitate healing represents an important therapeutic approach for burn patients. Objectives: This study presents the development of new smart pH-sensitive collagen-hydroxyethylcellulose films, incorporating naproxen and phenol red, designed to provide controlled drug release while enabling real-time pH monitoring for burn care. Methods: Biopolymeric films were prepared by the solvent-casting method using ethanol and glycerol as plasticizers. Results: Orange-colored films were thin, flexible, and easily peelable, with uniform, smooth, and nonporous morphology. Tensile strength varied from 0.61 N/mm2 to 3.33 N/mm2, indicating improved mechanical properties with increasing collagen content, while wetting analysis indicated a hydrophilic surface with contact angle values between 17.61° and 75.51°. Maximum swelling occurred at pH 7.4, ranging from 5.65 g/g to 9.20 g/g and pH 8.5, with values from 4.74 g/g to 7.92 g/g, suggesting effective exudate absorption. In vitro degradation proved structural stability maintenance for at least one day, with more than 40% weight loss. Films presented a biphasic naproxen release profile with more than 75% of the drug released after 24 h, properly managing inflammation and pain on the first-day post-burn. The pH variation mimicking the stages of the healing process demonstrated the color transition from yellow (pH 5.5) to orange (pH 7.4) and finally to bright fuchsia (pH 8.5), enabling easy visual evaluation of the wound environment. Conclusions: New multifunctional films combine diagnostic and therapeutic functions, providing a promising platform for monitoring wound healing, making them suitable for real-time wound assessment. Full article
(This article belongs to the Special Issue Development of Specific Dosage Form: Wound Dressing)
Show Figures

Figure 1

18 pages, 3964 KiB  
Article
The Thermal and Mechanical Performance of Leather Waste-Filled Bio-Based Thermoplastic Polyurethane Composites
by Sara Naderizadeh, Anna Faggionato, Muhammad Umar Nazir, Rosario Mascolo, Mohammad Mahbubul Hassan, Emiliano Bilotti and James J. C. Busfield
Polymers 2025, 17(9), 1202; https://doi.org/10.3390/polym17091202 - 27 Apr 2025
Viewed by 773
Abstract
The leather tanning industry generates a substantial quantity of solid waste, which, in part, is discarded in the environment in landfills or incinerated. One alternative end-of-life solution is to manufacture engineered materials by forming composites with a thermoplastic polymer/binder. In this work, leather [...] Read more.
The leather tanning industry generates a substantial quantity of solid waste, which, in part, is discarded in the environment in landfills or incinerated. One alternative end-of-life solution is to manufacture engineered materials by forming composites with a thermoplastic polymer/binder. In this work, leather fibres (LFs) were melt-compounded into partially bio-based thermoplastic polyurethane (TPU), at leather fibre contents between 10 and 30% (TPU/LF), followed by compression moulding or 3D printing. The results showed that the incorporation of LF into the polymer matrix produced materials with a Young’s modulus comparable to that of leather. The melt extrusion processing influenced the polymer chain orientation and the resulting mechanical performance. The cyclic stress softening and abrasion resistance of the TPU/LF materials were evaluated to understand the potential of this material to be used in the footwear industry. The level of LF incorporation could be tailored to produce the specific targeted mechanical properties. This work demonstrates that LF could be used to produce materials with a high potential to be used in the fashion industry. Full article
(This article belongs to the Special Issue Sustainable Development of Advanced Polymer Composites)
Show Figures

Figure 1

18 pages, 10403 KiB  
Article
Silver Nanoparticle-Based Finishing for Leather Antimicrobial and UV Protection
by Claudia Cirillo, Mariagrazia Iuliano, Francesca Fierro, Claudia Florio, Gaetano Maffei, Andrea Loi, Todor Batakliev and Maria Sarno
Micromachines 2025, 16(4), 376; https://doi.org/10.3390/mi16040376 - 26 Mar 2025
Cited by 2 | Viewed by 714
Abstract
This study focuses on preparing and characterizing functionalized silver nanoparticle-based (Ag-F NPs) finishing agents for leather treatment. Ag-F NPs were synthesized and functionalized through a ligand exchange process with citric acid, enhancing their dispersion stability in aqueous media. The nanoparticles were incorporated into [...] Read more.
This study focuses on preparing and characterizing functionalized silver nanoparticle-based (Ag-F NPs) finishing agents for leather treatment. Ag-F NPs were synthesized and functionalized through a ligand exchange process with citric acid, enhancing their dispersion stability in aqueous media. The nanoparticles were incorporated into polyurethane- and nitroemulsion-based finishing formulations and applied to ovine and bovine leather via a spray coating process. Morphological (SEM, TEM), structural (XRD), thermal (TGA), and spectroscopic (FT-IR) analyses confirmed successful functionalization and uniform dispersion within the finishing layer. Leather samples treated with Ag-F NPs exhibited a significant improvement in antibacterial properties, with microbial growth reduction of up to 90% after 72 h. Additionally, accelerated aging tests demonstrated enhanced UV resistance, with a 30% lower color change (∆E) compared to control samples. The Ag-F NPs-based finishing layers also exhibited superior abrasion and micro-scratch resistance, maintaining a stable coefficient of friction over time. These findings demonstrate the potential of Ag-F NPs as multifunctional leather-finishing agents, making them highly suitable for applications in the automotive, footwear, and leather goods industries. Full article
(This article belongs to the Special Issue Metal Nanoparticles: Preparing and Advanced Applications)
Show Figures

Figure 1

19 pages, 4011 KiB  
Article
The Role of Crosslinking Agents in the Development of Collagen–Hydroxyapatite Composite Materials for Bone Tissue Engineering
by Alina Florentina Vladu, Madalina Georgiana Albu Kaya, Roxana Doina Truşcă, Ludmila Motelica, Vasile-Adrian Surdu, Ovidiu Cristian Oprea, Rodica Roxana Constantinescu, Bogdan Cazan, Denisa Ficai, Ecaterina Andronescu and Anton Ficai
Materials 2025, 18(5), 998; https://doi.org/10.3390/ma18050998 - 24 Feb 2025
Viewed by 1084
Abstract
The lack of bone grafts represents a major issue in the orthopedic field, reconstructive surgery, and dentistry. There are several bone conditions that often demand the use of grafts, such as fractures, infections, and bone cancer. The number of bone cancer cases increased [...] Read more.
The lack of bone grafts represents a major issue in the orthopedic field, reconstructive surgery, and dentistry. There are several bone conditions that often demand the use of grafts, such as fractures, infections, and bone cancer. The number of bone cancer cases increased in the past few decades and along with it, the need for bone grafting materials. To avoid the use of autografts and allografts there has been an increased interest towards synthetic grafts. This research aims to develop some collagen/hydroxyapatite (Coll/HAp) scaffolds cross-linked with three different agents that could be used in bone tissue engineering (BTE). These scaffolds were obtained with a freeze-drying method after the in situ formation of hydroxyapatite inside the collagen matrix. They were structurally and morphologically characterized and evaluated in terms of antimicrobial activity on E. coli and S. aureus bacterial strains. The results revealed that the scaffolds have porous structures with interconnected pores of suitable dimensions and well-distributed inorganic phases. Coll/HAp samples showed great antibacterial activity even without the use of typically used antibacterial agents. These findings allow us to conclude that these scaffolds are promising candidates for use in BTE and bone cancer treatment after the incorporation of specific antitumoral drugs. Full article
Show Figures

Figure 1

20 pages, 10627 KiB  
Article
Bone Fillers with Balance Between Biocompatibility and Antimicrobial Properties
by Bogdan Valeriu Sorca, Durmuş Alpaslan Kaya, Madalina Georgiana Albu Kaya, Marius Enachescu, Daniela-Madalina Ghetu, Laura-Bianca Enache, Iulian Boerasu, Alina Elena Coman, Laura Cristina Rusu, Rodica Constantinescu and Irina Titorencu
Biomimetics 2025, 10(2), 100; https://doi.org/10.3390/biomimetics10020100 - 10 Feb 2025
Viewed by 1373
Abstract
Millions of people request bone regeneration every year, and the market for bone grafting materials has a positive trend. The most used biomaterials applied to replace and regenerate bone are based on collagen and different types of ceramics in order to mimic natural [...] Read more.
Millions of people request bone regeneration every year, and the market for bone grafting materials has a positive trend. The most used biomaterials applied to replace and regenerate bone are based on collagen and different types of ceramics in order to mimic natural bone matrix. However, there are a lot of implant-associated infections after surgery, or the implants are rejected because of reduced biocompatibility, and this is why the research into graft bone materials is still a challenge. This study aims to develop and characterize novel biomimetic bone fillers which have simultaneously both antimicrobial properties and biocompatibility with human bone marrow—derived mesenchymal stem cells (BMSCs). Type I collagen and calcium triphosphate in a ratio of 1:1 were used as a control, according to our previous studies, and ZnO, functionalized with different percentages of Satureja thymbra L. essential oils, was added as an antimicrobial, promoting bone growth, mineralization, and formation. The bone fillers were obtained by freeze-drying in spongious forms and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), water uptake, biodegradability over time, antimicrobial activity against Staphylococcus aureus and Escherichia coli and viability and proliferation of human BMSCs. The graft material showed a higher porosity with interconnected pores, gradual resorption over time and a balance between antimicrobial properties and biocompatibility and was chosen as an ideal bone filler. Full article
Show Figures

Figure 1

19 pages, 8859 KiB  
Article
Nesting Process Automation in the Footwear Industry: A Hybrid Approach to Minimize Material Waste
by Eliseo Aguilar-Tortosa, Eduard-Andrei Duta-Costache, Elías Vera-Brazal, José-Luis Sánchez-Romero, José Francisco Gómez-Hernández, Antonio Jimeno-Morenilla and Antonio Maciá-Lillo
Appl. Sci. 2025, 15(1), 320; https://doi.org/10.3390/app15010320 - 31 Dec 2024
Cited by 1 | Viewed by 1278
Abstract
In any industry, maximizing the use of raw materials is essential to reduce waste and costs, which also positively impacts the environment. In footwear production, components are typically derived from cutting processes, requiring optimized systems to maximize the use of different materials, minimize [...] Read more.
In any industry, maximizing the use of raw materials is essential to reduce waste and costs, which also positively impacts the environment. In footwear production, components are typically derived from cutting processes, requiring optimized systems to maximize the use of different materials, minimize waste, and accelerate production. In this context, nesting is a technique that arranges shapes within a confined space to maximize area utilization and reduce unused space. As this problem is classified as NP-Hard, only algorithmic approximations can be employed. This paper focuses on optimizing the cutting of leather parts for shoe manufacturing. Footwear parts are cut from cattle hides, which are not only irregular in shape but also vary in resistance and quality across different areas of the same piece of leather. This study proposes automated nesting methods that aim to compete with current manual approaches, which are conducted exclusively by experts with deep knowledge of the characteristics of both the pieces and the leather, making the manual process time-intensive. This research reviews current methods and introduces hybrid ones, achieving up to 38.4× acceleration and up to 10.18% increase in nested pieces over manual methods. Full article
(This article belongs to the Special Issue Digital Technologies Enabling Modern Industries)
Show Figures

Figure 1

13 pages, 2107 KiB  
Article
The Effect of the Pyrolysis Temperature of a Leather–Textile Mixture from Post-Consumer Footwear on the Composition and Structure of Carbonised Materials
by Anna Kowalik-Klimczak, Monika Łożyńska, Maciej Życki and Bogusław Woźniak
Materials 2024, 17(22), 5649; https://doi.org/10.3390/ma17225649 - 19 Nov 2024
Cited by 1 | Viewed by 2268
Abstract
This paper presents an investigation into the use of pyrolysis to valorise solid waste in the form of post-consumer footwear uppers. A heterogenous leather and textile mixture is studied, produced by crushing some representative samples of post-consumer footwear uppers. The waste has a [...] Read more.
This paper presents an investigation into the use of pyrolysis to valorise solid waste in the form of post-consumer footwear uppers. A heterogenous leather and textile mixture is studied, produced by crushing some representative samples of post-consumer footwear uppers. The waste has a low ash content and a high net calorific value, which translates into the high gross calorific value of the material. In addition, it contains relatively little S and Cl, which is promising for its use in the process of pyrolysis. The effect of the pyrolysis temperature on the efficiency of carbonising leather and textile mixtures, their physico-chemical parameters, elemental composition, and structure, as well as the development of a specific surface, is investigated. The research results imply that as the pyrolysis temperature grows, the carbonisation efficiency declines. The produced materials consist primarily of C, O, N, and H, whose contents depend on the pyrolysis temperature. Moreover, all the carbonised materials display the presence of two G and D bands, which is typical for carbon materials. Based on the peak intensities of the bands, ID/IG coefficients are calculated to assess the organisation of the materials’ structures. As the pyrolysis temperature rises, the structural organisation declines, contributing to an increased material porosity and, thus, a greater specific surface of the carbonised materials. This study contributes data on the thermal management and pyrolysis of leather and textile waste into useful carbonised materials. Investigating the applicability of carbonised materials is projected as the next stage of research work. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

19 pages, 5118 KiB  
Article
Marine Resources Gels as Main Ingredient for Wound Healing Biomaterials: Obtaining and Characterization
by Alina Elena Coman, Maria Minodora Marin, Ana Maria Roșca, Madalina Georgiana Albu Kaya, Rodica Roxana Constantinescu and Irina Titorencu
Gels 2024, 10(11), 729; https://doi.org/10.3390/gels10110729 - 11 Nov 2024
Cited by 1 | Viewed by 1428
Abstract
The skin, known as the largest organ of the body, is essential for maintaining physiological balance and acts as a barrier against the external environment. When skin becomes damaged and wounds appear on the skin’s surface, a complex healing process, involving multiple types [...] Read more.
The skin, known as the largest organ of the body, is essential for maintaining physiological balance and acts as a barrier against the external environment. When skin becomes damaged and wounds appear on the skin’s surface, a complex healing process, involving multiple types of cells and microenvironments, take place. Selecting a suitable dressing for a wound is crucial for accelerating healing, reducing treatment costs, and improving the patient’s overall health. Starting from natural resources such as perch skin (P. fluviatilis), this article aims to develop biocompatible materials for regenerative medicine from collagen in the form of gels/gelatines. The extracted gels were physical/chemical and structurally analyzed. In order to obtain collagen scaffolds for wound healing, the extracted collagen gels from perch skin were further freeze-dried. The ability of these scaffolds is essential for controlling moisture levels during wound healing; therefore, it was necessary to investigate the samples’ ability to absorb water. The assessed collagen-based scaffolds were microbiologically tested, and their biocompatibility was investigated by incubating human adult dermal fibroblasts. The outcomes reveal an innovative path for the production of biomaterials used in wound healing, starting from collagen derived from marine sources. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Figure 1

12 pages, 1335 KiB  
Article
Eco-Friendly Alternatives in Leather Production: Performance of Biodegradable Alginate-Based Retanned Leather Compared to Conventional Leathers and Plant-Based Materials
by Ilaria Quaratesi, Elena Badea, Ioan Călinescu, Nima Pourrasoul Sardroudi, Gökhan Zengin, Concepció Casas and Anna Bacardit
Appl. Sci. 2024, 14(22), 10263; https://doi.org/10.3390/app142210263 - 7 Nov 2024
Cited by 1 | Viewed by 3266
Abstract
This study explores the development and characterization of biodegradable leather using alginate derivatives as sustainable tanning agents, aiming to reduce the environmental impact associated with traditional leather tanning processes. Alginate, a natural polysaccharide derived from brown algae, was modified through ultrasound treatment to [...] Read more.
This study explores the development and characterization of biodegradable leather using alginate derivatives as sustainable tanning agents, aiming to reduce the environmental impact associated with traditional leather tanning processes. Alginate, a natural polysaccharide derived from brown algae, was modified through ultrasound treatment to reduce viscosity and improve its application in leather tanning. This study investigated the use of sodium alginates as bio-based retanning agents, comparing their performance against that of conventional chromium-tanned and vegetable-tanned leathers, as well as synthetic alternatives such as leatherette, Piñatex®, and Desserto®. The physical, chemical, and thermal properties of the resulting leathers were assessed. The results demonstrated that alginate-based tanning agents could produce leather with comparable or superior properties to conventional and synthetic leathers, meeting the quality standards required for high-end footwear and leather goods. This research highlights the potential of alginate derivatives to serve as eco-friendly alternatives in the leather industry. The findings underscore the feasibility of integrating bio-based materials into industrial applications, promoting environmental conservation and resource efficiency. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

16 pages, 20417 KiB  
Article
Characterization of Mixtures Based on High-Density Polyethylene and Plasticized Starch
by Maria Daniela Stelescu, Ovidiu-Cristian Oprea, Doina Constantinescu, Ludmila Motelica, Anton Ficai, Roxana-Doina Trusca, Maria Sonmez, Dana Florentina Gurau, Mihai Georgescu, Rodica Roxana Constantinescu, Bogdan-Stefan Vasile and Denisa Ficai
Polymers 2024, 16(21), 3051; https://doi.org/10.3390/polym16213051 - 30 Oct 2024
Cited by 1 | Viewed by 1636
Abstract
This paper presents the obtaining and characterization of blends based on high-density polyethylene (HDPE) and plasticized starch. In addition to plasticized starch (28.8% w/w), the compositions made also contained other ingredients, such as polyethylene-graft-maleic anhydride as a compatibilizer, ethylene propylene [...] Read more.
This paper presents the obtaining and characterization of blends based on high-density polyethylene (HDPE) and plasticized starch. In addition to plasticized starch (28.8% w/w), the compositions made also contained other ingredients, such as polyethylene-graft-maleic anhydride as a compatibilizer, ethylene propylene terpolymer elastomer, cross-linking agents, and nanoclay. Plasticized starch contains 68.6% w/w potato starch, 29.4% w/w glycerin, and 2% w/w anhydrous citric acid. Blends based on HDPE and plasticized starch were made in a Brabender Plasti-Corder internal mixer at 160 °C, and plates for testing were obtained using the compression method. Thermal analyses indicate an increase in the crystallization degree of the HDPE after the addition of plasticized starch. SEM micrographs indicate that blends are compatibilized, with the plasticized starch being well dispersed as droplets in the HDPE matrix. Samples show high hardness values (62–65° ShD), good tensile strength values (14.88–17.02 N/mm2), and Charpy impact strength values (1.08–2.27 kJ/m2 on notched samples, and 7.96–20.29 kJ/m2 on unnotched samples). After 72 h of water immersion at room temperature, mixtures containing a compatibilizer had a mass variation below 1% and water absorption values below 1.7%. Upon increasing the water immersion temperature to 80 °C, the sample without the compatibilizer showed a mass reduction of −2.23%, indicating the dissolution of the plasticized starch in the water. The samples containing the compatibilizer had a mass variation of max 8.33% and a water absorption of max 5.02%. After toluene immersion for 72 h at room temperature, mass variation was below 8%. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

29 pages, 15446 KiB  
Article
New Antimicrobial Materials Based on Plasticized Polyvinyl Chloride for Urinary Catheters: Preparation and Testing
by Iuliana Mihaela Deleanu, Elena Grosu, Anton Ficai, Lia Mara Ditu, Ludmila Motelica, Ovidiu-Cristian Oprea, Gratiela Gradisteanu Pircalabioru, Maria Sonmez, Cristina Busuioc, Robert Ciocoiu and Vasile Iulian Antoniac
Polymers 2024, 16(21), 3028; https://doi.org/10.3390/polym16213028 - 29 Oct 2024
Viewed by 2338
Abstract
Given the constant increased number of nosocomial infections in hospitals, especially associated with prolonged usage of inserted medical devices, our work aims to ameliorate clinical experience and promote faster healing of patients undergoing urinary catheterization by improving the properties of medical devices materials. [...] Read more.
Given the constant increased number of nosocomial infections in hospitals, especially associated with prolonged usage of inserted medical devices, our work aims to ameliorate clinical experience and promote faster healing of patients undergoing urinary catheterization by improving the properties of medical devices materials. Within this research, nine different composites were prepared based on polyvinyl chloride, using three different plasticizers (di-(2-ethylhexyl) phthalate, Proviplast 2646, and Proviplast 2755), and two different antimicrobial additives containing silver nanoparticles. The prepared materials were analyzed, and their physicochemical properties were determined: water absorption, relative density, plasticizer migration, hydrophobicity/hydrophilicity by contact angle measurement, Shore A hardness, tensile strength, and elongation at break. Structure and morphology were also investigated by means of FTIR, SEM, and EDX analyses, and thermal (TG-DSC) and biological properties were evaluated. The most important aspects of obtained results are showing that plasticizer migration was significantly reduced (to almost zero) and that the usage of antimicrobial additives improved the materials’ biocompatibility. Thus, based on the concluded favorable properties, the obtained materials can be further used for catheter development. Pressure–flow studies for different sizes and configurations are the next steps toward advanced in vivo and clinical trials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

15 pages, 5717 KiB  
Article
Topical Biocomposites Based on Collagen, Hyaluronic Acid and Metronidazole as Periodontitis Treatment
by Madalina Georgiana Albu Kaya, Alice Geanina Simonca, Ileana Rau, Alina Elena Coman, Minodora Maria Marin, Lacramioara Popa, Roxana Trusca, Cristina-Elena Dinu-Pirvu and Mihaela Violeta Ghica
Pharmaceuticals 2024, 17(10), 1336; https://doi.org/10.3390/ph17101336 - 7 Oct 2024
Cited by 1 | Viewed by 1560
Abstract
Background: It is well known that periodontitis affects the gums and surrounding connective tissue. The chronic inflammatory response induced by bacteria in the gingival tissue leads to the loss of the collagen connection between the tooth and the bone and ultimately to bone [...] Read more.
Background: It is well known that periodontitis affects the gums and surrounding connective tissue. The chronic inflammatory response induced by bacteria in the gingival tissue leads to the loss of the collagen connection between the tooth and the bone and ultimately to bone loss. Methods: In this context, the aim of this research was the obtaining and characterization of a drug release supports in the form of sponges based on collagen, hyaluronic acid as a support and metronidazole as an antibiotic for the treatment of periodontitis. The sponges were characterized by FT-IR spectroscopy, water uptake, contact angle, SEM microscopy, in vitro metronidazole release analysis from sponges and data modeling. Results: The results showed that all the sponges had a porous structure with interconnected pores, the pore sizes being influenced by hyaluronic acid and metronidazole; the spongious structure became much more dense for samples with metronidazole content. All metronidazole-loaded sponges showed good surface wettability and an adequate swelling capacity for a suitable antimicrobial release at the periodontal pocket. The porous structures allow a controlled release, fast in the first hour, essential to control the initial microbial load at the periodontal level, which continues slowly in the following hours to ensure an effective treatment of periodontitis. Conclusions: Correlating all physical–chemical and bio-pharmaceutical results obtained, a promising solution for periodontitis treatment could be a met-ronidazole–collagen–hyaluronic system consisting of 1% collagen, 1.5% metronidazole and 0.8% hyaluronic acid, and in vitro and in vivo tests are recommended to continue studies. Full article
(This article belongs to the Special Issue Development of Specific Dosage Form: Wound Dressing)
Show Figures

Figure 1

19 pages, 13812 KiB  
Article
Structural and Thermal Characterization of Some Thermoplastic Starch Mixtures
by Maria Daniela Stelescu, Ovidiu-Cristian Oprea, Maria Sonmez, Anton Ficai, Ludmila Motelica, Denisa Ficai, Mihai Georgescu and Dana Florentina Gurau
Polysaccharides 2024, 5(4), 504-522; https://doi.org/10.3390/polysaccharides5040032 - 24 Sep 2024
Cited by 5 | Viewed by 2455
Abstract
The paper presents the production of thermoplastic starch (TPS) mixtures using potato starch and two types of plasticizers: glycerol and sorbitol. The effects of plasticizers, citric acid, organically modified montmorillonite clay nanofiller (OMMT) and an additive based on ultrahigh molecular weight siloxane polymer [...] Read more.
The paper presents the production of thermoplastic starch (TPS) mixtures using potato starch and two types of plasticizers: glycerol and sorbitol. The effects of plasticizers, citric acid, organically modified montmorillonite clay nanofiller (OMMT) and an additive based on ultrahigh molecular weight siloxane polymer on the structure and physical–mechanical and thermal properties of TPS samples were analysed. Starch mixtures plasticized with glycerol were obtained, where the starch/glycerol mass ratio was 70:30, as well as starch mixtures plasticized with glycerol and sorbitol, with a starch/glycerol/sorbitol mass ratio of 60:20:20. The starch gelatinization process to obtain TPS was carried out in a Brabender Plasti-Corder internal mixer at 120 °C, with a mixing speed of 30–80 rpm, for 10 min. The obtained results indicate that by adding 2% (weight percentage) of citric acid to the TPS mixtures, there is an improvement in the physical–mechanical properties, as well as structural changes that can indicate both cross-linking reactions by esterification in stages and depolymerisation reactions. The sample of TPS plasticized with glycerol, which contains OMMT, shows an increase in tensile strength by 34.4%, compared to the control sample. Full article
Show Figures

Figure 1

37 pages, 14965 KiB  
Article
Development, Testing, and Thermoforming of Thermoplastics Reinforced with Surface-Modified Aramid Fibers for Cover of Electronic Parts in Small Unmanned Aerial Vehicles Using 3D-Printed Molds
by Maria Sonmez, Cristina-Elisabeta Pelin, George Pelin, Bogdan Rusu, Adriana Stefan, Maria Daniela Stelescu, Madalina Ignat, Dana Gurau, Mihai Georgescu, Mihaela Nituica, Ovidiu-Cristian Oprea, Ludmila Motelica, Bartłomiej Waśniewski, Paweł Ortyl and Roxana Doina Trușcă
Polymers 2024, 16(15), 2136; https://doi.org/10.3390/polym16152136 - 27 Jul 2024
Cited by 7 | Viewed by 2785
Abstract
This paper presents the development, characterization, and testing of PP/PE-g-MA composites with 10 and 15 wt% surface-modified aramid fibers, and aluminum-based pigment, as covers for a small drone body for collision protection. The successful fiber surface modification with SiO2 by the sol–gel [...] Read more.
This paper presents the development, characterization, and testing of PP/PE-g-MA composites with 10 and 15 wt% surface-modified aramid fibers, and aluminum-based pigment, as covers for a small drone body for collision protection. The successful fiber surface modification with SiO2 by the sol–gel method using TEOS was confirmed by FTIR, SEM, and EDS analyses. The composites were characterized by FTIR and SEM analyses and surface energy and water contact angle measurements and tested in terms of tensile, flexural, impact, and thermal properties. The materials exhibited hydrophobic character and compact and uniform morphostructures, with increased surface energy with fiber content owed to improved adhesion between modified fibers and the matrix. Compared to the control sample, composites with modified fibers showed an increase by 20% in tensile strength, and 36–52% in the modulus, and an increase by 26–33% in flexural strength and 30–47% in the modulus, with higher values at room temperature. Impact resistance of modified fiber composites showed an increase by 20–40% compared to the control sample, due to improved interaction between SiO2-modified fibers and maleic anhydride, which inhibits crack formation, allowing higher energies’ absorption. The composites were vacuum-thermoformed on 3D-printed molds as a two-part cover for the body of a drone, successfully withstanding the flight test. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop