Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (521)

Search Parameters:
Keywords = leakage mitigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1870 KB  
Article
Symbiotic Fungus Serendipita indica as a Natural Bioenhancer Against Cadmium Toxicity in Chinese Cabbage
by Akram Rahbari, Behrooz Esmaielpour, Rasoul Azarmi, Hamideh Fatemi, Hassan Maleki Lajayer, Sima Panahirad, Gholamreza Gohari and Federico Vita
Plants 2025, 14(17), 2773; https://doi.org/10.3390/plants14172773 - 4 Sep 2025
Abstract
Heavy metal toxicity, particularly cadmium (Cd), poses a growing threat to agriculture and human health due to its persistence and high solubility, which facilitates its entry into the food chain. Among the strategies proposed to reduce Cd toxicity in plants and the environment, [...] Read more.
Heavy metal toxicity, particularly cadmium (Cd), poses a growing threat to agriculture and human health due to its persistence and high solubility, which facilitates its entry into the food chain. Among the strategies proposed to reduce Cd toxicity in plants and the environment, the use of beneficial microorganisms, such as endophytic fungi, has gained attention due to its effectiveness and eco-friendliness. This study investigates the potential of the root-colonizing fungus Serendipita indica (formerly Piriformospora indica) to mitigate cadmium (Cd) stress in Chinese cabbage (Brassica rapa L. subsp. Pekinensis) grown hydroponically under varying Cd concentrations (0, 1, 3, and 4 mM). Several parameters were assessed, including morphological traits, physiological and biochemical responses, and changes in leaf composition. Exposure to Cd significantly reduced plant growth, increased membrane electrolyte leakage, and decreased relative water content and root colonization, while enhancing antioxidant enzyme activities and the accumulation of phenolics, flavonoids, proline, glycine betaine, and carbohydrates. Notably, plants treated with S. indica showed improved tolerance to Cd stress, indicating the potential of the fungus. These findings suggest that S. indica can enhance plant resilience in Cd-contaminated environments and may offer a promising biological strategy for sustainable crop production under heavy metal stress. Full article
(This article belongs to the Special Issue Impact of Biostimulants on Plant Growth and Nutrient Uptake)
Show Figures

Figure 1

15 pages, 3389 KB  
Article
Preparation, Performance Research and Field Application Practice of Temperature-Sensitive Lost Circulation Material for Shale Oil Wells
by Wenzhe Zhang, Jinsheng Sun, Feng Shen, Wei Li, Xianbin Huang, Kaihe Lv, Meichun Li, Shaofei Xue, Shiyu Wang and Hongmei Li
Polymers 2025, 17(17), 2395; https://doi.org/10.3390/polym17172395 - 2 Sep 2025
Viewed by 190
Abstract
Drilling fluid losses into formation voids are among the major issues that lead to increases in the costs and nonproductive time of operations. Lost circulation materials have been widely used to stop or mitigate losses. In most cases, the size of the loss [...] Read more.
Drilling fluid losses into formation voids are among the major issues that lead to increases in the costs and nonproductive time of operations. Lost circulation materials have been widely used to stop or mitigate losses. In most cases, the size of the loss zone is not known, making conventional lost circulation materials unsuitable for plugging the loss zone. In this study, novel temperature-sensitive LCM (TS-LCM) particles composed of diglycidyl ether of bisphenol A (DGEBA) and 4,4′-diaminodiphenyl methane were prepared. It is a thermal-response shape-memory polymer. The molecular structure was analyzed by Fourier transform infrared spectroscopy. The glass transition temperature (Tg) was tested by Different scanning calorimetry (DSC). The shape-memory properties were evaluated by a bend-recovery test instrument. The expansion and mechanical properties of particles were investigated under high temperature and high pressure. Fracture sealing testing apparatus was used to evaluate sealing performance. The mechanism of sealing fracture was discussed. Research results indicated that the Tg of the TS-LCM was 70.24 °C. The shape fixation ratio was more than 99% at room temperature, and the shape recovery ratio was 100% above the Tg. The particle was flaky before activation. It expanded to a cube shape, and the thickness increased when activated. The rate of particle size increase for D90 was more than 60% under 120 °C and 20 MPa. The activated TS-LCM particles had high crush strength. The expansion of the TS-LCM particles could self-adaptively bridge and seal the fracture without knowing the width. The addition of TS-LCM particles could seal the tapered slot with entrance widths of 2 mm, 3 mm and 4 mm without changing the lost circulation material formulation. The developed TS-LCM has good compatibility with local saltwater-based drilling fluid. In field tests in the Yan’an area of the Ordos Basin, 15 shale oil horizontal wells were plugged with excellent results. The equivalent circulating density of drilling fluid leakage increased by an average of 0.35 g/cm3, and the success rate of plugging malignant leakage increased from 32% to 82.5%. The drilling cycle was shortened by an average of 14.3%, and the effect of enhancing the pressure-bearing capacity of the well wall was significant. The prepared TS-LCM could cure fluid loss in a fractured formation efficiently. It has good prospects for promotion. Full article
Show Figures

Figure 1

18 pages, 3056 KB  
Article
A Practical 1D Approach for Real-Time Prediction of Argon Flow and Pressure in Continuous Casting of Steel
by Hyunjin Yang, Bong-Min Jin, Hyeonjin Kim, Seungwon Seo and Seunghyun Sim
Metals 2025, 15(9), 978; https://doi.org/10.3390/met15090978 - 1 Sep 2025
Viewed by 191
Abstract
The pressure and flow rate of an argon line embedded within a stopper rod serve as useful industrial indicators and control factors for mitigating air aspiration into the Submerged Entry Nozzle (SEN) during the continuous casting of steel. This manuscript investigates several challenges [...] Read more.
The pressure and flow rate of an argon line embedded within a stopper rod serve as useful industrial indicators and control factors for mitigating air aspiration into the Submerged Entry Nozzle (SEN) during the continuous casting of steel. This manuscript investigates several challenges associated with interpreting monitored argon line pressures and gas flow rates, including variations in gas pressure during delivery, actual volumes of gas entering the nozzle, argon leakage, and air aspiration. To address these issues, a new one-dimensional (1D) analytical model of compressible argon flow in the stopper rod was developed, incorporating gas dynamics and heat transfer. This concise 1D model was validated using data from a continuous casting simulator (CCS) employing a low-melting-point Bi-Sn alloy (melting point 137 °C). Pilot trials were conducted to replicate various industrial casting scenarios, generating datasets for model validation and demonstration of real-time operation. The 1D model predictions were compared with those from a CFD-based compressible flow model under CCS operating conditions. Following validation, parametric studies were conducted to explore realistic industrial scenarios (e.g., gas flow rate < 5 SLPM, nozzle diameter < 5 mm), including extreme conditions such as air aspiration and choking: a critical nozzle diameter (1.223 mm) corresponds to choked flow, limiting the maximum achievable gas flow rate to 5 SLPM. Additionally, the real-time prediction capabilities of the model were demonstrated using measured argon line pressures and flow rates from CCS trials. The proposed 1D model thus provides a practical tool for accurately interpreting SEN flow conditions from monitored argon pressures and effectively estimating argon bubble injection by clarifying actual gas pressures and flow rates at the stopper injection point. Full article
Show Figures

Graphical abstract

25 pages, 7721 KB  
Article
Advanced Research and Engineering Application of Tunnel Structural Health Monitoring Leveraging Spatiotemporally Continuous Fiber Optic Sensing Information
by Gang Cheng, Ziyi Wang, Gangqiang Li, Bin Shi, Jinghong Wu, Dingfeng Cao and Yujie Nie
Photonics 2025, 12(9), 855; https://doi.org/10.3390/photonics12090855 - 26 Aug 2025
Viewed by 428
Abstract
As an important traffic and transportation roadway, tunnel engineering is widely used in important fields such as highways, railways, water conservancy, subways and mining. It is limited by complex geological conditions, harsh construction environments and poor robustness of the monitoring system. If the [...] Read more.
As an important traffic and transportation roadway, tunnel engineering is widely used in important fields such as highways, railways, water conservancy, subways and mining. It is limited by complex geological conditions, harsh construction environments and poor robustness of the monitoring system. If the construction process and monitoring method are not properly designed, it will often directly induce disasters such as tunnel deformation, collapse, leakage and rockburst. This seriously threatens the safety of tunnel construction and operation and the protection of the regional ecological environment. Therefore, based on distributed fiber optic sensing technology, the full–cycle spatiotemporally continuous sensing information of the tunnel structure is obtained in real time. Accordingly, the health status of the tunnel is dynamically grasped, which is of great significance to ensure the intrinsic safety of the whole life cycle for the tunnel project. Firstly, this manuscript systematically sorts out the development and evolution process of the theory and technology of structural health monitoring in tunnel engineering. The scope of application, advantages and disadvantages of mainstream tunnel engineering monitoring equipment and main optical fiber technology are compared and analyzed from the two dimensions of equipment and technology. This provides a new path for clarifying the key points and difficulties of tunnel engineering monitoring. Secondly, the mechanism of action of four typical optical fiber sensing technologies and their application in tunnel engineering are introduced in detail. On this basis, a spatiotemporal continuous perception method for tunnel engineering based on DFOS is proposed. It provides new ideas for safety monitoring and early warning of tunnel engineering structures throughout the life cycle. Finally, a high–speed rail tunnel in northern China is used as the research object to carry out tunnel structure health monitoring. The dynamic changes in the average strain of the tunnel section measurement points during the pouring and curing period and the backfilling period are compared. The force deformation characteristics of different positions of tunnels in different periods have been mastered. Accordingly, scientific guidance is provided for the dynamic adjustment of tunnel engineering construction plans and disaster emergency prevention and control. At the same time, in view of the development and upgrading of new sensors, large models and support processes, an innovative tunnel engineering monitoring method integrating “acoustic, optical and electromagnetic” model is proposed, combining with various machine learning algorithms to train the long–term monitoring data of tunnel engineering. Based on this, a risk assessment model for potential hazards in tunnel engineering is developed. Thus, the potential and disaster effects of future disasters in tunnel engineering are predicted, and the level of disaster prevention, mitigation and relief of tunnel engineering is continuously improved. Full article
(This article belongs to the Special Issue Advances in Optical Sensors and Applications)
Show Figures

Figure 1

14 pages, 3301 KB  
Article
Optimized and Reliable Protoplast Isolation for Transient Gene Expression Studies in the Gymnosperm Tree Species Pinus densiflora
by Tram Thi Thu Nguyen, Na-Young Choi, Seung-Won Pyo, Young-Im Choi and Jae-Heung Ko
Forests 2025, 16(9), 1373; https://doi.org/10.3390/f16091373 - 26 Aug 2025
Viewed by 322
Abstract
Efficient protoplast isolation and gene transfection remain significant challenges in gymnosperms, particularly in Pinus species, where stable transformation is highly limited. Conventional pine protoplast preparation methods have resulted in extremely low transfection efficiencies, hindering functional genomic studies. This study presents an optimized method [...] Read more.
Efficient protoplast isolation and gene transfection remain significant challenges in gymnosperms, particularly in Pinus species, where stable transformation is highly limited. Conventional pine protoplast preparation methods have resulted in extremely low transfection efficiencies, hindering functional genomic studies. This study presents an optimized method for isolating high-yield, viable protoplasts from Pinus densiflora (Korean red pine), providing a robust system for transient gene expression assays. Splitting one-month-old cotyledons produced the highest mesophyll protoplast yield (5.0 × 106 cells/g FW), which further increased to 1.2 × 107 cells/g FW after optimizing the enzyme mixture (4.5% cellulase, 0.7% pectinase, 3% hemicellulase), maintaining viability above 86%. Developing xylem and whole-stem protoplasts were also successfully isolated by mitigating resin leakage and debris contamination, with a 17% sucrose gradient yielding 7.4 × 104 cells/g FW at 81.9% viability. Overcoming prior inefficiencies, this protocol significantly enhances gene transfection efficiency, achieving 94.1% GFP transformation with 82.9% viability. Furthermore, transient activation assays confirmed strong activation of pine-derived reporters by native effectors, underscoring the assay’s suitability for studying gymnosperm-specific gene regulation. Given the limited stable transformation strategies available for Pinus species, this optimized protoplast transient gene expression system provides a practical and reliable platform for transient gene expression analysis, offering valuable opportunities for studying gene function and regulation in gymnosperms. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

19 pages, 6650 KB  
Article
Protective Effect of Low 2-O, 3-O Desulfated Heparin (ODSH) Against LPS-Induced Acute Lung Injury in Mice
by Joyce Gonzales, Rahul S. Patil, Thomas P. Kennedy, Nagavedi S. Umapathy, Rudolf Lucas and Alexander D. Verin
Biomolecules 2025, 15(9), 1232; https://doi.org/10.3390/biom15091232 - 26 Aug 2025
Viewed by 403
Abstract
Background: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), are critical conditions lacking effective pharmacologic therapies. Lipopolysaccharide (LPS), a bacterial endotoxin, is a well-established trigger of ALI. Emerging evidence suggests that heparin derivatives may attenuate lung injury, but [...] Read more.
Background: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), are critical conditions lacking effective pharmacologic therapies. Lipopolysaccharide (LPS), a bacterial endotoxin, is a well-established trigger of ALI. Emerging evidence suggests that heparin derivatives may attenuate lung injury, but their mechanisms remain unclear. Methods: This study evaluated the protective effects of 2-O, 3-O desulfated heparin (ODSH) in a murine model of LPS-induced ALI. Mice received LPS intratracheally with or without ODSH pre-treatment. Lung injury was assessed by bronchoalveolar lavage fluid (BALF) analysis, Evans blue dye albumin EBDA) extravasation, and histopathology. Results: ODSH treatment significantly reduced BALF protein concentration, inflammatory cell infiltration, and EBDA leakage. ODSH preserved endothelial barrier function in vitro, as evidenced by transendothelial electrical resistance (TER) measurements in human lung microvascular endothelial cell (HLMVEC) monolayers. Histological assessment (H&E staining) and myeloperoxidase (MPO) staining demonstrated reduced lung injury and neutrophil infiltration in the ODSH group. ODSH also downregulated pro-inflammatory mediators (NF-κB, IL-6, p38 MAPK) and upregulated the anti-inflammatory cytokine IL-10. Conclusions: ODSH mitigates LPS-induced ALI by reducing vascular permeability, neutrophilic inflammation, and pro-inflammatory signaling while enhancing IL-10 expression. These findings suggest ODSH may offer a novel therapeutic approach for treating ALI. Full article
(This article belongs to the Special Issue Lung Disease: From Molecular Mechanism to Therapeutic Opportunities)
Show Figures

Figure 1

17 pages, 1101 KB  
Article
Exogenous Dopamine Alleviates Combined High Temperature and Drought Stress in Loquat [Eriobotrya japonica (Thunb.) Lindl.] Seedlings: Improvements in Photosynthetic Efficiency, Oxidative Damage and Osmotic Regulation
by Xian Luo, Ya Luo, Xiao-Li Wang, Xiao-Mei Kong, Hui-Fen Zhang, Li-Jin Lin, Yu-Xing Li, Ke-Wen Huang, Qun-Xian Deng and Yong-Xia Jia
Plants 2025, 14(17), 2650; https://doi.org/10.3390/plants14172650 - 26 Aug 2025
Viewed by 380
Abstract
In recent years, high temperature and drought have severely impacted the growth and development of loquat [Eriobotrya japonica (Thunb.) Lindl.] plants. Although dopamine can improve the stress resistance of plants, its role in combined stress requires further exploration. This study investigated the [...] Read more.
In recent years, high temperature and drought have severely impacted the growth and development of loquat [Eriobotrya japonica (Thunb.) Lindl.] plants. Although dopamine can improve the stress resistance of plants, its role in combined stress requires further exploration. This study investigated the alleviative effect and mechanism of exogenous dopamine on loquat seedlings subjected to the combined stress of high temperature and drought. The combined stress significantly reduced root viability, photosynthetic pigment content, and net photosynthetic rate (Pn) while markedly increasing reactive oxygen species (ROS) levels, thiobarbituric acid-reactive substances (TBARS) content, and electrolyte leakage (EL). The seedlings exhibited pronounced wilting symptoms, along with markedly reduced root surface area and volume. Dopamine treatment significantly alleviated combined stress-induced damage. This mitigation was manifested through substantially enhanced root viability, photosynthetic pigment content, Pn, antioxidant enzyme activities, and osmotic adjustment substances concomitantly with marked reductions in ROS, TBARS content, and EL. Dopamine significantly reduced seedling wilting severity and improved root morphological parameters. This study demonstrates that dopamine enhances loquat seedlings’ tolerance to combined stress through coordinated mechanisms: maintaining photosynthetic pigments and improving stomatal conductance to sustain photosynthetic efficiency, enhancing antioxidant enzyme activity and ROS scavenging capacity to mitigate oxidative damage, and promoting osmotic solute accumulation for osmotic potential regulation. Full article
(This article belongs to the Special Issue Integrated Quality Regulation in Horticultural Crops)
Show Figures

Figure 1

31 pages, 3129 KB  
Review
A Review on Gas Pipeline Leak Detection: Acoustic-Based, OGI-Based, and Multimodal Fusion Methods
by Yankun Gong, Chao Bao, Zhengxi He, Yifan Jian, Xiaoye Wang, Haineng Huang and Xintai Song
Information 2025, 16(9), 731; https://doi.org/10.3390/info16090731 - 25 Aug 2025
Viewed by 559
Abstract
Pipelines play a vital role in material transportation within industrial settings. This review synthesizes detection technologies for early-stage small gas leaks from pipelines in the industrial sector, with a focus on acoustic-based methods, optical gas imaging (OGI), and multimodal fusion approaches. It encompasses [...] Read more.
Pipelines play a vital role in material transportation within industrial settings. This review synthesizes detection technologies for early-stage small gas leaks from pipelines in the industrial sector, with a focus on acoustic-based methods, optical gas imaging (OGI), and multimodal fusion approaches. It encompasses detection principles, inherent challenges, mitigation strategies, and the state of the art (SOTA). Small leaks refer to low flow leakage originating from defects with apertures at millimeter or submillimeter scales, posing significant detection difficulties. Acoustic detection leverages the acoustic wave signals generated by gas leaks for non-contact monitoring, offering advantages such as rapid response and broad coverage. However, its susceptibility to environmental noise interference often triggers false alarms. This limitation can be mitigated through time-frequency analysis, multi-sensor fusion, and deep-learning algorithms—effectively enhancing leak signals, suppressing background noise, and thereby improving the system’s detection robustness and accuracy. OGI utilizes infrared imaging technology to visualize leakage gas and is applicable to the detection of various polar gases. Its primary limitations include low image resolution, low contrast, and interference from complex backgrounds. Mitigation techniques involve background subtraction, optical flow estimation, fully convolutional neural networks (FCNNs), and vision transformers (ViTs), which enhance image contrast and extract multi-scale features to boost detection precision. Multimodal fusion technology integrates data from diverse sensors, such as acoustic and optical devices. Key challenges lie in achieving spatiotemporal synchronization across multiple sensors and effectively fusing heterogeneous data streams. Current methodologies primarily utilize decision-level fusion and feature-level fusion techniques. Decision-level fusion offers high flexibility and ease of implementation but lacks inter-feature interaction; it is less effective than feature-level fusion when correlations exist between heterogeneous features. Feature-level fusion amalgamates data from different modalities during the feature extraction phase, generating a unified cross-modal representation that effectively resolves inter-modal heterogeneity. In conclusion, we posit that multimodal fusion holds significant potential for further enhancing detection accuracy beyond the capabilities of existing single-modality technologies and is poised to become a major focus of future research in this domain. Full article
Show Figures

Figure 1

25 pages, 7866 KB  
Article
Sowing Methods and Strigolactones Alleviate Damage to the Photosynthetic System of Rice Seedlings Under Salt Stress by Enhancing Antioxidant Capacity
by Shaobiao Duan, Liming Zhao, Weinan Chen, Qicheng Zhang, Jiangyuan Ya, Wenji Zhong, Qianqian Shang, Jinji Tu, Hongtao Xiang, Jianqin Zhang and Junhua Zhang
Antioxidants 2025, 14(8), 1020; https://doi.org/10.3390/antiox14081020 - 20 Aug 2025
Viewed by 453
Abstract
Seedling cultivation of rice (Oryza sativa L.) is a critical initial step in rice production. This study investigated the effects of sowing methods and strigolactone (GR24) on rice seedlings under salt stress. Results showed that drill-sown seedlings exhibited superior quality under normal [...] Read more.
Seedling cultivation of rice (Oryza sativa L.) is a critical initial step in rice production. This study investigated the effects of sowing methods and strigolactone (GR24) on rice seedlings under salt stress. Results showed that drill-sown seedlings exhibited superior quality under normal conditions compared to broadcast-sown seedlings. Salt stress significantly increased the contents of Cl, Na+, reactive oxygen species (ROS), and malondialdehyde (MDA), disrupted chloroplast structure and hormonal balance, and reduced gas exchange parameters and chlorophyll fluorescence parameters. Notably, drill-sowing conferred stronger salt tolerance than broadcast-sowing. Exogenous application of GR24 enhanced activities of antioxidant enzymes—including superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT)—and elevated non-enzymatic antioxidant contents such as ascorbic acid (ASA), glutathione (GSH), total phenolics, and flavonoids, alongside related enzyme activities. Concurrently, GR24 reduced Na+ and Cl accumulation, lowered the Na+/K+ ratio, and increased the contents of K+, Ca2+, Mg2+, and hormones. Consequently, GR24 decreased MDA and ROS levels, protected membrane integrity, reduced electrolyte leakage, repaired chloroplast structure, and improved gas exchange and chlorophyll fluorescence parameters. Due to their superior spatial distribution and photosynthetic efficiency, drill-sown seedlings synergized with GR24 to enhance antioxidant capacity under salt stress, enabling more effective scavenging of peroxidative radicals, stabilization of the photosynthetic system, and mitigation of salt-induced growth inhibition. Ultimately, this combination demonstrated greater stress alleviation than broadcast-sown seedlings. Full article
Show Figures

Figure 1

12 pages, 3318 KB  
Article
Influence of the Inducer on the Performance of a Miniature High-Speed Centrifugal Pump
by Yifu Hou, Xiaonian Zeng and Yuchuan Wang
Micromachines 2025, 16(8), 952; https://doi.org/10.3390/mi16080952 - 19 Aug 2025
Viewed by 442
Abstract
The inclusion of an inducer is an effective approach to improve the cavitation performance of centrifugal pumps, significantly influencing both the internal flow characteristics and the external performance of the pumps. This study examines a miniature high-speed centrifugal pump (MHCP) using numerical simulations [...] Read more.
The inclusion of an inducer is an effective approach to improve the cavitation performance of centrifugal pumps, significantly influencing both the internal flow characteristics and the external performance of the pumps. This study examines a miniature high-speed centrifugal pump (MHCP) using numerical simulations based on the k-ε turbulence model, comparing the cases with an inducer and without one. Experimental tests on the pump’s external performance are conducted and flow visualization images are presented to validate the findings. The effects of the inducer on the tip leakage backflow, cavitation performance, and external pump performance are analyzed. The results show that the inducer provides pre-pressurization of the fluid, leading to a higher circumferential velocity at the impeller inlet and a reduced inlet flow angle. This allows for a reduction in the impeller blade inlet angle, resulting in smoother flow streamlines inside the impeller. Moreover, the inducer helps to suppress local low-pressure regions caused by the vortex and cavities generated by the interaction between the tip clearance backflow and the main flow, thereby mitigating cavitation in the non-blade zone. Within the investigated operating range, the pump with an inducer exhibits a significantly improved external hydraulic performance, including an increased head and efficiency, a reduced required net positive suction head (NPSHr), and a broader stable operating range. Full article
Show Figures

Figure 1

28 pages, 861 KB  
Review
Role of Plant-Derived Smoke Solution on Plants Under Stress
by Amana Khatoon, Muhammad Mudasar Aslam and Setsuko Komatsu
Int. J. Mol. Sci. 2025, 26(16), 7911; https://doi.org/10.3390/ijms26167911 - 16 Aug 2025
Viewed by 375
Abstract
Plants are constantly exposed to various environmental challenges, such as drought, flooding, heavy metal toxicity, and pathogen attacks. To cope with these stresses, they employ several adaptive strategies. This review highlights the potential of plant-derived smoke (PDS) solution as a natural biostimulant for [...] Read more.
Plants are constantly exposed to various environmental challenges, such as drought, flooding, heavy metal toxicity, and pathogen attacks. To cope with these stresses, they employ several adaptive strategies. This review highlights the potential of plant-derived smoke (PDS) solution as a natural biostimulant for improving plant health and resilience, contributing to both crop productivity and ecological restoration under abiotic and biotic stress conditions. Mitigating effects of PDS solution against various stresses were observed at morphological, physiological, and molecular levels in plants. PDS solution application involves strengthening the cell membrane by minimizing electrolyte leakage, which enhances cell membrane stability and stomatal conductance. The increased reactive-oxygen species were managed by the activation of the antioxidant system including ascorbate peroxidase, superoxide dismutase, and catalase to meet oxidative damage caused by challenging conditions imposed by flooding, drought, and heavy metal stress. PDS solution along with other by-products of fire, such as charred organic matter and ash, can enrich the soil by slightly increasing its pH and improving nutrient availability. Additionally, some studies indicated that PDS solution may influence phytohormonal pathways, particularly auxins and gibberellic acids, which can contribute to root development and enhance symbiotic interactions with soil microbes, including mycorrhizal fungi. These combined effects may support overall plant growth, though the extent of PDS contribution may vary depending on species and environmental conditions. This boost in plant growth contributes to protecting the plants against pathogens, which shows the role of PDS in enduring biotic stress. Collectively, PDS solution mitigates stress tolerance in plants via multifaceted changes, including the regulation of physico-chemical responses, enhancement of the antioxidant system, modulation of heavy metal speciation, and key adjustments of photosynthesis, respiration, cell membrane transport, and the antioxidant system at genomic/proteomic levels. This review focuses on the role of PDS solution in fortifying plants against environmental stresses. It is suggested that PDS solution, which already has been determined to be a biostimulant, has potential for the revival of plant growth and soil ecosystem under abiotic and biotic stresses. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 3517 KB  
Review
Mechanism, Modeling and Challenges of Geological Storage of Supercritical Carbon Dioxide
by Shun Wang, Kan Jin, Wei Zhao, Luojia Ding, Jingning Zhang and Di Xu
Energies 2025, 18(16), 4338; https://doi.org/10.3390/en18164338 - 14 Aug 2025
Viewed by 336
Abstract
CO2 geological storage (CGS) is critical for mitigating emissions in hard-to-abate industries under carbon neutrality. However, its implementation faces significant challenges. This paper examines CO2-trapping mechanisms and proposes key safety measures: the continuous monitoring of in situ CO2 migration [...] Read more.
CO2 geological storage (CGS) is critical for mitigating emissions in hard-to-abate industries under carbon neutrality. However, its implementation faces significant challenges. This paper examines CO2-trapping mechanisms and proposes key safety measures: the continuous monitoring of in situ CO2 migration and formation pressure dynamics to prevent remobilization, and pre-injection lithological analysis to assess mineral trapping potential. CO2 injection alters reservoir stresses, inducing surface deformation; understanding long-term rock mechanics (creep, damage) is paramount. Thermomechanical effects from supercritical CO2 injection pose risks to caprock integrity and fault reactivation, necessitating comprehensive, multi-scale, real-time monitoring for leakage detection. Geostatistical analysis of well log and seismic data enables realistic subsurface characterization, improving numerical model accuracy for risk assessment. This review synthesizes current CGS knowledge, analyzes technical challenges, and aims to inform future site selection, operations, and monitoring strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

16 pages, 3250 KB  
Article
Advanced Deep Learning Networks for CO2 Trapping Analysis in Geological Reservoirs
by Yueqian Cao, Zhikai Liang, Meiqin Che, Jieqiong Luo and Youwen Sun
Sustainability 2025, 17(16), 7359; https://doi.org/10.3390/su17167359 - 14 Aug 2025
Viewed by 302
Abstract
As global temperatures continue to rise, surpassing the +2.5 °C threshold under current emissions scenarios, the urgency for sustainable, effective carbon management strategies has intensified. Geological carbon storage (GCS) has been explored as a potential mitigation tool; however, its large-scale feasibility remains highly [...] Read more.
As global temperatures continue to rise, surpassing the +2.5 °C threshold under current emissions scenarios, the urgency for sustainable, effective carbon management strategies has intensified. Geological carbon storage (GCS) has been explored as a potential mitigation tool; however, its large-scale feasibility remains highly uncertain due to concerns over storage permanence, leakage risks, and economic viability. This study proposes three advanced deep learning models—DeepDropNet, GateSeqNet, and RecurChainNet—to predict the Residual Trapping Index (RTI) and Solubility Trapping Index (STI) with enhanced accuracy and computational efficiency. Using a dataset of over 2000 high-fidelity simulation records, the models capture complex nonlinear relationships between key reservoir properties. Results indicate that GateSeqNet achieved the highest predictive accuracy, with an R2 of 0.95 for RTI and 0.93 for STI, outperforming both DeepDropNet and RecurChainNet. Ablation tests reveal that excluding post injection and injection rate significantly reduced model performance, decreasing R2 by up to 90% in RTI predictions. The proposed models provide a computationally efficient alternative to traditional numerical simulations, which makes them viable for real-time CO2 sequestration assessment. This work advances AI-driven carbon sequestration strategies, offering robust tools for optimizing long-term CO2 storage performance in geological formations and for achieving global sustainability goals. Full article
Show Figures

Figure 1

22 pages, 4006 KB  
Article
Biochar and Melatonin Partnership Mitigates Arsenic Toxicity in Rice by Modulating Antioxidant Defense, Phytochelatin Synthesis, and Down-Regulating the Transporters Involved in Arsenic Uptake
by Mehmood Ali Noor, Muhammad Umair Hassan, Tahir Abbas Khan, Baoyuan Zhou and Guoqin Huang
Plants 2025, 14(15), 2453; https://doi.org/10.3390/plants14152453 - 7 Aug 2025
Viewed by 404
Abstract
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also [...] Read more.
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also shown tremendous results in mitigating metal toxicity and improving crop productivity. Nevertheless, the mechanism of combined BC and MT in alleviating As toxicity in rice (Oryza sativa L.) remains unexplored. In this study, we investigated how As affected rice and how the combined BC and MT facilitated As tolerance. The study comprised a control, As stress (100 mg kg−1), As stress (100 mg kg−1) + BC (2%), As stress (100 mg kg−1) + MT (100 µM) and As stress (100 mg kg−1) + BC (2%) + MT (100 µM). Arsenic significantly decreased rice growth and yield by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Co-applying BC and MT substantially enhanced rice growth and yield by increasing chlorophyll synthesis (48.12–92.42%) leaf water contents (40%), antioxidant activities (ascorbate peroxide: 56.43%, catalase: 55.14%, peroxidase: 57.77% and superoxide dismutase: 57.52%), proline synthesis (41.35%), MT synthesis (91.53%), and phytochelatins synthesis (125%) nutrient accumulation in rice seedlings and soil nutrient availability. The increased rice yield with BC + MT was also linked with reduced H2O2 production, As accumulation, soil As availability, and an increase in OsAPx6, OsCAT, OsPOD, OsSOD OsASMT1, and OsASMT2 and a decrease in expression of OsABCC1. Biochar + MT enhanced residual OM- and Fe, ((Fe2As) and Mn (Mn3(AsO4)2) bound forms of As leading to a substantial increase in rice growth and yield. Thus, the combination of BC and MT is an eco-friendly approach to mitigate As toxicity and improve rice productivity. Full article
Show Figures

Figure 1

19 pages, 7494 KB  
Article
Fowler–Nordheim Tunneling in AlGaN MIS Heterostructures with Atomically Thin h-BN Layer Dependence and Performance Limits
by Jiarui Zhang, Yikun Li, Shijun Luo, Yan Zhang, Man Luo, Hailu Wang and Chenhui Yu
Nanomaterials 2025, 15(15), 1209; https://doi.org/10.3390/nano15151209 - 7 Aug 2025
Viewed by 527
Abstract
Hexagonal Boron Nitride (h-BN) is an exceptional dielectric material with significant potential for high-performance electronic and optoelectronic devices. While previous studies have explored its role in GaN-based MIS (metal/insulator/semiconductor) structures, the influence of few-layer h-BN on AlGaN MIS devices—particularly with [...] Read more.
Hexagonal Boron Nitride (h-BN) is an exceptional dielectric material with significant potential for high-performance electronic and optoelectronic devices. While previous studies have explored its role in GaN-based MIS (metal/insulator/semiconductor) structures, the influence of few-layer h-BN on AlGaN MIS devices—particularly with varying Al compositions—remains unexplored. In this work, we systematically investigate the Fowler–Nordheim tunneling effect in few-layer h-BN integrated into AlGaN MIS architectures, focusing on the critical roles h-BN layer count, AlGaN alloy composition, and interfacial properties in determining device performance. Through combined simulations and experiments, we accurately determine key physical parameters, such as the layer-dependent effective mass and band alignment, and analyze their role in optimizing MIS device characteristics. Our findings reveal that the 2D h-BN insulating layer not only enhances breakdown voltage and reduces leakage current but also mitigates interfacial defects and Shockley–Read–Hall recombination, enabling high-performance AlGaN MIS devices under elevated voltage and power conditions. This study provides fundamental insights into h-BN-based AlGaN MIS structures and advances their applications in next-generation high-power and high-frequency electronics. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Material, Device and System Integration)
Show Figures

Figure 1

Back to TopTop