Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,370)

Search Parameters:
Keywords = leaf order

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1927 KB  
Article
Comparative Study on Leaf Functional Traits and Environmental Adaptability of Seedlings of the Endangered Plants Ormosia olivacea, Ormosia pachycarpa, and Ormosia sericeolucida
by Juntong Yan, Guohua He, Xi Li, Shuo Feng, Yingying Wu, Rong Zou and Jianmin Tang
Agronomy 2025, 15(11), 2512; https://doi.org/10.3390/agronomy15112512 - 29 Oct 2025
Abstract
To investigate the photosynthetic characteristics and leaf anatomical structures of seedlings from the endangered plants Ormosia olivacea, Ormosia pachycarpa, and Ormosia sericeolucida, this study aimed to elucidate the influence of leaf structure on photosynthetic traits and light requirements among these [...] Read more.
To investigate the photosynthetic characteristics and leaf anatomical structures of seedlings from the endangered plants Ormosia olivacea, Ormosia pachycarpa, and Ormosia sericeolucida, this study aimed to elucidate the influence of leaf structure on photosynthetic traits and light requirements among these three Ormosia species, thereby providing reference for their introduction and cultivation. This study measured the light response curves, CO2 response curves, leaf epidermal and anatomical characteristics, and photosynthetic pigment content of the three Ormosia species. Results indicate: 1. All three species exhibit photophilic tendencies, with Ormosia olivacea demonstrating the highest photosynthetic capacity, achieving a maximum net photosynthetic rate (Pmax) of 1.9062 mol m−2 s−1. Ormosia pachycarpa exhibited the highest potential maximum net photosynthetic rate (Amax), demonstrating superior CO2 utilisation capacity. The Amax values for all three species were significantly higher than their Pmax values. 2. Among the three Ormosia species, Ormosia sericeolucida exhibited the thickest leaf structure, with palisade tissue thickness ordered as follows: Ormosia sericeolucida > Ormosia pachycarpa > Ormosia olivacea. 3. Stomata were present on the lower epidermis of all three species. Ormosia sericeolucida possessed the largest individual stomatal area, while Ormosia olivacea exhibited the highest stomatal density. 4. The chlorophyll a content (Chl a) of all three Ormosia species exceeded their chlorophyll b content (Chl b), indicating they are photophilic plants. Ormosia sericeolucida exhibited higher chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (Chl) contents than both Ormosia olivacea and Ormosia pachycarpa. Ormosia olivacea possessed the highest carotenoid content (Car). In summary, Ormosia pachycarpa exhibited the highest potential maximum net photosynthetic rate (Amax), demonstrating the strongest CO2 utilisation capacity, followed by Ormosia olivacea, with Ormosia sericeolucida showing the lowest. Appropriately increasing CO2 levels in cultivation sites would benefit photosynthesis and material accumulation in all three Ormosia species, promoting robust growth. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 2929 KB  
Article
Comprehensive Analysis of Agronomic Traits, Saponin Accumulation, and SNP-Based Genetic Diversity in Different Cultivars of Panax notoginseng
by Yawen Wu, Guanjiao Wang, Ran Pu, Tian Bai, Hao Fan, Jingli Zhang and Shengchao Yang
Genes 2025, 16(10), 1185; https://doi.org/10.3390/genes16101185 - 12 Oct 2025
Viewed by 378
Abstract
Background: Given the need to optimize Panax notoginseng cultivation, screen high-quality germplasm, and clarify its insufficiently elucidated genetic–phenotype–quality associations (e.g., saponin accumulation), this study was conducted. Methods: Agronomic traits were measured, saponin accumulation was determined via high-performance liquid chromatography (HPLC), and [...] Read more.
Background: Given the need to optimize Panax notoginseng cultivation, screen high-quality germplasm, and clarify its insufficiently elucidated genetic–phenotype–quality associations (e.g., saponin accumulation), this study was conducted. Methods: Agronomic traits were measured, saponin accumulation was determined via high-performance liquid chromatography (HPLC), and comprehensive performance was evaluated through integrated cluster analysis and fuzzy membership function assessment; additionally, single-nucleotide polymorphism (SNP)-based genetic diversity analysis was conducted to explore the genetic basis of trait variations. Results: Agronomic traits exhibited coefficients of variation (CVs) of 2.95–18.12%, with primary root length showing the highest variability. Phenotypic cluster analysis divided the materials into three groups. Group I (“Miaoxiang No.1”, “Dianqi No.1”, “Miaoxiang Kangqi No.1”) was characterized by tall plants, sturdy stems, heavy roots, and long/large leaves. Saponin determination results revealed significant differences in notoginsenoside R1, ginsenoside Rb1, ginsenoside Re, ginsenoside Rd, and total saponins among cultivars (order: “Zijing” > “Dianqi No.1” > original cultivar > “Miaoxiang Kangqi No.1” > “Miaoxiang No.1” > “Miaoxiang No.2”), with “Zijing” having the highest total saponin accumulation (18.13%); no significant difference was observed in ginsenoside Rg1 accumulation. The GATK initially identified 16,329,600 SNPs, and 115,930 high-quality SNPs were retained after Samtools filtration. SNP-based Neighbor-joining (NJ) clustering grouped the cultivars into three categories, with the original cultivar clustered alone as one category. Through comprehensive evaluation, three superior germplasm lines (“Miaoxiang Kangqi No.1”, “Miaoxiang No.1”, “Dianqi No.1”) were identified. A significant negative correlation (p < 0.05) was found between compound leaf petiole length and saponin accumulation. Conclusions: This integrated analytical strategy clarifies the links between genetics, phenotype, and quality, providing a scientific foundation for P. notoginseng germplasm screening and facilitating future molecular breeding efforts. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

20 pages, 6132 KB  
Article
The Impact of Water–Green Spaces Spatial Relationships on the Carbon Sequestration Efficiency of Urban Waterfront Green Spaces
by Yangyang Yuan, Shangcen Luo, Mingzhu Yang, Jingwen Mao, Sidan Yao and Qianyu Hong
Forests 2025, 16(10), 1563; https://doi.org/10.3390/f16101563 - 10 Oct 2025
Viewed by 247
Abstract
Against the background of global warming, the carbon emission of cities accounts for more than 70%, and its carbon sink increase and emission reduction have become the research focus. The water bodies and green spaces in the urban blue–green space have a synergistic [...] Read more.
Against the background of global warming, the carbon emission of cities accounts for more than 70%, and its carbon sink increase and emission reduction have become the research focus. The water bodies and green spaces in the urban blue–green space have a synergistic carbon sequestration effect, but current research pays less attention to the small and medium scales. Therefore, taking the waterfront green space on both sides of Qinhuai New River in Nanjing as the research object, this paper explores the impact of the synergy between water and greenery on the carbon sequestration efficiency of green space. The study first estimates the carbon sequestration efficiency of green spaces by integrating measured Leaf Area Index (LAI) data with the mean carbon sequestration rate per unit leaf area for typical tree and shrub species. It then constructs a set of water–green spatial relationship indicators and applies a random forest regression model to identify the key factors influencing carbon sequestration efficiency. Finally, multiple scenario models are developed to simulate the effects of green spaces on CO2 reduction, thereby validating the roles of the identified influencing factors. The study found that waterfront green spaces tended to exhibit slightly higher carbon sequestration efficiency compared with non-waterfront green spaces. The proportion of 10 m forest land area and the proportion of 10–20 m forest land area had a higher impact on the carbon sequestration capacity of waterfront green space; that is, the closer the distance between the green space and the water, the better the carbon sequestration capacity. In order to improve the carbon sequestration efficiency of the waterfront area, the green space should be arranged along the water bank as much as possible, the depth of the green space should be increased, the proportion of the forest land area should be increased, the arbor and shrub should be planted evenly, and ribbon planting should be avoided. The study confirmed the synergistic effect of water and greenery in carbon sequestration benefits, providing data support and theoretical reference for the optimization and renewal of urban waterfront green space, and contributing to the realization of urban waterfront green space planning, design, and renewal with the goal of a high carbon sink. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

14 pages, 1620 KB  
Article
Cattle Preference in Warm-Season Grasses: Effects of Seasonal Growth, Leaf Morphology, and Leaf Anatomy
by Florencia Marcón, Elio L. Di Lorenzo, Myriam C. Peichoto and Carlos A. Acuña
Grasses 2025, 4(4), 40; https://doi.org/10.3390/grasses4040040 - 9 Oct 2025
Viewed by 192
Abstract
Warm-season grasses are the main source of feed in tropical and subtropical beef cattle production systems. The objective was to assess cattle preference among three warm-season grasses and explore its relationship with forage yield and plant structural traits. The three species were cultivated [...] Read more.
Warm-season grasses are the main source of feed in tropical and subtropical beef cattle production systems. The objective was to assess cattle preference among three warm-season grasses and explore its relationship with forage yield and plant structural traits. The three species were cultivated in 2 × 2 m plots using a completely randomized design. Cattle preference was evaluated in spring (December 2016 and 2017), summer (March 2017), and autumn (May 2017) using six Braford steers that grazed the plots for 4 h on two consecutive days. Pre-grazing forage yield, plant height, leaf-blade length, leaf-blade width, and the proportions of five leaf tissues at three leaf regions were measured at each date. Cattle preference was variable among the three species and evaluation dates. Paspalum atratum exhibited the highest pre-grazing forage yield, and constituted the tallest plants with the longest leaves during the summer. Urochloa brizantha showed the greatest proportion of vascular bundle sheath (17–30% at the midrib region, 25–31% at the interveinal region and 14–23% at the margin region) and P. atratum exhibited the greatest number of primary vascular bundle. Cattle preference was negatively correlated with the number of primary vascular bundle, pre-grazing forage yield, plant height and leaf-blade length. Full article
Show Figures

Figure 1

14 pages, 1362 KB  
Article
Effects of Activated Carbon on Reduction in Pesticide Residues in Lettuce Grown in Soil Treated with Cyantraniliprole and Fluopyram
by Seon Hwa Kim, Da Jung Lim, Jihyun Yoon and In Seon Kim
Agronomy 2025, 15(10), 2340; https://doi.org/10.3390/agronomy15102340 - 5 Oct 2025
Viewed by 495
Abstract
Reducing pesticide residues in crops is essential to ensure food safety, protect human health, and promote environmental sustainability. In this study, activated carbon (AC) was applied as a soil amendment to investigate its effect on reducing residues of the pesticides cyantraniliprole and fluopyram [...] Read more.
Reducing pesticide residues in crops is essential to ensure food safety, protect human health, and promote environmental sustainability. In this study, activated carbon (AC) was applied as a soil amendment to investigate its effect on reducing residues of the pesticides cyantraniliprole and fluopyram in greenhouse-grown lettuce. The effectiveness of AC in reducing pesticide residues varies significantly based on pesticides and crops. Pesticide dissipation patterns in the soil and a set of pesticide residues of lettuce leaf and root tissues, as well as the soil surrounding the roots for each of the tested pesticides, were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) during the test periods. The results showed different pesticide dissipation patterns for cyantraniliprole, fitting the first-order kinetics, and fluopyram. Nevertheless, both AC treatments exhibited a similar decreasing tendency in which cyantraniliprole residues ranged from 0.050 to 0.064 mg/kg in leaf and 0.019 to 0.034 mg/kg in root samples, while fluopyram residues ranged from 0.168 to 0.509 mg/kg in leaf and 0.315 to 0.787 mg/kg in root samples. The highest percentage reductions were 71.3% and 77.3% for cyantraniliprole in leaf and root samples, respectively, and 79.7% and 87.5% for fluopyram in leaf and root samples. In addition, the soil samples showed a more dynamic pattern of pesticide residues compared to those of the lettuce samples. The overall findings suggest that applying AC as a soil amendment in pesticide-treated soils has a positive effect on reducing residues of cyantraniliprole and fluopyram in lettuce. Therefore, this AC-treated soil amendment could be considered a safer agricultural practice with great potential for producing safer food resources from pesticide-contaminated soils. Thus, it is expected that proper utilization of AC plays an important role in the production of safe agri-food products to manage and generate a sustainable agricultural environment. Full article
(This article belongs to the Special Issue Soil Pollution and Remediation in Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 11690 KB  
Article
Preparation and Herbicidal Evaluation of Butyl Hydroxybenzoate Emulsion
by Tianqi Wang, Haixia Zhu, Lijuan Bao, Suifang Zhang and Yongqiang Ma
Plants 2025, 14(19), 3041; https://doi.org/10.3390/plants14193041 - 1 Oct 2025
Viewed by 351
Abstract
In order to develop a new environmentally friendly microbial herbicide for the field of weed control, this study used the metabolite butyl hydroxybenzoate (BP) of the HY-02 strain of Alternaria as the research object. The BP emulsion formula was determined to be a [...] Read more.
In order to develop a new environmentally friendly microbial herbicide for the field of weed control, this study used the metabolite butyl hydroxybenzoate (BP) of the HY-02 strain of Alternaria as the research object. The BP emulsion formula was determined to be a mixture of BP, methanol, and Tween-20 in a ratio of 1:1:2 g/mL. The seed germination inhibition effect, the phytotoxicity of living plants, crop safety, and the field effect of the emulsion were studied. Research has found that adding 0.75% BP emulsion to the seed culture medium inhibits the germination of weed seeds such as Amaranthus retroflexus L., Malva verticillata L. var., and Chenopodium album L. While Brassica campestris L. seeds were unaffected, Triticum aestivum L and Hordeum vulgare L. stem and leaf growth were inhibited. Cucumis sativus L., Lactuca sativa L. var. asparagina, Spinacia oleracea L., and Capsicum annuum L. seeds are significantly inhibited, with germination rates below 20%. We sprayed 0.75% BP emulsion onto live potted plants; among the weeds, the incidence of Amaranthus retroflexus L., Lepyrodiclis holosteoides, Thlaspi arvense L, Galium spurium L., Malva verticillata L. var. Crispa, Chenopodium album L., and Avena fatua L reached 100%. The Pisum sativum L. and Triticum aestivum L. crops were not affected (NS), and they had slight plant height inhibition and slight susceptibility (LS) to highland Hordeum vulgare L. and peppers. They were highly phytotoxicity to Cucumis sativus L. and Spinacia oleracea L. Some plant leaves became infected and died, with incidences of 85% and 82%, respectively. The field experiment showed that after diluting the BP emulsifiable concentrate, the seedling stage spray was inoculated into the Triticum aestivum L. field, and it was found that the BP emulsifiable concentrate at the concentration of 1.00%~0.75% had a herbicidal effect on weeds such as Chenopodium album L., Elsholtzia densa Benth, and Amaranthus retroflexus L. in the Triticum aestivum L. field, and it was safe for Triticum aestivum L. crops in the field. These results indicate that BP emulsion could be developed into a new environmentally friendly microbial herbicide for field application in grass (Triticum aestivum L. and Hordeum vulgare L.) crops. At the same time, BP’s excellent antibacterial, low-toxicity, hydrolysis, and other effects can promote diversification in herbicide development. Full article
(This article belongs to the Special Issue Biopesticides for Plant Protection)
Show Figures

Figure 1

15 pages, 1753 KB  
Article
Photosynthetic Performance and Phytoremediation Potential of Narrow Crown Black-Cathay Poplar Under Combined Cadmium and Phenol Pollution
by Huimei Tian, Kaixin Zheng, Qiyun Lu, Siyuan Sun, Chuanrong Li and Huicheng Xie
Forests 2025, 16(10), 1531; https://doi.org/10.3390/f16101531 - 30 Sep 2025
Viewed by 271
Abstract
Heavy metal pollutants and organic contaminants often co-exist in the environment, posing significant ecological risks due to their combined toxicity. Phytoremediation, a plant-based biotechnology, offers a promising solution for pollutant removal. This study investigated the potential cadmium (Cd) removal capacity of Narrow Crown [...] Read more.
Heavy metal pollutants and organic contaminants often co-exist in the environment, posing significant ecological risks due to their combined toxicity. Phytoremediation, a plant-based biotechnology, offers a promising solution for pollutant removal. This study investigated the potential cadmium (Cd) removal capacity of Narrow Crown Black-Cathay poplar (Populus × canadensis Moench × Populus simonii Carr. f. fastigiata Schneid.) under combined Cd-phenol stress. The results showed that the combined stress synergistically inhibited the photosynthetic physiological characteristics, with an inhibition rate up to 54.0%, significantly higher than that under single stress (p < 0.05). Cd accumulation varied markedly among plant organs, following the order: root (ranging from 4000.2 to 9277.0 mg/kg) > stems (ranging from 96.0 to 383.6 mg/kg) > leaf (ranging from 10.3 to 40.1 mg/kg). Phenol enhanced Cd absorption and enrichment in the roots by up to 1.8 times but reduced its translocation to aboveground parts by 37.8–40.0%. Notably, at low Cd concentrations, the Cd removal efficiency under combined stress (26.0%) was substantially higher than under single Cd stress (6.6%). In contrast, biomass, tolerance index, and root–shoot ratio were slightly affected in all treatments (p > 0.05). These findings demonstrate that Narrow Crown Black-Cathay poplar is a suitable candidate for the short-term remediation of Cd in environments co-contaminated with cadmium and phenol. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

28 pages, 3417 KB  
Article
Non-Destructive Estimation of Area and Greenness in Leaf and Seedling Scales: A Case Study in Cucumber
by Georgios Tsaniklidis, Theodora Makraki, Dimitrios Papadimitriou, Nikolaos Nikoloudakis, Amin Taheri-Garavand and Dimitrios Fanourakis
Agronomy 2025, 15(10), 2294; https://doi.org/10.3390/agronomy15102294 - 28 Sep 2025
Cited by 1 | Viewed by 396
Abstract
Leaf area (LA) and SPAD value (a proxy for chlorophyll content) are two key determinants of seedling quality. This study aimed to develop and validate approaches for the efficient retrieval of these features in order to facilitate both management and screening practices. In [...] Read more.
Leaf area (LA) and SPAD value (a proxy for chlorophyll content) are two key determinants of seedling quality. This study aimed to develop and validate approaches for the efficient retrieval of these features in order to facilitate both management and screening practices. In cucumber, different models were developed and tested for the accurate estimation of LA at the scale of the individual organ (cotyledon, leaf) by using its linear dimensions (length (L) and width (W)), and of the whole seedling by using the 2D image-extracted projected area (from three different angles: 0°, 45°, and 90°). At either scale, the SPAD value was computed by using image (90°)-based colorimetric features. The estimation of individual organ area was more accurate when using L alone, compared with W alone. By using the two dimensions and specific colorimetric features, the individual organ area (R2 ≥ 0.92) and SPAD value (R2 of 0.77) were accurately predicted. When considering a single view, the top one (90°) was associated with the highest accuracy in whole-seedling LA estimation, and the side view (0°) with the lowest (R2 of 0.88 and 0.73, respectively). Using any combination of two angles, the whole-seedling LA was accurately retrieved (R2 ≥ 0.88). When using colorimetric features, a poor estimation of the whole-seedling SPAD value was noted (R2 ≤ 0.43). The deployment of artificial neural networks (ANNs) further allowed the estimation of specific organ shape traits, and improved the accuracy of all the aforementioned predictions, including the whole-seedling SPAD value (R2 of 0.597). In conclusion, the findings of this study highlight that features readily retrieved from 2D images hold promising potential for improving screening routines within the nursery industry. Full article
(This article belongs to the Special Issue Smart Agriculture for Crop Phenotyping)
Show Figures

Figure 1

19 pages, 19814 KB  
Article
Comparative Leaf Anatomy of Balkan Representatives of Gentiana L. Sect. Ciminalis (Adans.) Dum. (Gentianaceae): Implications for Species Delimitation
by Žarko Mladenović, Nevena Kuzmanović, Dmitar Lakušić and Danilo Stojanović
Plants 2025, 14(19), 2977; https://doi.org/10.3390/plants14192977 - 25 Sep 2025
Viewed by 353
Abstract
The present study investigates the leaf anatomical traits of representatives of Gentiana section Ciminalis in the Balkan Peninsula, focusing on the ecologically and geographically vicariant species Gentiana acaulis, G. clusii, and G. dinarica. These species are distributed across a variety [...] Read more.
The present study investigates the leaf anatomical traits of representatives of Gentiana section Ciminalis in the Balkan Peninsula, focusing on the ecologically and geographically vicariant species Gentiana acaulis, G. clusii, and G. dinarica. These species are distributed across a variety of mountainous habitats, including calcareous and siliceous rocky grounds, and exhibit pronounced morphological similarities that have led to misidentifications in the past. In order to address the challenges in species delimitation, a comparative analysis of leaf anatomical traits was performed on cross-sections of ten rosette leaves from each population. Statistical data analyses were conducted on 18 morphometric traits. A range of statistical techniques were used to assess variability and identify important discriminating traits, including descriptive statistics, principal component analysis, and discriminant analysis. The results indicate that the species can be distinguished based on leaf anatomy, particularly mesophyll thickness and number of cells that contain calcium oxalate crystals. The leaf of G. acaulis has a smaller mesophyll thickness (mean value: 164.31 μm), G. dinarica a larger mesophyll thickness (mean value: 365.85 μm), while G. clusii lies between these two (mean value: 305.35 μm). Crystal-containing cells are most abundant in G. clusii, where they are distributed throughout the entire leaf mesophyll; followed by G. dinarica, where the distribution of these cells are mainly in the upper half of the leaf; while they are sparse or absent in G. acaulis. These results suggest that leaf anatomy is a valuable diagnostic tool for distinguishing taxa within the section Ciminalis of the genus Gentiana. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

14 pages, 3118 KB  
Article
Evaluating the Capability of Epipremnum aureum and Its Associated Phylloplane Microbiome to Capture Indoor Particulate Matter Bound Lead
by Diego G. Much, Anabel Saran, Luciano J. Merini, Jaco Vangronsveld and Sofie Thijs
Plants 2025, 14(19), 2956; https://doi.org/10.3390/plants14192956 - 23 Sep 2025
Viewed by 396
Abstract
In this study we evaluated over a 1-year period, the ability of Epipremnum aureum leaves to collect particulate matter (PM)-bound Pb from an indoor environment. Using Illumina MiSeq, we investigated the changes in the phylloplane microbiome connected with the accumulation of this pollutant. [...] Read more.
In this study we evaluated over a 1-year period, the ability of Epipremnum aureum leaves to collect particulate matter (PM)-bound Pb from an indoor environment. Using Illumina MiSeq, we investigated the changes in the phylloplane microbiome connected with the accumulation of this pollutant. Plants were placed in a shooting room, where PM release from each shot was recorded, along with PM2.5 and PM10 sequestration and leaf element enrichment by ICP. Additionally, black carbon (BC) sequestration was determined, and SEM-EDX was performed on leaves after 12 months of exposure. Our results indicated that ambient air pollution shapes microbial leaf communities by affecting their diversity. At the order level, Pseudomonadales, along with Micrococcales, appeared (at a low relative abundance) after exposure to indoor PM-bound Pb air pollution. This study provides a unique comparison of Epipremnum aureum air filtration performance between a standard office environment and a firearm shooting range. The air filtration approach holds promise for reducing indoor air pollution, but more knowledge about the underlying mechanisms supporting genera capable of coping with airborne pollutants is still required. Full article
Show Figures

Figure 1

25 pages, 4992 KB  
Article
Eco-Friendly Synthesis of Silver–Cellulose Nanocomposite Adsorbent from Agricultural Residues for Binary Dye System Remediation
by Doaa S. Al-Raimi, Reem M. Alghanmi, Ghalia S. Aljeddani and Ragaa A. Hamouda
Polymers 2025, 17(18), 2555; https://doi.org/10.3390/polym17182555 - 22 Sep 2025
Viewed by 429
Abstract
This work reports a one-step, green synthesis of silver-micro cellulose nanocomposite (Ag@Ce NCs) using Azadirachta indica A. Juss leaf extract to load micro-cellulose isolated from peanut shells with silver nanoparticles, followed by comprehensive physicochemical characterization (FTIR, TEM, EDX-SEM, zeta potential, and XRD). The [...] Read more.
This work reports a one-step, green synthesis of silver-micro cellulose nanocomposite (Ag@Ce NCs) using Azadirachta indica A. Juss leaf extract to load micro-cellulose isolated from peanut shells with silver nanoparticles, followed by comprehensive physicochemical characterization (FTIR, TEM, EDX-SEM, zeta potential, and XRD). The composite has pHPZC ≈ 5.0 and was tested for simultaneous removal of methylene blue (MB) and safranin O (SO) under batch conditions across various pH levels, doses, contact times, initial concentrations, ionic strengths, and temperatures. The high removal efficiencies observed at pH 10 for MB and 6.0 for SO. The adsorption reached the maximum at 45 min before partially declining, indicating reversible binding on saturated surfaces. Isotherm study favored the Langmuir model, with similar affinities (KL ≈ 0.106, and 0.110 L/mg) and monolayer capacities of 17.99 mg/g for MB and 14.90 mg/g for SO, suggesting non-selective competition on uniform sites. Kinetic data fitted the pseudo-second-order model, while thermodynamic analysis indicated mainly exothermic and physisorption interactions. Higher ionic strength reduced removal efficiency (at 1.0 M NaCl, %RE ≈ 33–48%), highlighting salt sensitivity typical of electrostatic attraction. The adsorbent maintained about 90% of its initial performance after five adsorption–desorption cycles in 0.1 M H2SO4, indicating excellent reusability. Overall, Ag@Ce NCs provide an inexpensive, eco-friendly, and reuseable platform for treating binary mixtures of cationic dyes. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

27 pages, 2001 KB  
Review
Influencing Factors and Regulatory Mechanisms of Fresh Tea Leaf Quality: A Review
by Tianyu Wu, Junjie He, Xiujuan Deng, Xiaohua Wang, Wenxia Yuan, Qiaomei Wang, Xinya Chen, Man Zou, Hongmei An, Baijuan Wang and Raoqiong Che
Foods 2025, 14(18), 3268; https://doi.org/10.3390/foods14183268 - 20 Sep 2025
Viewed by 702
Abstract
The contents of secondary metabolites such as tea polyphenols, amino acids, caffeine, and volatile metabolites in fresh tea leaves are key factors determining the unique flavor and health attributes of finished tea products. However, differences in varieties, cultivation practices, and environmental conditions often [...] Read more.
The contents of secondary metabolites such as tea polyphenols, amino acids, caffeine, and volatile metabolites in fresh tea leaves are key factors determining the unique flavor and health attributes of finished tea products. However, differences in varieties, cultivation practices, and environmental conditions often lead to variations in these metabolites among fresh tea leaves, thereby affecting tea quality. In order to clarify the various internal and external factors that influence the formation of the quality of fresh tea leaves and their mechanism of action. This article mainly reviews the research on fresh leaf quality in the past decade. Firstly, it clarifies the molecular basis of metabolic differences among varieties. Then, it summarizes the regulatory mechanisms of underground (soil, microorganisms) and above-ground (light, temperature, humidity) environments on key metabolic pathways, and focuses on evaluating the effects of intercropping, fertilization, and other cultivation measures on improving tea quality. This review found that the specific gene expression of varieties, the transmission of environmental signals, and cultivation interventions jointly drive the synthesis and accumulation of tea polyphenols, amino acids, caffeine, and aroma substances. However, no one has ever systematically reviewed it. Therefore, it provides certain theoretical references for improving the quality of fresh leaves. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

31 pages, 8218 KB  
Article
Growth Stage-Specific Modeling of Chlorophyll Content in Korla Pear Leaves by Integrating Spectra and Vegetation Indices
by Mingyang Yu, Weifan Fan, Junkai Zeng, Yang Li, Lanfei Wang, Hao Wang and Jianping Bao
Agronomy 2025, 15(9), 2218; https://doi.org/10.3390/agronomy15092218 - 19 Sep 2025
Viewed by 371
Abstract
This study, leveraging near-infrared spectroscopy technology and integrating vegetation index analysis, aims to develop a hyperspectral imaging-based non-destructive inspection technique for swift monitoring of crop chlorophyll content by rapidly predicting leaf SPAD. To this end, a high-precision spectral prediction model was first established [...] Read more.
This study, leveraging near-infrared spectroscopy technology and integrating vegetation index analysis, aims to develop a hyperspectral imaging-based non-destructive inspection technique for swift monitoring of crop chlorophyll content by rapidly predicting leaf SPAD. To this end, a high-precision spectral prediction model was first established under laboratory conditions using ex situ lyophilized Leaf samples. This model provides a core algorithmic foundation for future non-destructive field applications. A systematic study was conducted to develop prediction models for leaf SPAD values of Korla fragrant pear at different growth stages (fruit-setting period, fruit swelling period and Maturity period). This involved comparing various spectral preprocessing algorithms (AirPLS, Savitzky–Golay, Multiplicative Scatter Correction, FD, etc.) and CARS Feature Selection methods for the screening of optimal spectral feature band. Subsequently, models were constructed using BP Neural Network and Support Vector Regression algorithms. The results showed that leaf samples at different growth stages exhibited significant differences in their spectral features within the 5000–7000 cm−1 (effective features for predicting chlorophyll (SPAD)) and 7000–8000 cm−1 (moisture absorption valley) bands. The Savitzky–Golay+FD (Savitzky–Golay smoothing combined with first-order derivative (FD)) preprocessing algorithm performed optimally in feature extraction. Growth period specificity models significantly outperformed whole growth period models, with the optimal models for the fruit-setting period and fruit swelling period being FD-CARS-BP (Coefficient of determination (R2) > 0.86), and the optimal model for the Maturity period being Savitzky–Golay-FD+Savitzky–Golay-CARS-BP (Coefficient_of_determination (R2) = 0.862). Furthermore, joint modeling of characteristic spectra and vegetation indices further improved prediction performance (Coefficient of determination (R2) > 0.85, Root Mean Square Error (RMSE) 2.5). This study presents a reliable method for non-destructive monitoring of chlorophyll content in Korla fragrant pears, offering significant value for nutrient management and stress early warning in precision agriculture. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

20 pages, 3079 KB  
Article
Taguchi Optimization of Corrosion Resistance and Wettability of a-C Films on SS316L Deposited via Magnetron Sputtering Technique
by Xiaoxing Yang, Cunlong Zhou, Zhengyi Jiang, Jingwei Zhao, Tianxiang Wang and Haojie Duan
Coatings 2025, 15(9), 1084; https://doi.org/10.3390/coatings15091084 - 16 Sep 2025
Viewed by 528
Abstract
Due to the exceptional corrosion resistance, chemical stability, and dense microstructure, carbon-based thin films are extensively employed in hydrogen energy systems. This study employed magnetron sputtering to fabricate amorphous carbon (a-C) films on SS316L substrates, aiming to improve the corrosion resistance of bipolar [...] Read more.
Due to the exceptional corrosion resistance, chemical stability, and dense microstructure, carbon-based thin films are extensively employed in hydrogen energy systems. This study employed magnetron sputtering to fabricate amorphous carbon (a-C) films on SS316L substrates, aiming to improve the corrosion resistance of bipolar plates (BPs) in proton exchange membrane fuel cells (PEMFCs). Using a Taguchi design, the effects of working pressure, sputtering power, substrate bias, and deposition time on film properties were systematically examined and optimized. Films were examined via field emission scanning electron microscopy (FE-SEM), contact angle measurements, and electrochemical tests. Comprehensive evaluation by the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method identified optimal conditions of 1.5 Pa pressure, 150 W radio frequency (RF) power, −250 V bias voltage, and 60 min deposition, yielding dense, uniform films with a corrosion current density of 1.61 × 10−6 A·cm−2 and a contact angle of 106.36°, indicative of lotus leaf-like hydrophobicity. This work enriches the theoretical understanding of a-C film process optimization, offering a practical approach for modifying fuel cell bipolar plates to support hydrogen energy applications. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

10 pages, 267 KB  
Article
Differential Growth in Purslane Species Grown in Two Different Seasons
by Elizanilda Ramalho do Rêgo, Nataline da Silva Pontes, Marcos Gomes da Silva, Nicollas Bernardo Ferreira da Silva, Aline Cavalcanti Dantas, Angela Maria dos Santos Pessoa and Mailson Monteiro do Rêgo
Horticulturae 2025, 11(9), 1107; https://doi.org/10.3390/horticulturae11091107 - 13 Sep 2025
Viewed by 508
Abstract
With the growth of world population and climate changes, food safety will be a problem. Portulaca is a wild edible plant adapted to warm climate and resistant to drought. The aim of this work was to evaluate 18 accessions of Portulaca species under [...] Read more.
With the growth of world population and climate changes, food safety will be a problem. Portulaca is a wild edible plant adapted to warm climate and resistant to drought. The aim of this work was to evaluate 18 accessions of Portulaca species under two different seasons in order to identify the most stable accession for better exploitation in breeding programs. The experiment was conducted in an entirely randomized design, with three replicates (three plants/accession), following the factorial scheme 2 seasons × 18 accessions, based on nine quantitative traits. The interaction between seasons and accessions was significant for the number of leaves (p ≤ 0.01). It is possible to observe that all the genotypes evaluated showed stability, except for the genotype PH01, which presented a smaller number of leaves in the winter season. The accessions PU02 and PU10 presented major plant height and leaf measurements. The accessions PU04, PU03, PU07 and PU39 (P. umbraticola) presented greater number of leaves and showed stability between seasons, and, regarding morphological traits, they were superior to the P. oleracea species. They should be used in hybridization programs in order to insert desirable genes to produce new productive vegetable crops, providing new species options in order to replace conventional plants. Full article
Show Figures

Graphical abstract

Back to TopTop