Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (141)

Search Parameters:
Keywords = leaf discs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3105 KiB  
Article
Cell Viability of Wharton’s Jelly-Derived Mesenchymal Stem Cells (WJ-MSCs) on 3D-Printed Resins for Temporary Dental Restorations
by Mónica Antonio-Flores, Andrés Eliú Castell-Rodríguez, Gabriela Piñón-Zárate, Beatriz Hernández-Téllez, Abigailt Flores-Ledesma, Enrique Pérez-Martínez, Carolina Sámano-Valencia, Gerardo Quiroz-Petersen and Katia Jarquín-Yáñez
J. Compos. Sci. 2025, 9(8), 404; https://doi.org/10.3390/jcs9080404 (registering DOI) - 1 Aug 2025
Viewed by 72
Abstract
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly [...] Read more.
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly used but clinically relevant cell line in dental biomaterials research. The aim of this study was to evaluate the cell viability of WJ-MSCs seeded on 3D-printed resins intended for temporary restorations. Resin discs of three commercial 3D-printing resins (NextDent C&B, Leaf Dental C&B, and UNIZ Temp) and a conventional self-curing acrylic resin (NicTone) were used. WJ-MSCs were cultured on the specimens for 1, 4, and 10 days. Cell viability was assessed using the PrestoBlue assay, Live/Dead immunofluorescence staining, and 7AAD/Annexin V staining. Cell adhesion was evaluated using scanning electron microscopy. Direct exposure to the 3D-printed resins and the self-curing acrylic caused slight reductions in cell viability compared to the control group in both microscopic analyses. 7AAD/Annexin V showed the highest percentage of viable WBCs for the conventional acrylic (34%), followed by UNIZ (35%), NextDent (42%), and Leaf Dental (36%) (ANOVA p < 0.05 Tukey’s post-hoc test p < 0.05). These findings suggest that 3D-printed resins could be considered safe for use in temporary restorations. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

15 pages, 3624 KiB  
Article
A Spectroscopic DRIFT-FTIR Study on the Friction-Reducing Properties and Bonding of Railway Leaf Layers
by Ben White, Joseph Lanigan and Roger Lewis
Lubricants 2025, 13(8), 329; https://doi.org/10.3390/lubricants13080329 - 29 Jul 2025
Viewed by 182
Abstract
Leaves react with rail steel and form a tribofilm, causing very low friction in the wheel/rail interface. This work uses twin-disc tribological testing with the addition of leaf particulates to simulate the reaction and resulting reduction in the friction coefficient in a laboratory [...] Read more.
Leaves react with rail steel and form a tribofilm, causing very low friction in the wheel/rail interface. This work uses twin-disc tribological testing with the addition of leaf particulates to simulate the reaction and resulting reduction in the friction coefficient in a laboratory setting. Diffuse Reflectance Fourier-Transform Infrared Spectroscopy was carried out on the organic material and the layers that formed on the twin-disc surface. Dark material, visibly similar to leaf layers formed on tracks during autumn, was used along with a transparent thin film. This “non-visible contamination” has been reported to cause low-adhesion problems on railways, but has not previously been characterised. This article discusses the nature of these layers and builds upon earlier studies to propose a degradation and bonding mechanism for the leaf material. This understanding could be used to improve friction management methods employed to deal with low adhesion due to leaves. Full article
Show Figures

Figure 1

22 pages, 9981 KiB  
Article
Design and Experiment of Autonomous Shield-Cutting End-Effector for Dual-Zone Maize Field Weeding
by Yunxiang Li, Yinsong Qu, Yuan Fang, Jie Yang and Yanfeng Lu
Agriculture 2025, 15(14), 1549; https://doi.org/10.3390/agriculture15141549 - 18 Jul 2025
Viewed by 264
Abstract
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, [...] Read more.
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, and precision weeding functionalities: a seedling positioning sensor identified maize seedlings and weeds, guiding XYZ translational motions to align the robotic arm. The seedling-shielding anti-cutting mechanism (SAM) enclosed crop stems, while the contour-adaptive weeding mechanism (CWM) activated two-stage retractable blades (TRWBs) for inter/intra-row weeding operations. The following key design parameters were determined: 150 mm inner diameter for the seedling-shielding disc; 30 mm minimum inscribed-circle for retractable clamping units (RCUs); 40 mm ground clearance for SAM; 170 mm shielding height; and 100 mm minimum inscribed-circle diameter for the TRWB. Mathematical optimization defined the shape-following weeding cam (SWC) contour and TRWB dimensional chain. Kinematic/dynamic models were introduced alongside an adaptive sliding mode controller, ensuring lateral translation error convergence. A YOLOv8 model achieved 0.951 precision, 0.95 mAP50, and 0.819 mAP50-95, striking a balance between detection accuracy and localization precision. Field trials of the prototype showed 88.3% WRR and 2.2% SDR, meeting northern China’s agronomic standards. Full article
Show Figures

Figure 1

11 pages, 559 KiB  
Article
Effects of Sitobion avenae Treated with Sublethal Concentrations of Dinotefuran on the Predation Function and Enzyme Activity of Harmonia axyridis
by Shaodan Fei, Jiacong Sun, Xingping Ren, Haiying Zhang and Yonggang Liu
Insects 2025, 16(7), 671; https://doi.org/10.3390/insects16070671 - 27 Jun 2025
Viewed by 387
Abstract
This study investigated the impact of sublethal concentrations of dinotefuran on the predatory behavior and detoxification enzyme activity of Harmonia axyridis, aiming to establish a theoretical foundation for the conservation and utilization of natural enemies and the effective management of wheat aphids. [...] Read more.
This study investigated the impact of sublethal concentrations of dinotefuran on the predatory behavior and detoxification enzyme activity of Harmonia axyridis, aiming to establish a theoretical foundation for the conservation and utilization of natural enemies and the effective management of wheat aphids. This study treated wheat aphids with sublethal concentrations (LC20 and LC30) of dinotefuran via the leaf dipping method and subsequently used them as prey for the fourth-instar larvae of H. axyridis. The predation amount, instantaneous attack rate, handling time, daily maximum predation amount, and detoxification enzyme activity of H. axyridis were statistically analyzed. The results indicated that the predation of H. axyridis on wheat aphids conformed to the Holling II disc equation. Moreover, in comparison to the control group, the handling time of H. axyridis on wheat aphids was extended, and at the same time, the instantaneous attack rate, maximum daily predation amount, and predation efficiency were all diminished. After the ingestion of LC20- and LC30-dinotefuran-treated aphids, the carboxylesterase levels in H. axyridis were not significantly different from the control, with levels 0.97-fold and 0.94-fold that of the control, respectively. Glutathione-S-transferase (GST) demonstrated an induction impact compared to the control, reaching 1.96- and 1.47-fold higher than the control, respectively. The activity of mixed-functional oxidase (MFO) demonstrated an induction effect compared to the control, measuring 1.98- and 3.04-fold higher than that of the control, respectively. Consequently, the predation function and detoxification enzyme activity of H. axyridis were influenced when consuming wheat aphids treated with sublethal concentrations of dinotefuran, with significant variations across different concentrations, potentially reflecting the survival strategy of insects under dinotefuran stress. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

24 pages, 1219 KiB  
Article
Antibacterial and Synergistic Effects of Terminalia citrina Leaf Extracts Against Gastrointestinal Pathogens: Insights from Metabolomic Analysis
by Sze-Tieng Ang, Tak Hyun Kim, Matthew James Cheesman and Ian Edwin Cock
Antibiotics 2025, 14(6), 593; https://doi.org/10.3390/antibiotics14060593 - 8 Jun 2025
Viewed by 1788
Abstract
Background/Objectives: Bacterial contamination leads to foodborne illnesses, and new antibiotics are required to combat these pathogens. Interest has increased in medicinal plants as targets for new antibiotics. Methods: This study evaluated the antibacterial activity of leaf extracts from Terminalia citrina (Gaertn.) [...] Read more.
Background/Objectives: Bacterial contamination leads to foodborne illnesses, and new antibiotics are required to combat these pathogens. Interest has increased in medicinal plants as targets for new antibiotics. Methods: This study evaluated the antibacterial activity of leaf extracts from Terminalia citrina (Gaertn.) Roxb. ex Fleming against four bacterial pathogens (including a methicillin-resistant Staphylococcus aureus (MRSA) strain) using disc diffusion and liquid microdilution assays. The phytochemical composition of the extracts were determined using ultra-high-performance liquid chromatography–mass spectrometry (UPLC-MS). Results: Both the aqueous and methanol extracts demonstrated noteworthy antibacterial activity against Bacillus cereus (MICs of 468.8 µg/mL and 562.5 µg/mL, respectively). Additionally, the extracts were effective against MRSA (MICs = 625 µg/mL). Strong antibacterial effects were also observed against S. aureus, with MICs of 625 µg/mL (aqueous extract) and 833.3 µg/mL (methanol extract). Twelve combinations of extracts and conventional antibiotics were synergistic against B. cereus and S. flexneri. UPLC-MS analysis revealed two flavonoids, orientin 2″-O-gallate and astragalin, exclusive to the aqueous extract, whilst pinocembrin and gallic acid were only detected in the methanol extract. Both extracts contained vitexin 2″-O-p-coumarate, ellagic acid, orientin, rutin, chebulic acid, terminalin, and quercetin-3β-D-glucoside. Both extracts were determined to be nontoxic. Conclusions: The abundance and diversity of polyphenols in the extracts may contribute to their strong antibacterial properties. Further research is required to investigate the antibacterial effects of the individual extract compounds, including their effects when combined with conventional antibiotics, and the potential mechanisms of action against foodborne pathogens. Full article
Show Figures

Graphical abstract

25 pages, 23822 KiB  
Article
Gas Chromatography/Mass Spectrometry Chemical Profiling of Volatile Compounds from Cranberry Plant Byproducts as Potential Antibacterials, Antifungals, and Antioxidants
by Martin Aborah, Frank Scarano and Catherine Neto
Molecules 2025, 30(9), 2047; https://doi.org/10.3390/molecules30092047 - 4 May 2025
Viewed by 707
Abstract
The increasing resistance of microorganisms to currently used antimicrobials requires the urgent development of new effective treatments. Plant-based natural products can be an alternative solution. The aerial plant parts of the cranberry (Vaccinium macrocarpon) present a potential new source of antimicrobial [...] Read more.
The increasing resistance of microorganisms to currently used antimicrobials requires the urgent development of new effective treatments. Plant-based natural products can be an alternative solution. The aerial plant parts of the cranberry (Vaccinium macrocarpon) present a potential new source of antimicrobial secondary metabolites. Volatile essential oils were extracted from Stevens, Early Black, and Mullica Queen variety plants by steam distillation (SD) and the Clevenger method (CM), and their profiles were characterized by GC-MS. The extracts and two identified constituents, cinnamaldehyde and terpineol, were screened by the disc diffusion assay against Gram-positive B. cereus ATCC 11778 and S. aureus ATCC 25923 and Gram-negative bacteria E. coli ATCC 25922, P. aeruginosa ATCC 27853, and C. albicans ATCC 14053. Radical scavenging antioxidant activity was also determined using the DPPH assay. The CM extracts were rich in fatty acids, sesquiterpenes, and diterpenes, whereas the SD extracts contained more aldehydes, monoterpenes, and phenylpropanoids. All volatile extracts showed promising antioxidant activity; leaf extract activity was significantly higher than the vine (p < 0.05). The CM leaf and vine extracts exhibited antimicrobial activity against B. cereus, S. aureus, E. coli, and C. albicans compared to the SD, and the leaf extracts were more effective than the vine extracts. Individual constituents of leaf and vine extracts, cinnamaldehyde and α-terpineol, also showed antimicrobial activity against these organisms. The active constituents of the CM extracts are yet to be identified. A multivariate analysis revealed a particular pattern of inhibition of the tested organisms. Based on our results, cranberry volatile extracts have potential for future valorization as antibacterials, antifungals, and antioxidants. Full article
Show Figures

Figure 1

13 pages, 485 KiB  
Article
Antioxidant, Antibacterial, and Antidiabetic Activities of Different Extracts from Wild Olive Leaves Grown in United Arab Emirates
by Maher M. Al-Dabbas, Rawan Al-Jaloudi, Hani J. Hamad, Bha’a Aldin Al-Nawasrah, Doa’a Al-Refaie, Mahmoud Abughoush, Ahmad Aldabbas and Sehar Iqbal
Processes 2025, 13(4), 998; https://doi.org/10.3390/pr13040998 - 26 Mar 2025
Viewed by 560
Abstract
Olive leaves (Olea europaea L.) are a source of natural bioactive compounds with various health benefits and are often considered agricultural waste. This study aimed to evaluate the antioxidant, antibacterial, and antidiabetic activities of an infused aqueous extract and ultrasonic-assisted extracts (aqueous, methanol, [...] Read more.
Olive leaves (Olea europaea L.) are a source of natural bioactive compounds with various health benefits and are often considered agricultural waste. This study aimed to evaluate the antioxidant, antibacterial, and antidiabetic activities of an infused aqueous extract and ultrasonic-assisted extracts (aqueous, methanol, ethyl acetate, and hexane) from wild olive leaves grown in the United Arab Emirates (UAE). The aqueous-infused extract exhibited the highest total phenolic content (TPC; 91.9 mg GAE/g extract), the highest reducing power activity, the lowest IC50 value for diphenyl-1-picrylhydrazyl (DPPH) inhibition (97.3% and 81.1 µg/mL, respectively), and the highest α-amylase and α-glucosidase inhibition activities (77.1% and 83.3%, respectively). Meanwhile, the ultrasonic-assisted methanolic extract exhibited the highest total flavonoid content (31.2 mg RE/g extract) and significant α-amylase and α-glucosidase inhibition activities (61.8% and 77.2%, respectively). The antimicrobial activity of wild olive leaf extracts (WOLEs) at concentrations of 1, 2.5, and 5 mg, tested using the disc diffusion method against Gram-positive and Gram-negative bacterial strains, was weak or ineffective at the studied concentrations. The study concluded that WOLEs are high in total phenolic and flavonoid content and antioxidant and antidiabetic activities, suggesting the potential use of WOLE in folk medicine. Full article
Show Figures

Figure 1

24 pages, 4831 KiB  
Article
Analysis and Evaluation of the Experimental Effect of Double-Disc Knife-Cutting Device for Carrot Combine Harvester
by Bokai Wang, Zhichao Hu, Fengwei Gu, Feng Wu, Mingzhu Cao and Yunjing Sun
Agriculture 2025, 15(7), 682; https://doi.org/10.3390/agriculture15070682 - 24 Mar 2025
Viewed by 585
Abstract
At present, the problems of the low cutting reliability and poor cutting quality of carrot harvesters in China are particularly prominent, directly leading to the problems of high root and stem damage rates, low stem and leaf cutting rates, and low cutting surface [...] Read more.
At present, the problems of the low cutting reliability and poor cutting quality of carrot harvesters in China are particularly prominent, directly leading to the problems of high root and stem damage rates, low stem and leaf cutting rates, and low cutting surface flatness rates. In order to solve these problems, we developed a disc-type double-disc cutting device. Based on the structural analysis and the central combination design theory of Box–Behnken, using three factors as influencing factors, namely, clamping and conveying speed, the rotary speed of the disc cutter, and the thickness of the disc cutter. A response surface experiment was carried out to analyze the influence of each factor on the high damage rates of the rhizome, the clean rates of stems and leaves, and the flatness rate of cutting surfaces to optimize the influencing factors. According to the test results, a regression mathematical model between test parameters and performance indexes was established, and optimization verification was carried out according to the regression model between test factors and indexes. Finally, the optimal parameter combination is as follows: a clamping and conveying speed of 1.0 m/s, a rotary speed of the disc cutter of 193.5 r/min, and a thickness of the disc cutter of 3.6 mm. The results of the field experiment showed that the root and stem damage rate was 2.61%, the stem and leaf-cutting rate was 87.32%, and the cutting surface flatness rate was 89.87%. Compared with a set of parameters commonly used in double-disc cutters to harvest carrots under the same conditions, the corresponding root and stem damage rates, stem and leaf-cutting rates, and productivity decreased by 2.16%, 1.97%, and 1.87%, respectively, and the comprehensive performance was obviously improved. The proposed research method can well simulate the cutting process in carrot harvesting and provide support for the development of carrot harvesting equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 4161 KiB  
Article
Systemic Uptake of Rhodamine Tracers Quantified by Fluorescence Imaging: Applications for Enhanced Crop–Weed Detection
by Yu Jiang, Masoume Amirkhani, Ethan Lewis, Lynn Sosnoskie and Alan Taylor
AgriEngineering 2025, 7(3), 49; https://doi.org/10.3390/agriengineering7030049 - 20 Feb 2025
Cited by 1 | Viewed by 878
Abstract
Systemic fluorescence tracers introduced into crop plants provide an active signal for crop–weed differentiation that can be exploited for precision weed management. Rhodamine B (RB), a widely used tracer for seeds and seedlings, possesses desirable properties; however, its application as a seed treatment [...] Read more.
Systemic fluorescence tracers introduced into crop plants provide an active signal for crop–weed differentiation that can be exploited for precision weed management. Rhodamine B (RB), a widely used tracer for seeds and seedlings, possesses desirable properties; however, its application as a seed treatment has been limited due to potential phytotoxic effects on seedling growth. Therefore, investigating mitigation strategies or alternative systemic tracers is necessary to fully leverage active signaling for crop–weed differentiation. This study aimed to identify and address the phytotoxicity concerns associated with Rhodamine B and evaluate Rhodamine WT and Sulforhodamine B as potential alternatives. A custom 2D fluorescence imaging system, along with analytical methods, was developed to optimize fluorescence imaging quality and facilitate quantitative characterization of fluorescence intensity and patterns in plant seedlings, individual leaves, and leaf disc samples. Rhodamine compounds were applied as seed treatments or in-furrow (soil application). Rhodamine B phytotoxicity was mitigated by growing in a sand and perlite media due to the adsorption of RB to perlite. Additionally, in-furrow and seed treatment methods were tested for Rhodamine WT and Sulforhodamine B to evaluate their efficacy as non-phytotoxic alternatives. Experimental results demonstrated that Rhodamine B applied via seed pelleting and Rhodamine WT used as a direct seed treatment were the most effective approaches. A case study was conducted to assess fluorescence signal intensity for crop–weed differentiation at a crop–weed seed distance of 2.5 cm (1 inch). Results indicated that fluorescence from both Rhodamine B via seed pelleting and Rhodamine WT as seed treatment was clearly detected in plant tissues and was ~10× higher than that from neighboring weed plant tissues. These findings suggest that RB ap-plied via seed pelleting effectively differentiates plant seedlings from weeds with reduced phytotoxicity, while Rhodamine WT as seed treatment offers a viable, non-phytotoxic alternative. In conclusion, the combination of the developed fluorescence imaging system and RB seed pelleting presents a promising technology for crop–weed differentiation and precision weed management. Additionally, Rhodamine WT, when used as a seed treatment, provides satisfactory efficacy as a non-phytotoxic alternative, further expanding the options for fluorescence-based crop–weed differentiation in weed management. Full article
Show Figures

Graphical abstract

20 pages, 7856 KiB  
Article
Inhibition Mechanism of Cinnamomum burmannii Leaf Essential Oil Against Aspergillus flavus and Aflatoxins
by Huanyan Liang, Feifei Lv, Mengting Xian, Chenghua Luo, Lei Zhang, Meihua Yang, Qian Li and Xiangsheng Zhao
Foods 2025, 14(4), 682; https://doi.org/10.3390/foods14040682 - 17 Feb 2025
Cited by 2 | Viewed by 1107
Abstract
This investigation evaluates the comparative efficacy of Cinnamomum burmannii leaf essential oil (YXYO) and its main active ingredients as a novel preservative to protect stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination caused by Aspergillus flavus. Morphological [...] Read more.
This investigation evaluates the comparative efficacy of Cinnamomum burmannii leaf essential oil (YXYO) and its main active ingredients as a novel preservative to protect stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination caused by Aspergillus flavus. Morphological observations utilizing SEM and TEM revealed significant alterations in treated samples, alongside a decrease in ergosterol content and a dose-dependent disruption of the antioxidant system and energy system. Transcriptomic analysis suggested that differentially expressed genes were predominantly associated with spore growth, the cell wall, the cell membrane, oxidative stress, energy metabolism, and aflatoxin biosynthesis. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) identified ten active ingredients in YXYO, including borneol, α-terpineol, terpinen-4-ol, etc. Moreover, an effective inhibition of A. flavus infection in peanuts was observed with the application of 30 μL/disc of YXYO and a blend of its active compounds. Full article
Show Figures

Figure 1

19 pages, 7059 KiB  
Article
The Inevitable Fate of Tetranychus urticae on Tomato Plants Treated with Entomopathogenic Fungi and Spinosad
by Waqas Wakil, Maria C. Boukouvala, Nickolas G. Kavallieratos, Aqsa Naeem, Dionysios Ntinokas, Muhammad Usman Ghazanfar and Pasco B. Avery
J. Fungi 2025, 11(2), 138; https://doi.org/10.3390/jof11020138 - 12 Feb 2025
Viewed by 1429
Abstract
Tetranychus urticae (Acari: Tetranychidae) is a pervasive and damaging mite pest of tomato crops, leading to important economic losses globally. This study evaluated the acaricidal efficacy of spinosad, alone and in combination with Beauveria bassiana (Bb) WG-21 and Metarhizium robertsii ( [...] Read more.
Tetranychus urticae (Acari: Tetranychidae) is a pervasive and damaging mite pest of tomato crops, leading to important economic losses globally. This study evaluated the acaricidal efficacy of spinosad, alone and in combination with Beauveria bassiana (Bb) WG-21 and Metarhizium robertsii (Mr) WG-04, in the laboratory (application to tomato leaf discs) and greenhouse (application to tomato plants), considering mortality and establishment, respectively. The combination treatments of Bb WG-21 or Mr WG-04 with spinosad achieved 100% mortality of T. urticae nymphs within 2 days on leaf discs, while individual applications of each control agent resulted in lower mortalities, ranging between 62.91 and 86.25% after 3 days. The paired treatment of Mr WG-04 + spinosad killed all exposed adults within 5 d, while that of Bb WG-21 + spinosad achieved the same results after 7 d. However, spinosad, Mr WG-04, and Bb WG-21 alone killed ≥77.08% of adults after 7 d. In the greenhouse, the combination treatment of WG-04 + spinosad deterred the presence of T. urticae (adults, immatures, and eggs) on either surface of the tomato leaves, while Bb WG-21 + spinosad suppressed the populations only on the adaxial surface. These findings indicate that combined treatments of the tested EPF + spinosad, especially Mr WG-04, on tomato plants under greenhouse conditions can provide substantially enhanced control of T. urticae life stages compared to each treatment applied alone. Full article
Show Figures

Figure 1

19 pages, 6526 KiB  
Article
Biosystematic, Essential Oil, and Biological Activity Studies on Medicinal Plant Moluccella L. (Lamiaceae) Species from Turkey
by Pelin Yilmaz Sancar
Plants 2025, 14(4), 542; https://doi.org/10.3390/plants14040542 - 10 Feb 2025
Viewed by 616
Abstract
This study aims to determine the biosystematic (morphological, anatomical, palynological) characteristics of Moluccella (M. laevis and M. spinosa) species growing in Turkey, the components of their essential oil (EOs), and some of their biological activities (antimicrobial and radical scavenging capacity). In [...] Read more.
This study aims to determine the biosystematic (morphological, anatomical, palynological) characteristics of Moluccella (M. laevis and M. spinosa) species growing in Turkey, the components of their essential oil (EOs), and some of their biological activities (antimicrobial and radical scavenging capacity). In the biosystematic studies, morphological, anatomical, and palynological analyses were performed. The stem, leaf, flower, and seed characteristics of the plants, along with various ecological properties, were examined and the necessary measurements were taken and presented. In the anatomical studies, the root, stem, leaf, and petioles of the species were photographed under a light microscope to determine their anatomical features. Additionally, light microscope and scanning electron microscope studies were conducted to reveal the surface properties of pollen and seeds. The chemical composition of the EOs of the plant samples was analyzed by GC-MS (Gas Chromatography–Mass Spectrometry). The main components of the EOs of the examined species are α-thujene, β-pinene, β-caryophyllene, and 2-pentadecanone. Significant differences have been found in the EO component profiles of Moluccella laevis and Moluccella spinosa. While a total of 33 components were found in M. laevis, 59 components were detected in M. spinosa. The EO yield was higher in M. spinosa compared to M. laevis. The antimicrobial activity was tested using both disc diffusion and the MIC (minimum inhibitory concentration) methods. The results showed that the methanolic extracts prepared from the aerial parts of the plant samples exhibited varying levels of antimicrobial and antifungal activity against the tested microorganisms. The antioxidant capacity of the methanolic extract was measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging capacity. The DPPH radical scavenging capacity increased with the increasing concentrations of both plant extracts. Antimicrobial capacity was higher in M. spinosa, while radical scavenging capacity was higher in M. laevis. As a result of the obtained data, although the studied species share similar features, they exhibit significant differences in terms of morphological, anatomical, and palynological characteristics. The antimicrobial and radical scavenging capacities of the plants were noteworthy. The data obtained from this study, which are being presented for the first time in the literature, provide a valuable resource for researchers working on this genus. Full article
(This article belongs to the Special Issue Chemical Characteristics and Bioactivity of Plant Natural Products)
Show Figures

Figure 1

21 pages, 2913 KiB  
Article
Urtica dioica Aqueous Leaf Extract: Chemical Composition and In Vitro Evaluation of Biological Activities
by Nouha Dakhli, Auxiliadora López-Jiménez, Casimiro Cárdenas, Manel Hraoui, Jihene Dhaouafi, Manuel Bernal, Hichem Sebai and Miguel Ángel Medina
Int. J. Mol. Sci. 2025, 26(3), 1220; https://doi.org/10.3390/ijms26031220 - 30 Jan 2025
Cited by 2 | Viewed by 2009
Abstract
Urtica dioica L. has been used as a natural remedy due to its healing properties for over 2000 years. The aim of this study is to investigate the chemical composition, antimicrobial, antioxidant, and antitumor properties in vitro of the aqueous extract of Urtica [...] Read more.
Urtica dioica L. has been used as a natural remedy due to its healing properties for over 2000 years. The aim of this study is to investigate the chemical composition, antimicrobial, antioxidant, and antitumor properties in vitro of the aqueous extract of Urtica dioica leaves (AEUD). The chemical composition was assessed by an ultra-high-performance liquid chromatography system coupled to a benchtop QExactive high-resolution accurate mass spectrometry operating in a data-dependent acquisition mode as a non-target approach. Minimal inhibitory concentration (MIC) and disc diffusion were used to assess the antibacterial efficacy against nine bacterial strains. The antioxidant impact was assessed using DPPH, ABTS, FRAP, and ferrous ion-chelating ability assays. By using the MTT method, the cytotoxicity effect of AEUD on colon cancer cell HCT-116 was evaluated. Flow cytometry was used to analyze the cell cycle. Finally, the anti-migration and anti-invasion properties of AEUD on HCT-116 cells were estimated using the wound healing test and Transwell assays. AEUD is a rich source of phenolic compounds. The results of disc diffusion and MIC showed that the AEUD is more active against Gram-positive bacteria than against Gram-negative bacteria. MTT assay confirmed that the AEUD inhibited HCT-116 colon cancer cell proliferation. Findings of flow cytometry confirmed that cell cycle arrest occurred at the G2 phase. Additionally, AEUD had anti-migration and anti-invasion effects. This study shows that Urtica dioica aqueous leaf extract exhibits potential antibacterial, antioxidant, and antitumoral activities on HCT-116 colon cancer cells. Full article
Show Figures

Figure 1

13 pages, 12974 KiB  
Article
Microdochium majus Isolated from Grapevine Is a Mycoparasite of Botrytis cinerea
by Kálmán Zoltán Váczy, Dóra Szabó, Nikolett Molnár, Tibor Kiss, Levente Kiss, Yu Pei Tan, Ádám Novák, Xénia Pálfi, Adrienn Gomba-Tóth and Zoltán Karácsony
J. Fungi 2025, 11(1), 31; https://doi.org/10.3390/jof11010031 - 4 Jan 2025
Viewed by 956
Abstract
The best known Microdochium spp. are important pathogens of small-grain cereals and/or endophytes of diverse monocot hosts. This study is the first report of M. majus isolated from asymptomatic grapevine tissues. It was hypothesised that this M. majus strain, CBS 152328, was an [...] Read more.
The best known Microdochium spp. are important pathogens of small-grain cereals and/or endophytes of diverse monocot hosts. This study is the first report of M. majus isolated from asymptomatic grapevine tissues. It was hypothesised that this M. majus strain, CBS 152328, was an endophyte and an antagonist of some fungal pathogens of grapevine. Microscopic examinations revealed that this strain was a necrotrophic mycoparasite of Botrytis cinerea. This was demonstrated in the confrontation zones of dual cultures of M. majus and B. cinerea, and also on the surface of co-inoculated grape leaf discs and germinated wheat grains. Pathogenicity tests indicated that M. majus can colonise both grape leaf discs and germinated wheat, but it only damaged wheat. When co-inoculated with B. cinerea onto grape leaf discs, the M. majus strain CBS 152328 suppressed its mycohost on grape tissues and prevented leaf necrosis caused by B. cinerea. In addition to the parasitism, M. majus also showed mild antibiosis against B. cinerea, as well as a defence elicitor effect on grape leaf discs. This work is the first report of the mycoparasitic behaviour of M. majus, in addition to its first isolation from a dicot host. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

16 pages, 3521 KiB  
Article
Expression and Characterization of Alkaline Phosphatase from Cobetia amphilecti KMM 296 in Transiently Transformed Tobacco Leaves and Transgenic Calli
by Peter Adeolu Adedibu, Yulia Aleksandrovna Noskova, Yulia Anatolievna Yugay, Daria Mikhailovna Ovsiannikova, Elena Anatolievna Vasyutkina, Olesya Dmitrievna Kudinova, Valeria Petrovna Grigorchuk, Yury Nikolaevich Shkryl, Liudmila Aleksandrovna Tekutyeva and Larissa Anatolievna Balabanova
Plants 2024, 13(24), 3570; https://doi.org/10.3390/plants13243570 - 21 Dec 2024
Cited by 1 | Viewed by 1346
Abstract
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and [...] Read more.
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders. This study aims to produce recombinant ALP from the marine bacterium Cobetia amphilecti KMM 296 (CmAP) in transformed leaves and calli of Nicotiana tabacum and to elucidate the influence of the plant host on its physical and chemical properties. N. tabacum has proven to be versatile and is extensively used as a heterologous host in molecular farming. The alp gene encoding for CmAP was cloned into the binary vectors pEff and pHREAC and transformed into N. tabacum leaves through agroinfiltration and the leaf disc method for callus induction using Agrobacterium tumefaciens strain EHA105. Transformed plants were screened for recombinant CmAP (rCmAP) production by its enzymatic activity and protein electrophoresis, corresponding to 55 kDa of mature CmAP. A higher rCmAP activity (14.6 U/mg) was detected in a homogenate of leaves bearing the pEFF-CmAP construct, which was further purified 150-fold using metal affinity, followed by anion exchange chromatography. Enzymatic activity and stability were assessed at different temperatures (15–75 °C) and exposure times (≤1 h), with different buffers, pHs, divalent metal ions, and salt concentrations. The results show that rCmAP is relatively thermostable, retaining its activity at 15–45 °C for up to 1 h. Its activity is highest in Tris HCl (pH 9.0–11.0) at 35 °C for 40 min. rCmAP shows higher salt-tolerance and divalent metal-dependence than obtained in Escherichia coli. This can be further explored for cost-effective and massively scalable production of LPS-free CmAP for possible biomedical and agricultural applications. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

Back to TopTop