Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (207)

Search Parameters:
Keywords = lead-free piezoelectrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2891 KiB  
Article
Hysteresis Loops Design for Nanoporous Ferroelectrics
by Xuan Huang, Fengjuan Yang, Lifei Du, Jiong Wang, Yongfeng Liang and Pingping Wu
Materials 2025, 18(15), 3606; https://doi.org/10.3390/ma18153606 - 31 Jul 2025
Viewed by 197
Abstract
The design and adjustable properties of nanoporous materials are important for current and future technological applications, research, and development. In addition, nanoporous ferroelectric materials have the potential to achieve competitive ferroelectric, dielectric, and piezoelectric characteristics. In this work, using the phase-field model, we [...] Read more.
The design and adjustable properties of nanoporous materials are important for current and future technological applications, research, and development. In addition, nanoporous ferroelectric materials have the potential to achieve competitive ferroelectric, dielectric, and piezoelectric characteristics. In this work, using the phase-field model, we found that the shape of pores in barium titanite ceramics governs the formation of the ferroelectric domain structure and the switching hysteresis loop. A remanent polarization-coercive field (Pr-Ec) diagram is introduced to denote the shape of the hysteresis loops. We performed a fundamental study in understanding how the domain structures affect the properties of domain-engineered porous ferroelectrics. Simulation results show that the hysteresis loop of porous ferroelectrics can be designed by controlling the shape/orientation of the ellipse-shaped pores. Numerical simulations also verify that the dielectric/piezoelectric properties can be improved with artificially designed porous structures. These phase-field results may be useful in the development of highly performing lead-free ferroelectric/piezoelectric materials. Full article
(This article belongs to the Special Issue Advances in Piezoelectric/Dielectric Ceramics and Composites)
Show Figures

Figure 1

14 pages, 6801 KiB  
Article
Effect of Zr Doping on BNT–5BT Lead-Free Ceramics: Substitutional and Excess Incorporation Analysis
by Mauro Difeo, Miriam Castro and Leandro Ramajo
Micro 2025, 5(3), 35; https://doi.org/10.3390/micro5030035 - 28 Jul 2025
Viewed by 147
Abstract
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of [...] Read more.
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of Zr4+ at the Ti4+ site (BNT–5BT–xZrsub), and (ii) the addition of ZrO2 in excess (BNT–5BT–xZrexc). The samples were synthesized via conventional solid-state reaction and characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM/EDS), and electrical measurements, including dielectric, ferroelectric, and piezoelectric responses. Both doping routes were found to influence phase stability and electromechanical performance. Substitutional doping notably reduced the coercive field while preserving high remanent polarization, resulting in an enhanced piezoelectric coefficient (d33). These results highlight the potential of Zr-modified BNT–5BT ceramics for lead-free energy harvesting applications. Full article
Show Figures

Figure 1

16 pages, 3287 KiB  
Article
Interference Effect Between a Parabolic Notch and a Screw Dislocation in Piezoelectric Quasicrystals
by Yuanyuan Gao, Guanting Liu, Chengyan Wang and Junjie Fan
Crystals 2025, 15(7), 647; https://doi.org/10.3390/cryst15070647 - 15 Jul 2025
Viewed by 203
Abstract
This study investigates the coupling mechanism between a parabolic notch and dislocations in one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) based on the theory of complex variable functions. By applying perturbation techniques and the Cauchy integral, analytical solutions for complex potentials are derived, yielding [...] Read more.
This study investigates the coupling mechanism between a parabolic notch and dislocations in one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) based on the theory of complex variable functions. By applying perturbation techniques and the Cauchy integral, analytical solutions for complex potentials are derived, yielding closed-form expressions for the phonon–phason stress field and electric displacement field. Numerical examples reveal several key findings: significant stress concentration occurs at the notch root, accompanied by suppression of electric displacement; interference patterns between dislocation cores and notch-induced stress singularities are identified; the J-integral quantifies distance-dependent forces, size effects, and angular force distributions reflecting notch symmetry; and the energy-driven dislocation slip toward free surfaces leads to the formation of dislocation-free zones. These results provide new insights into electromechanical fracture mechanisms in quasicrystals. Full article
Show Figures

Figure 1

10 pages, 1483 KiB  
Article
Ferroelectric and Piezoelectric Properties of (Mg1/3Nb2/3)4+-Doped Bismuth Sodium Titanate Ceramics
by Yonggang Zhao, Ning Yang, Yi Chen, Xingting Li, Luyao Wang, Peng Wang and Guangzhi Dong
Ceramics 2025, 8(3), 88; https://doi.org/10.3390/ceramics8030088 - 13 Jul 2025
Viewed by 264
Abstract
Lead-free (Bi1/2Na1/2)(Ti1−x(Mg1/3Nb2/3)x)O3 ceramics were synthesized using the solid-phase method, and the effects of varying (Mg1/3Nb2/3)4+ content, substituting for Ti4+ ions at the B-site of [...] Read more.
Lead-free (Bi1/2Na1/2)(Ti1−x(Mg1/3Nb2/3)x)O3 ceramics were synthesized using the solid-phase method, and the effects of varying (Mg1/3Nb2/3)4+ content, substituting for Ti4+ ions at the B-site of the BNT perovskite lattice, on piezoelectric performance were systematically investigated. The influence of sintering temperature on both piezoelectric and ferroelectric properties was also explored, revealing that sintering temperature significantly affects both the microstructure and the electrical properties of the ceramics. The results indicate that the incorporation of (Mg1/3Nb2/3)4+ significantly enhances the piezoelectric and ferroelectric properties of BNT ceramics. Specifically, a maximum piezoelectric constant of 91 pC/N was achieved at a sintering temperature of 1160 °C and a doping concentration of x = 0.01. By comparing the ferroelectric properties across different doping levels and sintering temperatures, this study provides valuable insights for further design and process optimization of BNT-based piezoelectric materials. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

10 pages, 6843 KiB  
Article
Correlation Between Microstructure and Electric Behavior of (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 Ceramics Prepared via Chemical-Furnace-Assisted Combustion Synthesis
by Haiqin Ding, Jun Wang, Tongchun Qin, Lingling Cui, Guodong Jia, Guang Ji and Zhiwei Li
Coatings 2025, 15(7), 817; https://doi.org/10.3390/coatings15070817 - 12 Jul 2025
Viewed by 594
Abstract
The (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 (x = 0–0.20) lead-free ceramics were prepared through the chemical-furnace-assisted combustion synthesis (abbreviated as CFACS). The phase structure, microstructure, dielectric, and piezoelectric properties were systematically investigated. Phase analysis revealed the [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 (x = 0–0.20) lead-free ceramics were prepared through the chemical-furnace-assisted combustion synthesis (abbreviated as CFACS). The phase structure, microstructure, dielectric, and piezoelectric properties were systematically investigated. Phase analysis revealed the coexistence of orthorhombic and tetragonal phases in the vicinity of x = 0.07. More importantly, the composition with x = 0.07 exhibited optimal overall electrical properties, including a high piezoelectric coefficient (d33) of 495 pC/N, the planar electromechanical coupling factor (Kp) of 41.9%, and the Curie temperature (Tc) of 123.7 °C. In addition, the average grain size was observed to progressively decrease with increasing x. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

11 pages, 1806 KiB  
Article
Enhanced Electrical Property and Thermal Stability in Lead-Free BNT–BT–BF Ceramics
by Kangle Zhou, Enxiang Hou, Yanfeng Qu, Yan Mu and Junjun Wang
Ceramics 2025, 8(2), 70; https://doi.org/10.3390/ceramics8020070 - 7 Jun 2025
Viewed by 989
Abstract
The synergistic combination of outstanding electrical properties and exceptional thermal stability holds significant implications for advancing piezoelectric ceramic applications. In this work, lead-free ((1−x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (x = 0.08, 0.10, 0.12)) ceramics were synthesized using a [...] Read more.
The synergistic combination of outstanding electrical properties and exceptional thermal stability holds significant implications for advancing piezoelectric ceramic applications. In this work, lead-free ((1−x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (x = 0.08, 0.10, 0.12)) ceramics were synthesized using a conventional solid-state method, with systematic investigation of phase evolution, microstructural characteristics, and their coupled effects on electromechanical performance and thermal stability. Rietveld refinement analysis revealed a rhombohedral–tetragonal (R–T) phase coexistence, where the tetragonal phase fraction maximized at x = 0.10. This structural optimization enabled the simultaneous enhancement of piezoelectricity and thermal resilience. The x = 0.10 composition achieved recorded values of d33 = 132 pC/N, g33 = 26.11 × 10−3 Vm/N, and a depolarization temperature Td = 105 °C. These findings establish BiFeO3 doping as a dual-functional strategy for developing high-performance lead-free ceramics. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

20 pages, 5396 KiB  
Article
Reducing Sintering Temperature While Optimizing Electrical Properties of BCZT-Based Lead-Free Ceramics by Adding MnO2 as Sintering Aid
by Xinlin Yang, Bijun Fang, Shuai Zhang, Xiaolong Lu and Jianning Ding
Materials 2025, 18(8), 1888; https://doi.org/10.3390/ma18081888 - 21 Apr 2025
Viewed by 430
Abstract
In order to reduce the sintering temperature, MnO2 was used as a sintering aid to prepare [(Ba0.85Ca0.15)0.999(Dy0.5Tb0.5)0.001](Zr0.1Ti0.9)O3-x mol% MnO2 (BCDTZT-x mol% MnO2 [...] Read more.
In order to reduce the sintering temperature, MnO2 was used as a sintering aid to prepare [(Ba0.85Ca0.15)0.999(Dy0.5Tb0.5)0.001](Zr0.1Ti0.9)O3-x mol% MnO2 (BCDTZT-x mol% MnO2, x = 0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 3) lead-free piezoelectric ceramics in which the effects of the MnO2 doping amount and sintering temperature on the phase structure, sintering behavior, and electrical properties of the BCDTZT-x mol% MnO2 ceramics were systematically analyzed. All ceramics have a single perovskite structure and coexist in multiple phases. The optimal sintering temperature was reduced from 1515 °C to 1425 °C, and the density of all ceramics was increased as compared with the undoped ceramic, reaching a maximum of 5.38 g/cm3 at x = 0.8 mol%. An appropriate MnO2 doping amount of 0.4 mol% could effectively suppress oxygen vacancies and improve electrical properties, resulting in the best comprehensive performance of the ceramics, with a dielectric constant maximum of 12,817, a high piezoelectric constant of 330 pC/N, and good strain value (Smax = 0.118%) and low strain hysteresis (Hys = 2.66%). The calculation of activation energy indicated that the high-temperature conductivity was dominated by oxygen vacancies in all ceramics. The results showed that the appropriate introduction of MnO2 as a sintering aid could improve the performance of BCZT-based ceramics while reducing the sintering temperature, presenting high practical application value in the fields of low electric field sensors and actuators. Full article
Show Figures

Figure 1

20 pages, 7521 KiB  
Article
The Design and Fabrication of Shear-Mode Piezoelectric Accelerometers with High Bandwidth Using High Piezoelectric g-Coefficient NKN-Based Ceramics
by Jian-Hao Huang, Chien-Min Cheng, Sheng-Yuan Chu and Cheng-Che Tsai
Materials 2025, 18(8), 1813; https://doi.org/10.3390/ma18081813 - 15 Apr 2025
Viewed by 394
Abstract
In this work, lead-free (Na0.475K0.475Li0.05)NbO3 + x wt.% ZnO (NKLN, x = 0 to 0.3) piezoelectric ceramics with high piezoelectric g-coefficients were prepared by conventional solid-state synthesis method. By adding different concentrations of ZnO dopants, we [...] Read more.
In this work, lead-free (Na0.475K0.475Li0.05)NbO3 + x wt.% ZnO (NKLN, x = 0 to 0.3) piezoelectric ceramics with high piezoelectric g-coefficients were prepared by conventional solid-state synthesis method. By adding different concentrations of ZnO dopants, we aimed to improve the material properties and enhance their piezoelectric properties. The effects of the ZnO addition on the microstructure, dielectric, piezoelectric and ferroelectric properties of the proposed samples are investigated. Adding ZnO reduced the dielectric constant and improved the g-value of the samples. The properties of the samples without ZnO doping were g33 = 31 mV·m/N, g15 = 34 mV·m/N, kp = 0.39, Qm = 92, εr = 458, d33 = 127 pC/N and dielectric loss = 3.4%. With the preferable ZnO doping of 1 wt.%, the piezoelectric properties improved to g33 = 40 mV·m/N, g15 = 44 mV·m/N, kp = 0.44, Qm = 89, εr = 406, d33 = 139 pC/N and dielectric loss = 2.4%. Finally, ring-shaped shear mode piezoelectric accelerometers were fabricated using the optimum ZnO-doped samples. The simulated resonant frequency using ANSYS 2024 R1 software was approximately 23 kHz, while the actual measured resonant frequency of the devices was 19 kHz. The sensitivity was approximately 7.08 mV/g. This piezoelectric accelerometer suits applications requiring lower sensitivity and higher resonant frequencies, such as monitoring high-frequency vibrations in high-speed machinery, robotic arms or scientific research and engineering fields involving high-frequency vibration testing. Full article
(This article belongs to the Special Issue Advances in Ferroelectric and Piezoelectric Materials)
Show Figures

Figure 1

16 pages, 3807 KiB  
Article
A Study on the Effect of Conductive Particles on the Performance of Road-Suitable Barium Titanate/Polyvinylidene Fluoride Composite Materials
by Zhenhua Zhao, Rui Li, Chen Zhao and Jianzhong Pei
Materials 2025, 18(5), 1185; https://doi.org/10.3390/ma18051185 - 6 Mar 2025
Cited by 1 | Viewed by 874
Abstract
The design of piezoelectric roads is one of the future directions of smart roads. In order to ensure the environmentally friendly and long-lasting use of piezoelectric road materials, lead-free piezoelectric ceramics (barium titanate), polymer piezoelectric materials (polyvinylidene fluoride), and conductive particles (conductive carbon [...] Read more.
The design of piezoelectric roads is one of the future directions of smart roads. In order to ensure the environmentally friendly and long-lasting use of piezoelectric road materials, lead-free piezoelectric ceramics (barium titanate), polymer piezoelectric materials (polyvinylidene fluoride), and conductive particles (conductive carbon black and graphene) were used to prepare composite piezoelectric materials. The electrical performance was studied by the conductivity, dielectric properties, and piezoelectric properties of the composite materials. Then, the mechanical properties of the composite material were investigated by load compression tests. Finally, the microstructure of the composite materials was studied. The results showed that as the amount of conductive particles increased, the electrical performance was improved. However, further addition of conductive particles led to a decline in the electrical performance. The addition of conductive particles had a minimal effect on the mechanical properties of composite materials. The composite material met road use requirements. The overall structure of the composite materials was compact, with a clear wrapping effect of the polymer, and good interface compatibility. The addition of conductive carbon black and graphene had no significant impact on the structure of the composite materials. Full article
Show Figures

Figure 1

21 pages, 6656 KiB  
Article
A Flexible PVDF Sensor for Forcecardiography
by Salvatore Parlato, Jessica Centracchio, Eliana Cinotti, Gaetano D. Gargiulo, Daniele Esposito, Paolo Bifulco and Emilio Andreozzi
Sensors 2025, 25(5), 1608; https://doi.org/10.3390/s25051608 - 6 Mar 2025
Cited by 1 | Viewed by 1659
Abstract
Forcecardiography (FCG) uses force sensors to record the mechanical vibrations induced on the chest wall by cardiac and respiratory activities. FCG is usually performed via piezoelectric lead-zirconate titanate (PZT) sensors, which simultaneously record the very slow respiratory movements of the chest, the slow [...] Read more.
Forcecardiography (FCG) uses force sensors to record the mechanical vibrations induced on the chest wall by cardiac and respiratory activities. FCG is usually performed via piezoelectric lead-zirconate titanate (PZT) sensors, which simultaneously record the very slow respiratory movements of the chest, the slow infrasonic vibrations due to emptying and filling of heart chambers, the faster infrasonic vibrations due to movements of heart valves, which are usually recorded via Seismocardiography (SCG), and the audible vibrations corresponding to heart sounds, commonly recorded via Phonocardiography (PCG). However, PZT sensors are not flexible and do not adapt very well to the deformations of soft tissues on the chest. This study presents a flexible FCG sensor based on a piezoelectric polyvinylidene fluoride (PVDF) transducer. The PVDF FCG sensor was compared with a well-assessed PZT FCG sensor, as well as with an electro-resistive respiratory band (ERB), an accelerometric SCG sensor, and an electronic stethoscope for PCG. Simultaneous recordings were acquired with these sensors and an electrocardiography (ECG) monitor from a cohort of 35 healthy subjects (16 males and 19 females). The PVDF sensor signals were compared in terms of morphology with those acquired simultaneously via the PZT sensor, the SCG sensor and the electronic stethoscope. Moreover, the estimation accuracies of PVDF and PZT sensors for inter-beat intervals (IBIs) and inter-breath intervals (IBrIs) were assessed against reference ECG and ERB measurements. The results of statistical analyses confirmed that the PVDF sensor provides FCG signals with very high similarity to those acquired via PZT sensors (median cross-correlation index of 0.96 across all subjects) as well as with SCG and PCG signals (median cross-correlation indices of 0.85 and 0.80, respectively). Moreover, the PVDF sensor provides very accurate estimates of IBIs, with R2 > 0.99 and Bland–Altman limits of agreement (LoA) of [−5.30; 5.00] ms, and of IBrIs, with R2 > 0.96 and LoA of [−0.510; 0.513] s. The flexibility of the PVDF sensor makes it more comfortable and ideal for wearable applications. Unlike PZT, PVDF is lead-free, which increases safety and biocompatibility for prolonged skin contact. Full article
(This article belongs to the Special Issue Sensors for Heart Rate Monitoring and Cardiovascular Disease)
Show Figures

Figure 1

16 pages, 3334 KiB  
Article
Lead-Free Ceramics in Prestressed Ultrasonic Transducers
by Claus Scheidemann, Peter Bornmann, Walter Littmann and Tobias Hemsel
Actuators 2025, 14(2), 55; https://doi.org/10.3390/act14020055 - 25 Jan 2025
Cited by 1 | Viewed by 1116
Abstract
Today’s ultrasonic transducers find broad application in diverse technology branches and most often cannot be replaced by other actuators. They are typically based on lead-containing piezoelectric ceramics. These should be replaced for environmental and health issues by lead-free alternatives. Multiple material alternatives are [...] Read more.
Today’s ultrasonic transducers find broad application in diverse technology branches and most often cannot be replaced by other actuators. They are typically based on lead-containing piezoelectric ceramics. These should be replaced for environmental and health issues by lead-free alternatives. Multiple material alternatives are already known, but there is a lack of information about their technological readiness level. To fill this gap, a small series of prestressed longitudinally vibrating transducers was set up with a standard PZT material and two lead-free variants within this study. The entire process for building the transducers is documented: characteristics of individual ring ceramics, burn-in results, and free vibration and characteristics under load are shown. The main result is that the investigated lead-free materials are ready to use within ultrasonic bolted Langevin transducers (BLTs) for medium-power applications, when the geometrical setup of the transducer is adopted. Since lead-free ceramics need higher voltages to achieve the same power level, the driving electronics or the mechanical setup must be altered specifically for each material. Lower self-heating of the lead-free materials might be attractive for heat-sensitive processes. Full article
(This article belongs to the Special Issue Piezoelectric Ultrasonic Actuators and Motors)
Show Figures

Figure 1

26 pages, 7707 KiB  
Review
Textured Lead-Free Piezoelectric Ceramics: A Review of Template Effects
by Temesgen Tadeyos Zate, Cenk Abdurrahmanoglu, Vincenzo Esposito and Astri Bjørnetun Haugen
Materials 2025, 18(3), 477; https://doi.org/10.3390/ma18030477 - 21 Jan 2025
Cited by 4 | Viewed by 1730
Abstract
Crystallographic texture engineering through templated grain growth (TGG) has gained prominence as a highly effective strategy for optimizing the electromechanical performance of lead-free piezoelectric ceramics, offering a pathway toward sustainable alternatives to lead-based systems like lead zirconate titanate (PZT). By achieving high degrees [...] Read more.
Crystallographic texture engineering through templated grain growth (TGG) has gained prominence as a highly effective strategy for optimizing the electromechanical performance of lead-free piezoelectric ceramics, offering a pathway toward sustainable alternatives to lead-based systems like lead zirconate titanate (PZT). By achieving high degrees of texture, with Lotgering factors (LFs) often exceeding 90%, these systems have demonstrated piezoelectric properties that rival or even surpass their lead-based counterparts. Despite these advancements, the field lacks a comprehensive understanding of how specific template parameters influence the texture quality and functional properties across different material systems. This review provides an in-depth analysis of the influence of the template morphology, composition, and crystallographic orientation on the texturing of key lead-free systems, including BaTiO3 (BT), (K0.5Na0.5)NbO3 (KNN), and Bi0.5Na0.5TiO3 (BNT). Furthermore, it explores how the template selection affects the induced crystallographic direction, and how this impacts the material’s phase structure and domain configurations, ultimately influencing the piezoelectric and dielectric properties. By consolidating the existing knowledge and identifying current challenges, this work highlights key strategies for optimizing the texture and electromechanical performance in lead-free ceramics, providing essential insights for future research aimed at advancing high-performance, environmentally friendly piezoelectric materials for applications such as sensors, actuators, and energy-harvesting devices. Full article
Show Figures

Figure 1

30 pages, 4508 KiB  
Review
Participation of Polymer Materials in the Structure of Piezoelectric Composites
by Cosmin Ionuț Pîrvu, Alexandru Sover and Mărioara Abrudeanu
Polymers 2024, 16(24), 3603; https://doi.org/10.3390/polym16243603 - 23 Dec 2024
Cited by 4 | Viewed by 1997
Abstract
This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO3, KNN, or PZT with polymers such as PVDF exhibit significant potential due [...] Read more.
This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO3, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications. This review discusses the evolution of lead-free ceramics, the challenges in improving polymer–ceramic interfaces, and innovations like 3D printing and surface functionalization, which enhance charge transfer and material durability. It also covers the effects of radiation on these materials, particularly in nuclear applications, and strategies to enhance radiation resistance. The review concludes that polymer materials play a critical role in advancing piezoelectric composite technologies by addressing environmental and functional challenges, paving the way for future innovations. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 9448 KiB  
Article
In-Situ Nanoindentation Surface Topography of Lead-Free Piezoelectric Thin Films
by Maxence Bigerelle, Julie Lemesle, Alex Montagne and Denis Remiens
Appl. Sci. 2024, 14(24), 11849; https://doi.org/10.3390/app142411849 - 18 Dec 2024
Cited by 1 | Viewed by 955
Abstract
Surface roughness significantly affects the performance of microelectromechanical systems (MEMS) and piezoelectric films. This study investigates the impact of surface roughness on the mechanical properties of thin piezoelectric films using nanoindentation and scanning probe microscopy (SPM). Four piezoelectric films with different thicknesses (220, [...] Read more.
Surface roughness significantly affects the performance of microelectromechanical systems (MEMS) and piezoelectric films. This study investigates the impact of surface roughness on the mechanical properties of thin piezoelectric films using nanoindentation and scanning probe microscopy (SPM). Four piezoelectric films with different thicknesses (220, 350, and 450 nm) and substrate configurations (LNO/SiO2/Si or LNO/Si) were analyzed. A discriminant analysis revealed that the fractal dimension is more effective than the arithmetic mean height (Sa) for distinguishing surfaces, with only 2% misclassification versus 25% for Sa. A multiscale analysis identified the Smr2 parameter with low-pass filtering at 140 nm as highly effective for surface discrimination, achieving only 0.1% misclassification. The analysis of the roughness parameter Sa at various scales showed that band-pass filtering at 500 nm yielded a 0.7% misclassification rate, indicating its relevance for fractal roughness characterization. Most relevant roughness parameters for mechanical property correlation were found: Smr2 with low-pass filtering at 500 nm correlated best with hardness (R2 = 0.82), and Vvc with low-pass filtering at 2 nm correlated best with reduced elastic modulus (R2 = 0.84). These results demonstrate that surface roughness features like valley volume and voids significantly impact the apparent mechanical properties of piezoelectric films. Full article
(This article belongs to the Special Issue Ferroelectric Materials: Synthesis, Characterization and Applications)
Show Figures

Figure 1

32 pages, 6343 KiB  
Review
A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways
by Yuan Shen Chua, Yongmin Kim, Minghui Li, Gerarldo Davin Aventian and Alfrendo Satyanaga
Electronics 2024, 13(24), 4946; https://doi.org/10.3390/electronics13244946 - 16 Dec 2024
Cited by 2 | Viewed by 2245
Abstract
The reduction in the supply of fossil fuel available, combined with global warming’s effects on the atmosphere, has led to the discovery of employing sustainable energy for everyday activities. Road energy harvesting is one example of sustainable energy that can be used, as [...] Read more.
The reduction in the supply of fossil fuel available, combined with global warming’s effects on the atmosphere, has led to the discovery of employing sustainable energy for everyday activities. Road energy harvesting is one example of sustainable energy that can be used, as the majority of people spend a substantial amount of their daily activities commuting from one location to another, and numerous types of transportation generate heat that can be converted into energy. This alternative energy source can be implemented on the road, considering that roads are critical infrastructure that has a significant effect on a country’s economy. Furthermore, road infrastructure has been contributing towards the affordability of urbanization and migration, whether locally or internationally. Currently, researchers are working towards integrating road energy harvesting around the world by incorporating various types of materials and technology connected via a sensing system. Many materials have been attempted, including ceramics, polymers, lead-free, nanomaterials, single crystals, and composites. Other possible sources to generate energy from roadways, such as solar power, thermal energy, and kinetic energy, have been investigated as well. However, many studies available only focused on the disclosure of novel materials or the review of technologies produced for road energy harvesting. There have been limited studies that focused on a comprehensive review of various materials and technologies and their implications for the performance of road energy harvesting. Hence, the main objective of this research is to undertake a thorough and in-depth review in order to identify the best materials and technologies for certain types of application in road energy harvesting. The paper discusses energy-harvesting technology, sensing systems, and the potential network based on them. Comprehensive analyses were conducted to evaluate in-depth comparisons between different materials and technologies used for road energy harvesting. The novelty of this study is related to the appropriate efficient, durable, and sustainable materials and technologies for their relevant potential application. The results of this review paper are original since it is the first of its kind, and, to the best knowledge of the authors’ knowledge, a similar study is not available in the open literature. Full article
Show Figures

Figure 1

Back to TopTop