Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (723)

Search Parameters:
Keywords = law of the cross

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 7941 KiB  
Article
A Numerical Investigation of Plastic Energy Dissipation Patterns of Circular and Non-Circular Metal Thin-Walled Rings Under Quasi-Static Lateral Crushing
by Shunsong Guo, Sunting Yan, Ping Tang, Chenfeng Guan and Wei Zhang
Mathematics 2025, 13(15), 2527; https://doi.org/10.3390/math13152527 - 6 Aug 2025
Abstract
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are [...] Read more.
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are solved via numerical shooting methods. The theoretically predicted force-denting displacement relations agree excellently with both FEA and experimental results. The FEA simulation clearly reveals the coexistence of an upper moving plastic region and a fixed bottom plastic region. A robust automatic extraction method of the fully plastic region at the bottom from FEA is proposed. A modified criterion considering the unloading effect based on the resultant moment of cross-section is proposed to allow accurate theoretical estimation of the fully plastic region length. The detailed study implies an abrupt and almost linear drop of the fully plastic region length after the maximum value by the proposed modified criterion, while the conventional fully plastic criterion leads to significant over-estimation of the length. Evolution patterns of the upper and lower plastic regions in FEA are clearly illustrated. Furthermore, the distribution of plastic energy dissipation is compared in the bottom and upper regions through FEA and theoretical results. Purely analytical solutions are formulated for linear hardening material case by elliptical integrals. A simple algebraic function solution is derived without necessity of solving differential equations for general power-law hardening material case by adopting a constant curvature assumption. Parametric analyses indicate the significant effect of ovality and hardening on plastic region evolution and crushing force. This paper should enhance the understanding of the crushing behavior of circular and non-circular rings applicable to the structural engineering and impact of the absorption domain. Full article
(This article belongs to the Special Issue Numerical Modeling and Applications in Mechanical Engineering)
16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 37
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

22 pages, 645 KiB  
Article
Asymptotic Solution for Skin Heating by an Electromagnetic Beam at an Incident Angle
by Hongyun Wang, Shannon E. Foley and Hong Zhou
Electronics 2025, 14(15), 3061; https://doi.org/10.3390/electronics14153061 - 31 Jul 2025
Viewed by 194
Abstract
We investigate the temperature evolution in the three-dimensional skin tissue exposed to a millimeter-wave electromagnetic beam that is not necessarily perpendicular to the skin surface. This study examines the effect of the beam’s incident angle. The incident angle influences the thermal heating in [...] Read more.
We investigate the temperature evolution in the three-dimensional skin tissue exposed to a millimeter-wave electromagnetic beam that is not necessarily perpendicular to the skin surface. This study examines the effect of the beam’s incident angle. The incident angle influences the thermal heating in two aspects: (i) the beam spot projected onto the skin is elongated compared to the intrinsic beam spot in a perpendicular cross-section, resulting in a lower power per skin area; and (ii) inside the tissue, the beam propagates at the refracted angle relative to the depth direction. At millimeter-wavelength frequencies, the characteristic penetration depth is sub-millimeter, whereas the lateral extent of the beam spans at least several centimeters in applications. We explore the small ratio of the penetration depth to the lateral length scale in a nondimensional formulation and derive a leading-term asymptotic solution for the temperature distribution. This analysis does not rely on a small incident angle and is therefore applicable to arbitrary angles of incidence. Based on the asymptotic solution, we establish scaling laws for the three-dimensional skin temperature, the skin surface temperature, and the skin volume in which thermal nociceptors are activated. Full article
Show Figures

Figure 1

27 pages, 2829 KiB  
Article
A Study of Emergency Aircraft Control During Landing
by Mariusz Paweł Dojka and Marian Wysocki
Appl. Sci. 2025, 15(15), 8472; https://doi.org/10.3390/app15158472 - 30 Jul 2025
Viewed by 181
Abstract
This paper addresses the problem of loss of control during flight caused by failures of flight control surfaces. It presents a study of an emergency thrust control system based on linear-quadratic control with integral action. The research encompasses an analysis of thrust modulation [...] Read more.
This paper addresses the problem of loss of control during flight caused by failures of flight control surfaces. It presents a study of an emergency thrust control system based on linear-quadratic control with integral action. The research encompasses an analysis of thrust modulation control characteristics, a review of existing control systems, and a detailed description of the development process, including the research platform configuration, identification of the aircraft state-space model, control law design, integration of system components within the MATLAB and Simulink environment, and software-in-the-loop testing conducted in the X-Plane 11 flight simulator using a Boeing 757-200 model. The study also investigates the issue of control channel cross-coupling and its impact on simultaneous control of the aircraft’s longitudinal and lateral dynamics. The simulation results demonstrate that the proposed emergency system provides adequate controllability, with settling times of approximately 12 s for achieving a flight path angle setpoint of +5°, and 13 s for attaining a maximum (limited) roll angle of 20°, achieved in separate manoeuvres. Furthermore, simulated landing attempts suggest that the system could potentially enable successful landings at approach speeds significantly higher than standard recommendations. However, further investigation is required to address decoupling of control channels, ensure system stability, and evaluate control performance across a broader range of aircraft configurations. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

19 pages, 4315 KiB  
Article
Wind-Induced Responses of Nonlinear Angular Motion for a Dual-Spin Rocket
by Jianwei Chen, Liangming Wang and Zhiwei Yang
Aerospace 2025, 12(8), 675; https://doi.org/10.3390/aerospace12080675 - 28 Jul 2025
Viewed by 311
Abstract
Fin-stabilized guided rockets exhibit ballistic characteristics such as low initial velocity, high flight altitude, and long flight duration, which render their impact point accuracy and flight stability highly susceptible to the influence of wind. In this paper, the four-dimensional nonlinear angular motion equations [...] Read more.
Fin-stabilized guided rockets exhibit ballistic characteristics such as low initial velocity, high flight altitude, and long flight duration, which render their impact point accuracy and flight stability highly susceptible to the influence of wind. In this paper, the four-dimensional nonlinear angular motion equations describing the changes in attack angle and the law of axis swing of a dual-spin rocket are established, and the phase trajectory and equilibrium point stability characteristics of the nonlinear angular motion system under windy conditions are analyzed. Aiming at the problem that the equilibrium point of the angular motion system cannot be solved analytically with the change in wind speed, a phase trajectory projection sequence method based on the Poincaré cross-section and stroboscopic mapping is proposed to analyze the effect of wind on the angular motion bifurcation characteristics of a dual-spin rocket. The possible instability of angular motion caused by nonlinear aerodynamics under strong wind conditions is explored. This study is of reference significance for the launch control and aerodynamic design of guided rockets in complex environments. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 3560 KiB  
Article
Study on Vibration Effects and Optimal Delay Time for Tunnel Cut-Blasting Beneath Existing Railways
by Ruifeng Huang, Wenqing Li, Yongxiang Zheng and Zhong Li
Appl. Sci. 2025, 15(15), 8365; https://doi.org/10.3390/app15158365 - 28 Jul 2025
Viewed by 181
Abstract
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, [...] Read more.
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, LS-DYNA numerical simulation is used to analyze the seismic wave superposition law under different superposition methods. This study also investigates the vibration reduction effect of millisecond blasting for cut-blasting under the different classes of surrounding rocks. The results show that the vibration reduction forms of millisecond blasting can be divided into separation and interference of waveform. Based on the principle of superposition of blasting seismic waves, vibration reduction through wave interference is further divided. At the same time, a new vibration reduction mode is proposed. This vibration reduction mode can significantly improve construction efficiency while improving damping efficiency. The new vibration reduction mode can increase the vibration reduction to 80% while improving construction efficiency. Additionally, there is a significant difference in the damping effect of different classes of surrounding rock on the blasting seismic wave. Poor-quality surrounding rock enhances the attenuation of seismic wave velocity and peak stress in the surrounding rock. In the Zhongliangshan Tunnel, a tunnel cut-blasting construction at a depth of 42 m, the best vibration reduction plan of Class III is 3 ms millisecond blasting, in which the surface points achieve separation vibration reduction. The best vibration reduction plan of Class V is 1 ms millisecond blasting, in which the surface points achieve a new vibration reduction mode. During the tunnel blasting construction process, electronic detonators are used for millisecond blasting of the cut-blasting. This method can reduce the vibration effects generated by blasting. The stability of the existing railway is ultimately guaranteed. This can improve construction efficiency while ensuring construction safety. This study can provide significant guidance for the blasting construction of the tunnel through the railway. Full article
Show Figures

Figure 1

16 pages, 862 KiB  
Article
Random Search Walks Inside Absorbing Annuli
by Anderson S. Bibiano-Filho, Jandson F. O. de Freitas, Marcos G. E. da Luz, Gandhimohan M. Viswanathan and Ernesto P. Raposo
Entropy 2025, 27(7), 758; https://doi.org/10.3390/e27070758 - 15 Jul 2025
Viewed by 244
Abstract
We revisit the problem of random search walks in the two-dimensional (2D) space between concentric absorbing annuli, in which a searcher performs random steps until finding either the inner or the outer ring. By considering step lengths drawn from a power-law distribution, we [...] Read more.
We revisit the problem of random search walks in the two-dimensional (2D) space between concentric absorbing annuli, in which a searcher performs random steps until finding either the inner or the outer ring. By considering step lengths drawn from a power-law distribution, we obtain the exact analytical result for the search efficiency η in the ballistic limit, as well as an approximate expression for η in the regime of searches starting far away from both rings, and the scaling behavior of η for very small initial distances to the inner ring. Our numerical results show good overall agreement with the theoretical findings. We also analyze numerically the absorbing probabilities related to the encounter of the inner and outer rings and the associated Shannon entropy. The power-law exponent marking the crossing of such probabilities (equiprobability) and the maximum entropy condition grows logarithmically with the starting distance. Random search walks inside absorbing annuli are relevant, since they represent a mean-field approach to conventional random searches in 2D, which is still an open problem with important applications in various fields. Full article
(This article belongs to the Special Issue Transport in Complex Environments)
Show Figures

Figure 1

25 pages, 953 KiB  
Article
How Changing Portraits and Opinions of “Pit Bulls” Undermined Breed-Specific Legislation in the United States
by Michael Tesler and Mary McThomas
Animals 2025, 15(14), 2083; https://doi.org/10.3390/ani15142083 - 15 Jul 2025
Viewed by 564
Abstract
Scholars and journalists typically trace the diffusion of breed-specific legislation (BSL) in the U.S. to the surge in negative media portraits of pit bull-type dogs (PBTDs) during the late twentieth century. Yet, while news coverage still portrays these dogs unfavorably, we document a [...] Read more.
Scholars and journalists typically trace the diffusion of breed-specific legislation (BSL) in the U.S. to the surge in negative media portraits of pit bull-type dogs (PBTDs) during the late twentieth century. Yet, while news coverage still portrays these dogs unfavorably, we document a sharp rise in countervailing sources of “pit bull positivity” over the past two decades. Drawing on insights from the respective social science research on changes in attitudes and public policy, we argue that this influx of positivity should powerfully impact opinions and policies towards PBTDs. Our data and analyses consistently support that argument. We analyze two different series of repeated cross-sectional surveys to show that public support for “pit bulls” grew considerably from 2014 to 2024. We also show that voters’ support for ballot measures overturning local “pit bull bans” increased substantially during that same ten-year period. Finally, our analysis of the frames and narratives deployed in recent state and local policy debates shows how this growing pit bull positivity has helped overturn over 300 discriminatory laws against these dogs since 2012. We conclude with a discussion of how shifts in portraits and opinions of PBTDs will likely continue eroding breed-specific legislation going forward. Full article
(This article belongs to the Special Issue Animal Law and Policy Across the Globe in 2025)
Show Figures

Figure 1

26 pages, 6918 KiB  
Article
Coordinated Reentry Guidance with A* and Deep Reinforcement Learning for Hypersonic Morphing Vehicles Under Multiple No-Fly Zones
by Cunyu Bao, Xingchen Li, Weile Xu, Guojian Tang and Wen Yao
Aerospace 2025, 12(7), 591; https://doi.org/10.3390/aerospace12070591 - 30 Jun 2025
Viewed by 351
Abstract
Hypersonic morphing vehicles (HMVs), renowned for their adaptive structural reconfiguration and cross-domain maneuverability, confront formidable reentry guidance challenges under multiple no-fly zones, stringent path constraints, and nonlinear dynamics exacerbated by morphing-induced aerodynamic uncertainties. To address these issues, this study proposes a hierarchical framework [...] Read more.
Hypersonic morphing vehicles (HMVs), renowned for their adaptive structural reconfiguration and cross-domain maneuverability, confront formidable reentry guidance challenges under multiple no-fly zones, stringent path constraints, and nonlinear dynamics exacerbated by morphing-induced aerodynamic uncertainties. To address these issues, this study proposes a hierarchical framework integrating an A-based energy-optimal waypoint planner, a deep deterministic policy gradient (DDPG)-driven morphing policy network, and a quasi-equilibrium glide condition (QEGC) guidance law with continuous sliding mode control. The A* algorithm generates heuristic trajectories circumventing no-fly zones, reducing the evaluation function by 6.2% compared to greedy methods, while DDPG optimizes sweep angles to minimize velocity loss and terminal errors (0.09 km position, 0.01 m/s velocity). The QEGC law ensures robust longitudinal-lateral tracking via smooth hyperbolic tangent switching. Simulations demonstrate generalization across diverse targets (terminal errors < 0.24 km) and robustness under Monte Carlo deviations (0.263 ± 0.184 km range, −12.7 ± 42.93 m/s velocity). This work bridges global trajectory planning with real-time morphing adaptation, advancing intelligent HMV control. Future research will extend this framework to ascent/dive phases and optimize its computational efficiency for onboard deployment. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 16207 KiB  
Article
Adaptive Linear Active Disturbance Rejection Cooperative Control of Multi-Point Hybrid Suspension System
by Shuai Yang, Jie Yang and Fazhu Zhou
Actuators 2025, 14(7), 312; https://doi.org/10.3390/act14070312 - 24 Jun 2025
Viewed by 227
Abstract
The hybrid maglev train exhibits advantages such as a large suspension gap, high load-to-weight ratio, and low suspension energy consumption. However, challenges, including unmodeled uncertainties and multi-point coupling interference in the suspension system, may degrade control performance. To enhance the global anti-interference capability [...] Read more.
The hybrid maglev train exhibits advantages such as a large suspension gap, high load-to-weight ratio, and low suspension energy consumption. However, challenges, including unmodeled uncertainties and multi-point coupling interference in the suspension system, may degrade control performance. To enhance the global anti-interference capability of the multi-point hybrid suspension system, an adaptive linear active disturbance rejection cooperative control (ALADRCC) method is proposed. First, dynamic models of single-point and multi-point hybrid suspension systems are established, and coupling relationships among multiple suspension points are analyzed. Second, an adaptive linear extended state observer (ALESO) is designed to improve dynamic response performance and noise suppression capability. Subsequently, a coupling cooperative compensator (CCC) is designed and integrated into the linear error feedback control law of adaptive linear active disturbance rejection control (ALADRC), enabling cross-coupling compensation between the suspension gap and its variation rate to enhance multi-point synchronization. Then, the simulation models are constructed on MATLAB/Simulink to validate the effectiveness of ALESO and CCC. Finally, a multi-point hybrid suspension experimental platform is built. Comparative experiments with PID and conventional LADRC demonstrate that the proposed ALADRC achieves faster response speed and effective system noise suppression. Additional comparisons with PID and ALADRC confirm that ALADRCC significantly reduces synchronization errors between adjacent suspension points, exhibiting superior global anti-interference performance. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators—2nd Edition)
Show Figures

Figure 1

28 pages, 8561 KiB  
Article
Ice Ice Maybe: Stream Hydrology and Hydraulic Processes During a Mild Winter in a Semi-Alluvial Channel
by Christopher Giovino, Jaclyn M. H. Cockburn and Paul V. Villard
Water 2025, 17(13), 1878; https://doi.org/10.3390/w17131878 - 24 Jun 2025
Viewed by 772
Abstract
Warm conditions during typically cold winters impact runoff and resulting hydraulic processes in channels where ice-cover would typically dominate. This field study on a short, low-slope reach in Southern Ontario, Canada, examined hydrologic and hydraulic processes with a focus on winter runoff events [...] Read more.
Warm conditions during typically cold winters impact runoff and resulting hydraulic processes in channels where ice-cover would typically dominate. This field study on a short, low-slope reach in Southern Ontario, Canada, examined hydrologic and hydraulic processes with a focus on winter runoff events and subsequent bed shear stress variability. Through winter 2024, six cross-sections over a ~100 m reach were monitored near-weekly to measure hydraulic geometry and velocity profiles. These data characterized channel processes and estimated bed shear stress with law of the wall. In this channel, velocity increased more rapidly than width or depth with rising discharge and influenced bed shear stress distribution. Bed shear stress magnitudes were highest (means ranged ~2–6 N/m2) and most variable over gravel beds compared to the exposed bedrock (means ranged ~0.05–2 N/m2). Through a rain-on-snow (ROS) event in late January, bed shear stress estimates decreased dramatically over the rougher gravel bed, despite minimal changes in water depth and velocity. Pebble counts before, during, and after the event, showed that the proportion of finer-sized particles (i.e., <5 cm) increased while median grain size did not vary. These observations align with findings from both flume and field studies and suggest that milder winters reduce gravel-bed roughness through finer-sized sediment deposition, altering sediment transport dynamics and affecting gravel habitat suitability. Additionally, limited ice-cover leads to lower bed shear stresses and thus finer-sized materials are deposited, further impacting gravel habitat suitability. Results highlight the importance of winter hydrologic variability in shaping channel processes and inform potential stream responses under future climate scenarios. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 2033 KiB  
Article
Unraveling the Degradation Kinetics of Genipin-Cross-Linked Chitosan Hydrogels via Symbolic Regression
by Belmiro P. M. Duarte and Maria J. Moura
Processes 2025, 13(7), 1981; https://doi.org/10.3390/pr13071981 - 23 Jun 2025
Viewed by 438
Abstract
Chitosan hydrogels have gained attention in biomedical and pharmaceutical research due to their biocompatibility, biodegradability, and tunable properties. To enhance mechanical strength and to control swelling and degradation, chitosan is often cross-linked with either bio-based (e.g., genipin) or synthetic (e.g., glutaraldehyde) agents. A [...] Read more.
Chitosan hydrogels have gained attention in biomedical and pharmaceutical research due to their biocompatibility, biodegradability, and tunable properties. To enhance mechanical strength and to control swelling and degradation, chitosan is often cross-linked with either bio-based (e.g., genipin) or synthetic (e.g., glutaraldehyde) agents. A comprehensive understanding of the degradation mechanisms of cross-linked chitosan hydrogels is essential, as it directly impacts performance optimization, regulatory compliance, and their integration into personalized medicine. Despite extensive studies, the fundamental mechanisms governing hydrogel degradation remain partially understood. In this work, we introduce a general data-driven framework based on symbolic regression to elucidate the degradation kinetics of hydrogels. Using genipin-cross-linked chitosan hydrogels as a model system, we analyze experimental degradation data to identify governing kinetic laws. Our results suggest that degradation proceeds primarily via a surface-mediated mechanism. The proposed approach provides a robust and interpretable method for uncovering mechanistic insights and is broadly applicable to other hydrogel systems. Full article
Show Figures

Figure 1

19 pages, 3945 KiB  
Article
Static Analysis of a Composite Box Plate with Functionally Graded Foam Core
by Andrejs Kovalovs
J. Manuf. Mater. Process. 2025, 9(7), 209; https://doi.org/10.3390/jmmp9070209 - 22 Jun 2025
Viewed by 461
Abstract
In functionally graded polymer foam, mechanical properties and chemical composition vary in a prescribed direction according to a power law distribution. However, most manufacturing methods lack precise control over pore size, limiting their application. In this case, the graded foam structure can be [...] Read more.
In functionally graded polymer foam, mechanical properties and chemical composition vary in a prescribed direction according to a power law distribution. However, most manufacturing methods lack precise control over pore size, limiting their application. In this case, the graded foam structure can be formed from separate layers, with each layer assigned unique values in terms of mechanical properties or chemical composition based on the power law distribution. The hypothesis of the work is that the application of functionally graded (FG) foam materials inside the rotor blades or wings of an unmanned aerial vehicle can provide the ability to vary their stiffness properties. The aim of this work is to conduct an investigation of the static behaviour of a composite box plate with constant and variable heights that simulate the dimensions and changing profile of a helicopter rotor blade. In the numerical analysis, two models of composite box plate are considered and the material properties of graded polymeric foam core are assumed to vary continuously by the power law along the width of cross-sectional structures. It is not possible to model the continuous flow of graded properties through the foam in construction; therefore, the layers of foam are modelled using discontinuous gradients, where the gradient factor changes step by step. The numerical results are obtained using ANSYS software. The results of the numerical calculation showed that the use of graded foam affects the parameters under study. The stiffness of a structure significantly decreases with an increase in the power law index. Full article
Show Figures

Figure 1

32 pages, 107074 KiB  
Article
A Comparative Study of Deep Reinforcement Learning Algorithms for Urban Autonomous Driving: Addressing the Geographic and Regulatory Challenges in CARLA
by Yechan Park, Woomin Jun and Sungjin Lee
Appl. Sci. 2025, 15(12), 6838; https://doi.org/10.3390/app15126838 - 17 Jun 2025
Cited by 1 | Viewed by 1381
Abstract
To enable autonomous driving in real-world environments that involve a diverse range of geographic variations and complex traffic regulations, it is essential to investigate Deep Reinforcement Learning (DRL) algorithms capable of policy learning in high-dimensional environments characterized by intricate state–action interactions. In particular, [...] Read more.
To enable autonomous driving in real-world environments that involve a diverse range of geographic variations and complex traffic regulations, it is essential to investigate Deep Reinforcement Learning (DRL) algorithms capable of policy learning in high-dimensional environments characterized by intricate state–action interactions. In particular, closed-loop experiments, which involve continuous interaction between an agent and their driving environment, serve as a critical framework for improving the practical applicability of DRL algorithms in autonomous driving systems. This study empirically analyzes the capabilities of several representative DRL algorithms—namely DDPG, SAC, TD3, PPO, TQC, and CrossQ—in handling various urban driving scenarios using the CARLA simulator within a closed-loop framework. To evaluate the adaptability of each algorithm to geographical variability and complex traffic laws, scenario-specific reward and penalty functions were carefully designed and incorporated. For a comprehensive performance assessment of the DRL algorithms, we defined several driving performance metrics, including Route Completion, Centerline Deviation Mean, Episode Reward Mean, and Success Rate, which collectively reflect the quality of the driving in terms of its completeness, stability, efficiency, and comfort. Experimental results demonstrate that TQC and SAC, both of which adopt off-policy learning and stochastic policies, achieve superior sample efficiency and learning performances. Notably, the presence of geographically variant features—such as traffic lights, intersections, and roundabouts—and their associated traffic rules within a given town pose significant challenges to driving performance, particularly in terms of Route Completion, Success Rate, and lane-keeping stability. In these challenging scenarios, the TQC algorithm achieved a Route Completion rate of 0.91, substantially outperforming the 0.23 rate observed with DDPG. This performance gap highlights the advantage of approaches like TQC and SAC, which address Q-value overestimation through statistical methods, in improving the robustness and effectiveness of autonomous driving in diverse urban environments. Full article
(This article belongs to the Special Issue Advances in Autonomous Driving and Smart Transportation)
Show Figures

Figure 1

20 pages, 9033 KiB  
Article
Design and Evaluation of a Novel Efficient Air-Assisted Hollow-Cone Electrostatic Nozzle
by Li Zhang, Zhi Li, Huaxing Chu, Qiaolin Chen, Yang Li and Xinghua Liu
Agriculture 2025, 15(12), 1293; https://doi.org/10.3390/agriculture15121293 - 16 Jun 2025
Viewed by 497
Abstract
For crop protection, electrostatic spraying technology significantly improves deposition uniformity and pesticide utilization through the “wraparound-adsorption” effect of charged droplets. However, existing electrostatic nozzles using hydraulic atomization suffer from low charge-to-mass ratios due to unclear principles for optimizing electrode parameters. To this end, [...] Read more.
For crop protection, electrostatic spraying technology significantly improves deposition uniformity and pesticide utilization through the “wraparound-adsorption” effect of charged droplets. However, existing electrostatic nozzles using hydraulic atomization suffer from low charge-to-mass ratios due to unclear principles for optimizing electrode parameters. To this end, this study designs and evaluates a novel air-assisted hydraulic-atomization hollow-cone electrostatic nozzle. First, the air-assisted hollow-cone nozzle was designed. High-speed imaging was then employed to obtain morphological parameters of the liquid film (length: 2.14 mm; width: 1.96 mm; and spray angle: 49.25°). Based on these parameters, an electric field simulation model of the electrostatic nozzle was established to analyze the influence of electrode parameters on the charging performance and identify the optimal parameter combination. Finally, feasibility and efficiency evaluation experiments were conducted on the designed electrostatic nozzle. The experimental results demonstrate that cross-sectional dimensions of the electrode exhibit a positive correlation with the surface charge density of the pesticide liquid film. In addition, optimal charging performance is obtained when the electrode plane coincides with the tangent plane of the liquid film leading edge. Based on these charging laws, the optimal electrode parameters were determined as follows: 2.0 × 2.0 mm cross-section with an electrode-to-nozzle tip distance of 3.8 mm. With these parameters, the nozzle achieved a droplet charge-to-mass ratio of 4.9 mC/kg at a charging voltage of 3.0 kV. These charged droplets achieved deposition coverages of 12.19%, 5.72%, and 5.91% on abaxial leaf surfaces in the upper, middle, and lower soybean canopies, respectively, which is a significant improvement in deposition uniformity. This study designed a novel air-assisted hollow-cone electrostatic nozzle, elucidated the optimization principles for annular induction electrodes, and achieved improved spraying performance. The findings contribute to enhanced pesticide application efficiency in crops, providing valuable theoretical guidance and technical references for electrostatic nozzle design and application. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop