Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (178)

Search Parameters:
Keywords = lateral power device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 3649 KiB  
Article
Towards Smart Wildfire Prevention: Development of a LoRa-Based IoT Node for Environmental Hazard Detection
by Luis Miguel Pires, Vitor Fialho, Tiago Pécurto and André Madeira
Designs 2025, 9(4), 91; https://doi.org/10.3390/designs9040091 (registering DOI) - 5 Aug 2025
Abstract
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet [...] Read more.
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet of Things (IoT) industry, developing solutions for the early detection of fires is of critical importance. This paper proposes a low-cost network based on Long-Range (LoRa) technology to autonomously assess the level of fire risk and the presence of a fire in rural areas. The system consists of several LoRa nodes with sensors to measure environmental variables such as temperature, humidity, carbon monoxide, air quality, and wind speed. The data collected is sent to a central gateway, where it is stored, processed, and later sent to a website for graphical visualization of the results. In this paper, a survey of the requirements of the devices and sensors that compose the system was made. After this survey, a market study of the available sensors was carried out, ending with a comparison between the sensors to determine which ones met the objectives. Using the chosen sensors, a study was made of possible power solutions for this prototype, considering the expected conditions of use. The system was tested in a real environment, and the results demonstrate that it is possible to cover a circular area with a radius of 2 km using a single gateway. Our system is prepared to trigger fire hazard alarms when, for example, the signals for relative humidity, ambient temperature, and wind speed are below or equal to 30%, above or equal to 30 °C, and above or equal to 30 m/s, respectively (commonly known as the 30-30-30 rule). Full article
16 pages, 3174 KiB  
Article
Efficient Particle Aggregation Through SSAW Phase Modulation
by Yiming Li, Zekai Li, Zuozhi Wei, Yiran Wang, Xudong Niu and Dongfang Liang
Micromachines 2025, 16(8), 910; https://doi.org/10.3390/mi16080910 (registering DOI) - 5 Aug 2025
Abstract
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and [...] Read more.
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and spatial resolution. In this study, we developed a dual-sided standing surface acoustic wave (SSAW) device that simultaneously excites acoustic waves through two piezoelectric substrates positioned at the top and bottom of a microchannel. By fully exploiting the degrees of freedom offered by two pairs of interdigital transducers (IDTs) on each substrate, the system enables highly flexible control of microparticles. To explore its capability on particle aggregation, we developed a two-dimensional numerical model to investigate the influence of the SAW phase modulation on the established acoustic fields within the microchannel. Single-particle motion was first examined under the influence of the phase-modulated acoustic fields to form a reference for identifying effective phase modulation strategies. Key parameters, such as the phase changes and the duration of each phase modulation step, were determined to maximize the lateral motion while minimizing undesired vertical motion of the particle. Our dual-sided SSAW configuration, combined with novel dynamic phase modulation strategy, leads to rapid and precise aggregation of microparticles towards a single focal point. This study sheds new light on the design of acoustofluidic devices for efficient spatiotemporal particle concentration. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices, 2nd Edition)
Show Figures

Figure 1

12 pages, 5365 KiB  
Article
A 100 MHz 3 dB Bandwidth, 30 V Rail-to-Rail Class-AB Buffer Amplifier for Base Station ET-PA Hybrid Supply Modulator
by Min-Ju Kim, Donghwi Kang, Gyujin Choi, Seong-Jun Youn and Ji-Seon Paek
Electronics 2025, 14(15), 3036; https://doi.org/10.3390/electronics14153036 - 30 Jul 2025
Viewed by 174
Abstract
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm [...] Read more.
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm BCD technology, utilizing Laterally Diffused Metal-Oxide Semiconductor (LDMOS) transistors for high-voltage operation and incorporating shielding MOSFETs to protect the low-voltage devices. The circuit utilizes dual power supply domains (5 V and 30 V) to improve power efficiency. The proposed LA achieves a bandwidth of 100 MHz and a slew rate of +1003/−852 V/μs, with a quiescent power consumption of 0.89 W. Transient simulations using a 50 MHz bandwidth 5G NR envelope input demonstrate that the proposed HSM achieves a power efficiency of 83%. Consequently, the proposed HSM supports high-output (100 W) wideband 5G NR transmission with enhanced efficiency. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

11 pages, 279 KiB  
Article
Cloudy with a Chance of Apostles: Cloud Travel in Acts of Andrew and Matthias
by Acacia Chan
Religions 2025, 16(8), 976; https://doi.org/10.3390/rel16080976 - 28 Jul 2025
Viewed by 292
Abstract
Clouds appear as a cross-culturally useful literary device in Greco-Roman, Jewish, and Christian sources. This paper argues that the cloud travel in the apocryphal Acts of Andrew and Matthias functions in three ways: as a transformative callback to Jesus’s ascension and coming return, [...] Read more.
Clouds appear as a cross-culturally useful literary device in Greco-Roman, Jewish, and Christian sources. This paper argues that the cloud travel in the apocryphal Acts of Andrew and Matthias functions in three ways: as a transformative callback to Jesus’s ascension and coming return, as a demonstration of Andrew’s power over natural elements, and as a secure form of transportation away from the difficulties of other travel methods. The author of the text combines the divine protection found in clouds in Greco-Roman literature with the theophanies found in the Septuagint and the New Testament to create this cloud-travel motif that later reappears in the apocryphal sequel Acts of Peter and Andrew. Full article
(This article belongs to the Special Issue Travel and Religion in the Ancient Mediterranean)
19 pages, 4423 KiB  
Review
Laser Active Optical Systems (LAOSs) for Material Processing
by Vladimir Chvykov
Micromachines 2025, 16(7), 792; https://doi.org/10.3390/mi16070792 - 2 Jul 2025
Viewed by 498
Abstract
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser [...] Read more.
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser beams with tailored energy distribution across the aperture, making them ideal for material processing applications. This concept was first successfully implemented using metal vapor lasers as the gain medium. In these systems, material processing was achieved by using a laser beam that either carried the required energy profile or the image of the object itself. Later, other laser media were utilized for LAOSs, including barium vapor, strontium vapor, excimer XeCl lasers, and solid-state media. Additionally, during the development of these systems, several modifications were introduced. For example, Space-Time Light Modulators (STLMs) and CCD cameras were incorporated, along with the use of multipass amplifiers, disk-shaped or thin-disk (TD) solid-state laser amplifiers, and other advancements. These techniques have significantly expanded the range of power, energy, pulse durations, and operating wavelengths. Currently, TD laser amplifiers and STLMs based on Digital Light Processor (DLP) technology or Digital Micromirror Devices (DMDs) enhance the potential to develop LAOS devices for Subtractive and Additive Technologies (ST, AT), applicable in both macromachining (cutting, welding, drilling) and micro-nano processing. This review presents comparable characteristics and requirements for these various LAOS applications. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

16 pages, 2714 KiB  
Article
On the Implementation of a Micromachining Compatible MOEMS Tri-Axial Accelerometer
by Ahmed Hamouda Elsayed, Samir Abozyd, Abdelrahman Toraya, Mohamed Abdelsalam Mansour and Noha Gaber
Chips 2025, 4(2), 28; https://doi.org/10.3390/chips4020028 - 13 Jun 2025
Viewed by 2315
Abstract
On-chip optical accelerometers can be a promising alternative to capacitive, piezo-resistive, and piezo-electric accelerometers in some applications due to their immunity to electromagnetic interference and high sensitivity, which allow for robust operation in electromagnetically noisy environments. This paper focuses on the characterization of [...] Read more.
On-chip optical accelerometers can be a promising alternative to capacitive, piezo-resistive, and piezo-electric accelerometers in some applications due to their immunity to electromagnetic interference and high sensitivity, which allow for robust operation in electromagnetically noisy environments. This paper focuses on the characterization of an easy-to-fabricate tri-axial fiber-free optical MEMS accelerometer, which employs a simple assembly consisting of a light emitting diode (LED), a quadrant photodetector (QPD), and a suspended proof mass, measuring acceleration through light power modulation. This configuration enables simple readout circuitry without the need for complex digital signal processing (DSP). Performance modeling was conducted to simulate the LED’s irradiance profile and its interaction with the proof mass and QPD. Additionally, experimental tests were performed to measure the device’s mechanical sensitivity and validate the mechanical model. Lateral mechanical sensitivity is obtained with acceptable discrepancy from that obtained from FEA simulations. This work consolidates the performance of the design adapted and demonstrates the accelerometer’s feasibility for practical applications. Full article
Show Figures

Figure 1

27 pages, 8164 KiB  
Article
Machine Learning-Driven Structural Optimization of a Bistable RF MEMS Switch for Enhanced RF Performance
by J. Joslin Percy, S. Kanthamani and S. Mohamed Mansoor Roomi
Micromachines 2025, 16(6), 680; https://doi.org/10.3390/mi16060680 - 4 Jun 2025
Viewed by 717
Abstract
In the rapidly advancing digital era, the demand for miniaturized and high-performance electronic devices is increasing, particularly in applications such as wireless communication, unmanned aerial vehicles, and healthcare devices. Radio-frequency microelectromechanical systems (RF MEMS), particularly RF MEMS switches, play a crucial role in [...] Read more.
In the rapidly advancing digital era, the demand for miniaturized and high-performance electronic devices is increasing, particularly in applications such as wireless communication, unmanned aerial vehicles, and healthcare devices. Radio-frequency microelectromechanical systems (RF MEMS), particularly RF MEMS switches, play a crucial role in enhancing RF performance by providing low-loss, high-isolation switching and precise signal path control in reconfigurable RF front-end systems. Among different configurations, electrothermally actuated bistable lateral RF MEMS switches are preferred for their energy efficiency, requiring power only during transitions. This paper presents a novel approach to improve the RF performance of such a switch through structural modifications and machine learning (ML)-driven optimization. To enable efficient high-frequency operation, the H-clamp structure was re-engineered into various lateral configurations, among which the I-clamp exhibited superior RF characteristics. The proposed I-clamp switch was optimized using an eXtreme Gradient Boost (XGBoost) ML model to predict optimal design parameters while significantly reducing the computational overhead of conventional EM simulations. Activation functions were employed within the ML model to improve the accuracy of predicting optimal design parameters by capturing complex nonlinear relationships. The proposed methodology reduced design time by 87.7%, with the optimized I-clamp switch achieving −0.8 dB insertion loss and −70 dB isolation at 10 GHz. Full article
Show Figures

Figure 1

32 pages, 6783 KiB  
Article
Adaptive Zero Trust Policy Management Framework in 5G Networks
by Abdulrahman K. Alnaim
Mathematics 2025, 13(9), 1501; https://doi.org/10.3390/math13091501 - 1 May 2025
Viewed by 942
Abstract
The rapid evolution and deployment of 5G networks have introduced complex security challenges due to their reliance on dynamic network slicing, ultra-low latency communication, decentralized architectures, and highly diverse use cases. Traditional perimeter-based security models are no longer sufficient in these highly fluid [...] Read more.
The rapid evolution and deployment of 5G networks have introduced complex security challenges due to their reliance on dynamic network slicing, ultra-low latency communication, decentralized architectures, and highly diverse use cases. Traditional perimeter-based security models are no longer sufficient in these highly fluid and distributed environments. In response to these limitations, this study introduces SecureChain-ZT, a novel Adaptive Zero Trust Policy Framework (AZTPF) that addresses emerging threats by integrating intelligent access control, real-time monitoring, and decentralized authentication mechanisms. SecureChain-ZT advances conventional Zero Trust Architecture (ZTA) by leveraging machine learning, reinforcement learning, and blockchain technologies to achieve autonomous policy enforcement and threat mitigation. Unlike static ZT models that depend on predefined rule sets, AZTPF continuously evaluates user and device behavior in real time, detects anomalies through AI-powered traffic analysis, and dynamically updates access policies based on contextual risk assessments. Comprehensive simulations and experiments demonstrate the robustness of the framework. SecureChain-ZT achieves an authentication accuracy of 97.8% and reduces unauthorized access attempts from 17.5% to just 2.2%. Its advanced detection capabilities achieve a threat detection accuracy of 99.3% and block 95.6% of attempted cyber intrusions. The implementation of blockchain-based identity verification reduces spoofing incidents by 97%, while microsegmentation limits lateral movement attacks by 75%. The proposed SecureChain-ZT model achieved an authentication accuracy of 98.6%, reduced false acceptance and rejection rates to 1.2% and 0.2% respectively, and improved policy update time to 180 ms. Compared to traditional models, the overall latency was reduced by 62.6%, and threat detection accuracy increased to 99.3%. These results highlight the model’s effectiveness in both cybersecurity enhancement and real-time service responsiveness. This research contributes to the advancement of Zero Trust security models by presenting a scalable, resilient, and adaptive policy enforcement framework that aligns with the demands of next-generation 5G infrastructures. The proposed SecureChain-ZT model not only enhances cybersecurity but also ensures service reliability and responsiveness in complex and mission-critical environments. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Decision Making)
Show Figures

Figure 1

13 pages, 9125 KiB  
Article
Particle and Cell Separation in Deterministic Lateral Displacement Arrays with Inverse L-Shaped Pillars
by Hao Jiang, Fengyang Zhang, Zhou Fan, Chundong Zhang and Zunmin Zhang
Micromachines 2025, 16(5), 546; https://doi.org/10.3390/mi16050546 - 30 Apr 2025
Viewed by 627
Abstract
Deterministic lateral displacement (DLD) has emerged as a powerful microfluidic technique for label-free particle separation with high resolution. Although recent innovations in pillar geometry have broadened its biomedical applications, the fundamental mechanisms dictating flow behavior and separation efficiency remain not fully understood. In [...] Read more.
Deterministic lateral displacement (DLD) has emerged as a powerful microfluidic technique for label-free particle separation with high resolution. Although recent innovations in pillar geometry have broadened its biomedical applications, the fundamental mechanisms dictating flow behavior and separation efficiency remain not fully understood. In this study, we conducted dissipative particle dynamics simulations to systematically investigate the separation of rigid spherical particles and red blood cells (RBCs) in DLD arrays with inverse L-shaped pillars. The simulations established a predictive formula for the critical separation size in such devices and demonstrated that inverse L-shaped pillars enabled a reduced critical separation size compared with conventional circular pillars. Additionally, we revealed that the inverse L-shaped pillars could act as deformability sensors, promoting localized RBC deformation near their protrusions and inducing stiffness-dependent bifurcation in cell trajectories, which enables effective sorting based on cell deformability. These findings advance the mechanistic understanding of inverse L-shaped DLD arrays and provide valuable design principles for their potential applications. Full article
Show Figures

Figure 1

26 pages, 4598 KiB  
Article
Investigation of Interface Behavior Between Offshore Pipe Pile and Sand Using a Newly Modified Shearing Apparatus
by Wenbo Du, Xuguang Chen, Shanshan Zhang and Bin Huang
Buildings 2025, 15(8), 1308; https://doi.org/10.3390/buildings15081308 - 16 Apr 2025
Viewed by 434
Abstract
With the rapid development of marine engineering, large−diameter steel pipe piles are increasingly used in infrastructure construction, such as bridges, docks, and offshore wind power projects. Therefore, studying the shear behavior of the sand–steel interface is of great importance. In this study, the [...] Read more.
With the rapid development of marine engineering, large−diameter steel pipe piles are increasingly used in infrastructure construction, such as bridges, docks, and offshore wind power projects. Therefore, studying the shear behavior of the sand–steel interface is of great importance. In this study, the traditional vane shear apparatus was improved by utilizing its torsional shear actuator, adding an overlying pressure fixing device, and applying lateral pressure through a compressive spring. The original cross plate was replaced with a cylindrical steel rod to simulate the shear behavior of the large−diameter pile–sand interface under different stress states. Experimental results show that this apparatus effectively solves the problem of soil loss due to the shear gap in both the ring shear and direct shear tests under smooth interface conditions. As the shear rate (2°/min, 4°/min, 6°/min) increased, the peak and residual shear stresses decreased, while the shear stress increased with vertical confinement pressure, accompanied by significant residual stress. As the relative density of sand increased from 27.4% to 72.2%, the shear behavior transitioned from contraction to dilation. Regarding surface roughness, the experiment identified a critical threshold: when roughness is below this threshold, it significantly affects the peak shear strength; when above this threshold, the effect is smaller, and failure shifts to the internal sand body. This study provides valuable insights into the mechanics of the sand–steel interface and contributes to optimizing the foundation design for marine infrastructure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 409 KiB  
Article
The Intertwining and Its Pretext Between the Stories of Solomon’s Copper Carafes and The City of Brass in Ancient Arabic Literature
by Saleh Abboud
Religions 2025, 16(3), 333; https://doi.org/10.3390/rel16030333 - 6 Mar 2025
Viewed by 699
Abstract
This article examines the intertextuality and shared origins of two prominent narratives in classical Arabic literature: the story of Solomon’s Copper Carafes and the tale of The City of Brass. Both narratives, which later appeared in combined form in Alf Laylah wa-Laylah [...] Read more.
This article examines the intertextuality and shared origins of two prominent narratives in classical Arabic literature: the story of Solomon’s Copper Carafes and the tale of The City of Brass. Both narratives, which later appeared in combined form in Alf Laylah wa-Laylah (One Thousand and One Nights), are laden with religious and mythological motifs that reflect broader cultural and theological concerns in the medieval Islamic world. This study attempts to answer the following question: “What are the common motives and ideas between the stories of Solomon’s Copper Carafes and The City of Brass in ancient Arabic literature?” By analyzing these stories as they appear in key sources of classical Arabic prose, this study investigates their shared themes and explores their potential common origins predating their Arabic textual forms. This study analyzes selected classical Arabic sources to demonstrate the narrative relationship between The City of Brass and Solomon’s Copper Carafes. It argues that both stories share a common origin predating their Arabic textual transmission. From a literary perspective, the tales of The City of Brass and Solomon’s Copper Carafes are prime examples of Islamic religious fiction, skillfully employing narrative devices to spread Islamic principles and beliefs. The stories are consistent with the core beliefs of Islam since they emphasize austerity, the certainty of death, and the primacy of monotheism. From a religious perspective, the intertwined stories of The City of Copper and Solomon’s Copper Carafes in Alf Laylah wa-Laylah provide a powerful example of how Islamic stories are inherently consistent with Islamic morality and beliefs. Full article
23 pages, 7257 KiB  
Article
Dual-Band 802.11 RF Energy Harvesting Optimization for IoT Devices with Improved Patch Antenna Design and Impedance Matching
by Ashraf Ali, Rama Eid, Digham Emad Manaseer, Hussein Khaled AbuJaber and Andrew Ware
Sensors 2025, 25(4), 1055; https://doi.org/10.3390/s25041055 - 10 Feb 2025
Cited by 1 | Viewed by 1672
Abstract
This paper investigates the feasibility of harvesting Radio Frequency (RF) energy from the Wi-Fi frequency band to power low-power Internet-of-Things (IoT) devices. With the increasing prevalence of IoT applications and wireless sensor networks (WSNs), there is a critical need for sustainable energy sources [...] Read more.
This paper investigates the feasibility of harvesting Radio Frequency (RF) energy from the Wi-Fi frequency band to power low-power Internet-of-Things (IoT) devices. With the increasing prevalence of IoT applications and wireless sensor networks (WSNs), there is a critical need for sustainable energy sources that can extend the operational lifespan of these devices, particularly in remote locations, where access to reliable power supplies is limited. The paper describes the design, simulation, and fabrication of a dual-band antenna capable of operating at 2.4 GHz and 5 GHz, the frequencies used by Wi-Fi. The simulation and experimental results show that the proposed design is efficient based on the reflection coefficient. Using a high-frequency simulator, we developed two C-shaped and an F-shaped microstrip antenna design, optimized for impedance matching and efficient RF–DC conversion.The captured RF energy is converted into usable electrical power that can be directly utilized by low-power IoT devices or stored in batteries for later use. The paper introduces an efficient design for dual-band antennas to maximize the reception of Wi-Fi signals. It also explains the construction of an impedance-matching network to reduce signal reflection and improve power transfer efficiency. The results indicate that the proposed antennas can effectively harvest Wi-Fi energy, providing a sustainable power source for IoT devices. The practical implementation of this system offers a promising solution to the energy supply challenges faced by remote and low-power IoT applications, paving the way for more efficient and longer-lasting wireless sensor networks. Full article
(This article belongs to the Special Issue RFID and Zero-Power Backscatter Sensors)
Show Figures

Figure 1

51 pages, 26899 KiB  
Review
Robotic Systems for Hand Rehabilitation—Past, Present and Future
by Bogdan Gherman, Ionut Zima, Calin Vaida, Paul Tucan, Adrian Pisla, Iosif Birlescu, Jose Machado and Doina Pisla
Technologies 2025, 13(1), 37; https://doi.org/10.3390/technologies13010037 - 16 Jan 2025
Cited by 4 | Viewed by 6711
Abstract
Background: Cerebrovascular accident, commonly known as stroke, Parkinson’s disease, and multiple sclerosis represent significant neurological conditions affecting millions globally. Stroke remains the third leading cause of death worldwide and significantly impacts patients’ hand functionality, making hand rehabilitation crucial for improving quality of life. [...] Read more.
Background: Cerebrovascular accident, commonly known as stroke, Parkinson’s disease, and multiple sclerosis represent significant neurological conditions affecting millions globally. Stroke remains the third leading cause of death worldwide and significantly impacts patients’ hand functionality, making hand rehabilitation crucial for improving quality of life. Methods: A comprehensive literature review was conducted analyzing over 300 papers, and categorizing them based on mechanical design, mobility, and actuation systems. To evaluate each device, a database with 45 distinct criteria was developed to systematically assess their characteristics. Results: The analysis revealed three main categories of devices: rigid exoskeletons, soft exoskeletons, and hybrid devices. Electric actuation represents the most common source of power. The dorsal placement of the mechanism is predominant, followed by glove-based, lateral, and palmar configurations. A correlation between mass and functionality was observed during the analysis; an increase in the number of actuated fingers or in functionality automatically increases the mass of the device. The research shows significant technological evolution with considerable variation in design complexity, with 29.4% of devices using five or more actuators while 24.8% employ one or two actuators. Conclusions: While substantial progress has been made in recent years, several challenges persist, including missing information or incomplete data from source papers and a limited number of clinical studies to evaluate device effectiveness. Significant opportunities remain to improve device functionality, usability, and therapeutic effectiveness, as well as to implement advanced power systems for portable devices. Full article
Show Figures

Figure 1

14 pages, 4648 KiB  
Article
Size Engineering of Ti3C2Tx Nanosheets for Enhanced Supercapacitance Performance
by Haosheng Liu, Xin Chang, Lu Li and Mingyi Zhang
Molecules 2025, 30(2), 241; https://doi.org/10.3390/molecules30020241 - 9 Jan 2025
Viewed by 781
Abstract
In this research, we synthesized a series of Ti3C2Tx nanosheets with varying lateral dimensions and conducted a thorough investigation into the profound relationship between the electrochemical performance of Ti3C2Tx materials and their lateral [...] Read more.
In this research, we synthesized a series of Ti3C2Tx nanosheets with varying lateral dimensions and conducted a thorough investigation into the profound relationship between the electrochemical performance of Ti3C2Tx materials and their lateral sizes. This study innovatively incorporates a clever combination of small-sized and large-sized Ti3C2Tx nanosheets in the electrode preparation process. This strategy yields excellent results at low scan rates, with the fabricated electrode achieving a high volumetric capacitance of approximately 658 F/g. Even more remarkable is the fact that, even under extreme testing conditions where the scan rate surges to 10 V s−1, the electrode retains its capacitive characteristics robustly without any significant performance degradation. These outstanding characteristics underscore the exceptional ability of Ti3C2Tx electrode materials to maintain high energy storage capacity during rapid charge–discharge cycles, holding significant importance for advancing the development of electrochemical energy storage devices with fast response times and high power densities. Full article
Show Figures

Figure 1

11 pages, 4983 KiB  
Article
Temperature Control of Quartz-Glass Melting Areas in Laser Additive Manufacturing
by Jing Chen, Zeping Lv, Xuanjia Zhang, Tao Xu and Yuntao Cheng
Micromachines 2025, 16(1), 29; https://doi.org/10.3390/mi16010029 - 28 Dec 2024
Cited by 2 | Viewed by 1328
Abstract
Direct energy deposition is an additive technology that can quickly manufacture irregularly shaped quartz-glass devices. Based on this technology and coaxial laser/wire feeding, open-loop tests were conducted under different process parameters. A closed-loop temperature control system was designed and built for the molten [...] Read more.
Direct energy deposition is an additive technology that can quickly manufacture irregularly shaped quartz-glass devices. Based on this technology and coaxial laser/wire feeding, open-loop tests were conducted under different process parameters. A closed-loop temperature control system was designed and built for the molten pool temperature in quartz-glass additive manufacturing. It was based on a PID (proportional–integral–derivative) control algorithm for adjusting laser power. Changes in the macroscopic morphology, microstructure, and other qualities of the final additive result before and after the temperature control of the quartz glass were examined. Relative to constant laser powers of 120 W and 140 W, the temperature control of the multi-pass single-layer lateral additives produced dense surface microstructures of the additively produced quartz glass, and the molding quality was better. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop