Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = lateral flow strip biosensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4706 KiB  
Article
Visual Detection of Canine Monocytic Ehrlichiosis Using Polymerase Chain Reaction-Based Lateral Flow Biosensors
by Peeravit Sumpavong, Sarawan Kaewmongkol and Gunn Kaewmongkol
Animals 2025, 15(5), 740; https://doi.org/10.3390/ani15050740 - 5 Mar 2025
Viewed by 882
Abstract
A conventional PCR (cPCR) remains an effective molecular technique for the diagnosis of canine monocytic ehrlichiosis. However, agarose gel electrophoresis requires additional time after thermal cycling. In the present study, we developed a PCR-based lateral flow biosensor (PCR-LFB) to detect Ehrlichia canis ( [...] Read more.
A conventional PCR (cPCR) remains an effective molecular technique for the diagnosis of canine monocytic ehrlichiosis. However, agarose gel electrophoresis requires additional time after thermal cycling. In the present study, we developed a PCR-based lateral flow biosensor (PCR-LFB) to detect Ehrlichia canis (E. canis). Lateral flow strips allow for the simple and rapid detection of PCR products and provide an alternative to gel electrophoresis. The sensitivity, specificity, and detection limit of PCR-LFB were compared to those of TaqMan probe-based real-time PCRs (qPCRs). The PCR-LFB was performed with 5′ 6-FITC and biotin-labeled primers specific to E. canis, targeting the dsb gene. The detection limit of the PCR-LFB assay was 10−6 for the target DNA sequence in a 10-fold dilution of the recombinant plasmid, which is 10 times lower than that of qPCR. Among the confirmed qPCR results in the 30 dog samples, false-positive results were not detected by the PCR-LFB. Compared to qPCR, the sensitivity and specificity of PCR-LFB were 63.6% (95% CI; 42.9–80.2%) and 100% (95% CI; 67.5–100%), respectively. The Kappa value of the PCR-LFB is in moderate agreement with the qPCR (κ = 0.483). Perfect agreement (κ = 1) was observed between cPCR and PCR-LFB. Lower cost and shorter time consumption were demonstrated using PCR-LFB. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

12 pages, 1610 KiB  
Article
Rapid Detection of Alpha-Fetoprotein (AFP) with Lateral Flow Aptasensor
by Meijing Ma, Min Zhang, Jiahui Wang, Yurui Zhou, Xueji Zhang and Guodong Liu
Molecules 2025, 30(3), 484; https://doi.org/10.3390/molecules30030484 - 22 Jan 2025
Cited by 6 | Viewed by 1417
Abstract
We present a lateral flow aptasensor for the visual detection of alpha-fetoprotein (AFP) in human serum. Leveraging the precise molecular recognition capabilities of aptamers and the distinct optical features of gold nanoparticles, a model system utilizing AFP as the target analyte, along with [...] Read more.
We present a lateral flow aptasensor for the visual detection of alpha-fetoprotein (AFP) in human serum. Leveraging the precise molecular recognition capabilities of aptamers and the distinct optical features of gold nanoparticles, a model system utilizing AFP as the target analyte, along with a pair of aptamer probes, is implemented to establish proof-of-concept on standard lateral flow test strips. It is the first report of an antibody-free lateral flow assay using aptamers as recognition probes for the detection of AFP. The analysis circumvents the numerous incubation and washing steps that are typically involved in most current aptamer-based protein assays. Qualitative analysis involves observing color changes in the test area, while quantitative data are obtained by measuring the optical response in the test zone using a portable strip reader. The biosensor exhibits a linear detection range for AFP concentrations between 10 and 100 ng/mL, with a minimum detection limit of 10 ng/mL. Additionally, it has been successfully applied to detect AFP in human serum samples. The use of aptamer-functionalized gold nanoparticle probes in a lateral flow assay offers great promise for point-of-care applications and fast, on-site detection. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

11 pages, 1803 KiB  
Article
Paper-Based Aptasensor Assay for Detection of Food Adulterant Sildenafil
by Murat Kavruk and Veli Cengiz Ozalp
Biosensors 2024, 14(12), 620; https://doi.org/10.3390/bios14120620 - 17 Dec 2024
Viewed by 1361
Abstract
Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension but is often illicitly added to energy drinks and chocolates. This study introduces a lateral flow strip test using aptamers specific to sildenafil for detecting its illegal presence in food. The process [...] Read more.
Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension but is often illicitly added to energy drinks and chocolates. This study introduces a lateral flow strip test using aptamers specific to sildenafil for detecting its illegal presence in food. The process involved using graphene oxide SELEX to identify high-affinity aptamers, which were then converted into molecular gate structures on mesoporous silica nanoparticles, creating a unique signaling system. This system was integrated into lateral flow chromatography strips and tested on buffers and chocolate samples containing sildenafil. The method simplifies the lateral flow assay (LFA) for small molecules and provides a tool for signal amplification. The detection limit for these strips was found to be 68.2 nM (31.8 µg/kg) in spiked food samples. Full article
(This article belongs to the Special Issue Integrated Biosensing for Point-of-Care Detection)
Show Figures

Graphical abstract

15 pages, 5275 KiB  
Article
Flower-Shaped PCR Scaffold-Based Lateral Flow Bioassay for Bacillus cereus Endospores Detection
by Jingjing Tian, Zhuyi Zhang, Yaning Shi, Zichao Wu, Yuting Shao, Limin Wang, Xinglian Xu and Zhihong Xin
Int. J. Mol. Sci. 2024, 25(20), 11286; https://doi.org/10.3390/ijms252011286 - 20 Oct 2024
Cited by 1 | Viewed by 1563
Abstract
Bacillus cereus, a foodborne pathogen, produces resilient endospores that are challenging to detect with conventional methods. This study presents a novel Flower-Shaped PCR Scaffold-based Lateral Flow Biosensor (FSPCRS-LFB), which employs an aptamer-integrated PCR scaffold as capture probes, replacing the traditional streptavidin-biotin (SA-Bio) [...] Read more.
Bacillus cereus, a foodborne pathogen, produces resilient endospores that are challenging to detect with conventional methods. This study presents a novel Flower-Shaped PCR Scaffold-based Lateral Flow Biosensor (FSPCRS-LFB), which employs an aptamer-integrated PCR scaffold as capture probes, replacing the traditional streptavidin-biotin (SA-Bio) approach. The FSPCRS-LFB demonstrates high sensitivity and cost-efficiency in detecting B. cereus endospores, with a limit of detection (LOD) of 4.57 endospores/mL a visual LOD of 102 endospores/mL, and a LOD of 6.78 CFU/mL for endospore-cell mixtures. In chicken and tea samples, the platform achieved LODs of 74.5 and 52.8 endospores/mL, respectively, with recovery rates of 82.19% to 97.88%. Compared to existing methods, the FSPCRS-LFB offers a 3.7-fold increase in sensitivity while reducing costs by 26% over the SA-Bio strategy and 87.5% over rolling circle amplification (RCA). This biosensor provides a rapid, sensitive and cost-effective solution for point-of-care testing (POCT) of B. cereus endospores, expanding detection capabilities and offering novel approaches for pathogen detection. Full article
(This article belongs to the Special Issue Whole-Cell System and Synthetic Biology)
Show Figures

Figure 1

14 pages, 3763 KiB  
Article
A 3D-Printed Integrated Handheld Biosensor for the Detection of Vibrio parahaemolyticus
by Yuancong Xu, Qian Zhang, Yunyi Li, Xiaoxu Pang and Nan Cheng
Foods 2024, 13(11), 1775; https://doi.org/10.3390/foods13111775 - 5 Jun 2024
Cited by 2 | Viewed by 1726
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is one of the important seafood-borne pathogens that cause a serious gastrointestinal disorder in humans. Recently, biosensors have attracted serious attention for precisely detecting and tracking risk factors in foods. However, a major consideration when fabricating biosensors [...] Read more.
Vibrio parahaemolyticus (V. parahaemolyticus) is one of the important seafood-borne pathogens that cause a serious gastrointestinal disorder in humans. Recently, biosensors have attracted serious attention for precisely detecting and tracking risk factors in foods. However, a major consideration when fabricating biosensors is to match the low cost of portable devices to broaden its application. In this study, a 3D-printed integrated handheld biosensor (IHB) that combines RPA-CRISPR/Cas12a, a lateral flow strip (LFS), and a handheld device was developed for the ultrasensitive detection of V. parahaemolyticus. Using the preamplification of RPA on tlh gene of V. parahaemolyticus, a specific duplex DNA product was obtained to activate the trans-cleavage activity of CRISPR/Cas12a, which was then utilized to cleave the ssDNA probe. The ssDNA probe was then detected by the LFS, which was negatively correlated with the content of amplified RPA products of the tlh gene. The IHB showed high selectivity and excellent sensitivity for V. parahaemolyticus detection, and the limit of detection was 4.9 CFU/mL. The IHB also demonstrated great promise for the screening of V. parahaemolyticus in samples and had the potential to be applied to the rapid screening of other pathogen risks for seafood and marine environmental safety. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

12 pages, 2334 KiB  
Article
Europium Nanoparticle-Based Lateral Flow Strip Biosensors for the Detection of Quinoxaline Antibiotics and Their Main Metabolites in Fish Feeds and Tissues
by Qing Mei, Biao Ma, Yun Fang, Yunfei Gong, Jiali Li and Mingzhou Zhang
Biosensors 2024, 14(6), 292; https://doi.org/10.3390/bios14060292 - 4 Jun 2024
Viewed by 2026
Abstract
Olaquindox (OLA) and quinocetone (QCT) have been prohibited in aquatic products due to their significant toxicity and side effects. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) were developed for the simultaneous quantitative detection of OLA, QCT, [...] Read more.
Olaquindox (OLA) and quinocetone (QCT) have been prohibited in aquatic products due to their significant toxicity and side effects. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) were developed for the simultaneous quantitative detection of OLA, QCT, and 3-methyl-quinoxaline-2-carboxylic acid (MQCA) in fish feed and tissue. The EuNP-LFSBs enabled sensitive detection for OLA, QCT, and MQCA with a limit of detection of 0.067, 0.017, and 0.099 ng/mL (R2 ≥ 0.9776) within 10 min. The average recovery of the EuNP-LFSBs was 95.13%, and relative standard deviations were below 9.38%. The method was verified by high-performance liquid chromatography (HPLC), and the test results were consistent. Therefore, the proposed LFSBs serve as a powerful tool to monitor quinoxalines in fish feeds and their residues in fish tissues. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing)
Show Figures

Figure 1

11 pages, 2335 KiB  
Article
Introducing Triplex Forming Oligonucleotide into Loop-Mediated Isothermal Amplification for Developing a Lateral Flow Biosensor for Streptococci Detection
by Wei Chang, Po-Hao Chou, Cai-Tong Wu, Jheng-Da Song, Kun-Nan Tsai and Chiuan-Chian Chiou
Biosensors 2024, 14(5), 257; https://doi.org/10.3390/bios14050257 - 17 May 2024
Cited by 1 | Viewed by 2288
Abstract
Loop-mediated isothermal amplification (LAMP) technology is extensively utilized for the detection of infectious diseases owing to its rapid processing and high sensitivity. Nevertheless, conventional LAMP signaling methods frequently suffer from a lack of sequence specificity. This study integrates a triplex-forming oligonucleotide (TFO) probe [...] Read more.
Loop-mediated isothermal amplification (LAMP) technology is extensively utilized for the detection of infectious diseases owing to its rapid processing and high sensitivity. Nevertheless, conventional LAMP signaling methods frequently suffer from a lack of sequence specificity. This study integrates a triplex-forming oligonucleotide (TFO) probe into the LAMP process to enhance sequence specificity. This TFO-LAMP technique was applied for the detection of Group B Streptococcus (GBS). The TFO probe is designed to recognize a specific DNA sequence, termed the TFO targeting sequence (TTS), within the amplified product, facilitating detection via fluorescent instrumentation or lateral flow biosensors. A screening method was developed to identify TFO sequences with high affinity to integrate TFO into LAMP, subsequently incorporating a selected TTS into an LAMP primer. In the TFO-LAMP assay, a FAM-labeled TFO is added to target the TTS. This TFO can be captured by an anti-FAM antibody on lateral flow test strips, thus creating a nucleic acid testing biosensor. The efficacy of the TFO-LAMP assay was confirmed through experiments with specimens spiked with varying concentrations of GBS, demonstrating 85% sensitivity at 300 copies and 100% sensitivity at 30,000 copies. In conclusion, this study has successfully developed a TFO-LAMP technology that offers applicability in lateral flow biosensors and potentially other biosensor platforms. Full article
(This article belongs to the Special Issue Design and Application of Novel Nucleic Acid Probe)
Show Figures

Figure 1

12 pages, 3870 KiB  
Article
Rapid and Sensitive Detection of Influenza B Virus Employing Nanocomposite Spheres Based on Ag-Doped ZnIn2S4 Quantum Dots
by Jia-Xuan Hu, Li-Bang Zhu, Sheng-Tong Wu and Shou-Nian Ding
Chemosensors 2024, 12(4), 68; https://doi.org/10.3390/chemosensors12040068 - 19 Apr 2024
Cited by 3 | Viewed by 2320
Abstract
Lateral flow immunoassay (LFIA) technology serves a significant role as a simple and rapid biosensor in the detection of influenza viruses. The focus of this study is the development of a rapid and convenient screening method for influenza B virus (IBV) proteins using [...] Read more.
Lateral flow immunoassay (LFIA) technology serves a significant role as a simple and rapid biosensor in the detection of influenza viruses. The focus of this study is the development of a rapid and convenient screening method for influenza B virus (IBV) proteins using a fluorescence lateral flow biosensor based on Ag-doped ZnIn2S4 quantum dots (Ag: ZIS QDs) as signal reporters. These Ag: ZIS QDs-emitting orange fluorescence are loaded onto dendritic mesoporous silica nanoparticles (DMSNs) and are further coated with a layer of silica shell to form a core–shell structured composite nanomaterial (SiO2 @ Ag: ZIS QDs @ DMSNs). The orange fluorescence effectively eliminates the interference of blue background fluorescence, significantly enhancing the detection sensitivity. This technology demonstrates outstanding performance in the immediate detection of IBV, with a minimum detection limit of 1 ng/mL, compared to the traditional colloidal gold strip with a detection limit of 6 ng/mL. Furthermore, both intra-assay and inter-assay coefficients of variation (CV) are less than 9%. This method holds promise for wide application in early diagnosis, epidemiological investigation, and epidemic surveillance of IBV. Full article
(This article belongs to the Special Issue Rapid Point-of-Care Testing Technology and Application)
Show Figures

Figure 1

13 pages, 3447 KiB  
Article
Innovative Detection of Biomarkers Based on Chemiluminescent Nanoparticles and a Lensless Optical Sensor
by Cristina Potrich, Gianluca Palmara, Francesca Frascella, Lucio Pancheri and Lorenzo Lunelli
Biosensors 2024, 14(4), 184; https://doi.org/10.3390/bios14040184 - 9 Apr 2024
Cited by 3 | Viewed by 2416
Abstract
The identification and quantification of biomarkers with innovative technologies is an urgent need for the precise diagnosis and follow up of human diseases. Body fluids offer a variety of informative biomarkers, which are traditionally measured with time-consuming and expensive methods. In this context, [...] Read more.
The identification and quantification of biomarkers with innovative technologies is an urgent need for the precise diagnosis and follow up of human diseases. Body fluids offer a variety of informative biomarkers, which are traditionally measured with time-consuming and expensive methods. In this context, lateral flow tests (LFTs) represent a rapid and low-cost technology with a sensitivity that is potentially improvable by chemiluminescence biosensing. Here, an LFT based on gold nanoparticles functionalized with antibodies labeled with the enzyme horseradish peroxidase is combined with a lensless biosensor. This biosensor comprises four Silicon Photomultipliers (SiPM) coupled in close proximity to the LFT strip. Microfluidics for liquid handling complete the system. The development and the setup of the biosensor is carefully described and characterized. C-reactive protein was selected as a proof-of-concept biomarker to define the limit of detection, which resulted in about 0.8 pM when gold nanoparticles were used. The rapid readout (less than 5 min) and the absence of sample preparation make this biosensor promising for the direct and fast detection of human biomarkers. Full article
(This article belongs to the Special Issue Nanoparticle-Based Biosensors and Their Applications)
Show Figures

Figure 1

17 pages, 4844 KiB  
Article
Efficient Chlorostannate Modification of Magnetite Nanoparticles for Their Biofunctionalization
by Maria O. Zolotova, Sergey L. Znoyko, Alexey V. Orlov, Petr I. Nikitin and Artem V. Sinolits
Materials 2024, 17(2), 349; https://doi.org/10.3390/ma17020349 - 10 Jan 2024
Cited by 4 | Viewed by 2223
Abstract
Magnetite nanoparticles (MNPs) are highly favored materials for a wide range of applications, from smart composite materials and biosensors to targeted drug delivery. These multifunctional applications typically require the biofunctional coating of MNPs that involves various conjugation techniques to form stable MNP–biomolecule complexes. [...] Read more.
Magnetite nanoparticles (MNPs) are highly favored materials for a wide range of applications, from smart composite materials and biosensors to targeted drug delivery. These multifunctional applications typically require the biofunctional coating of MNPs that involves various conjugation techniques to form stable MNP–biomolecule complexes. In this study, a cost-effective method is developed for the chlorostannate modification of MNP surfaces that provides efficient one-step conjugation with biomolecules. The proposed method was validated using MNPs obtained via an optimized co-precipitation technique that included the use of degassed water, argon atmosphere, and the pre-filtering of FeCl2 and FeCl3 solutions followed by MNP surface modification using stannous chloride. The resulting chlorostannated nanoparticles were comprehensively characterized, and their efficiency was compared with both carboxylate-modified and unmodified MNPs. The biorecognition performance of MNPs was verified via magnetic immunochromatography. Mouse monoclonal antibodies to folic acid served as model biomolecules conjugated with the MNP to produce nanobioconjugates, while folic acid–gelatin conjugates were immobilized on the test lines of immunochromatography lateral flow test strips. The specific trapping of the obtained nanobioconjugates via antibody–antigen interactions was registered via the highly sensitive magnetic particle quantification technique. The developed chlorostannate modification of MNPs is a versatile, rapid, and convenient tool for creating multifunctional nanobioconjugates with applications that span in vitro diagnostics, magnetic separation, and potential in vivo uses. Full article
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples
by Electra Mermiga, Varvara Pagkali, Christos Kokkinos and Anastasios Economou
Molecules 2023, 28(24), 8135; https://doi.org/10.3390/molecules28248135 - 17 Dec 2023
Cited by 8 | Viewed by 2789
Abstract
In this work, a simple and cost-efficient aptasensor strip is developed for the rapid detection of OTA in food samples. The biosensor is based on the lateral flow assay concept using an OTA-specific aptamer for biorecognition of the target analyte. The strip consists [...] Read more.
In this work, a simple and cost-efficient aptasensor strip is developed for the rapid detection of OTA in food samples. The biosensor is based on the lateral flow assay concept using an OTA-specific aptamer for biorecognition of the target analyte. The strip consists of a sample pad, a conjugate pad, a nitrocellulose membrane (NC) and an absorbent pad. The conjugate pad is loaded with the OTA-specific aptamer conjugated with gold nanoparticles (AuNPs). The test line of the NC membrane is loaded with a specific OTA-aptamer probe and the control line is loaded with a control probe. The assay is based on a competitive format, where the OTA present in the sample combines with the OTA aptamer-AuNP conjugate and prevents the interaction between the specific probe immobilized on the test line and the OTA aptamer-AuNP conjugates; therefore, the color intensity of the test line decreases as the concentration of OTA in the sample increases. Qualitative detection of OTA is performed visually, while quantification is performed by reflectance colorimetry using a commercial scanner and image analysis. All the parameters of the assay are investigated in detail and the analytical features are established. The visual limit of detection (LOD) of the strip is 0.05 ng mL−1, while the LOD for semi-quantitative detection using reflectance colorimetry is 0.02 ng mL−1. The lateral flow strip aptasensor is applied to the detection of OTA in wine, beer, apple juice and milk samples with recoveries in the range from 91 to 114%. The assay exhibits a satisfactory selectivity for OTA with respect to other mycotoxins and lasts 20 min. Therefore, the lateral flow strip aptasensor could be useful for the rapid, low-cost and fit-for-purpose on-site detection of OTA in food samples. Full article
Show Figures

Figure 1

16 pages, 5822 KiB  
Article
Europium Nanoparticle-Based Lateral Flow Strip Biosensors Combined with Recombinase Polymerase Amplification for Simultaneous Detection of Five Zoonotic Foodborne Pathogens
by Bei Jin, Biao Ma, Qing Mei, Shujuan Xu, Xin Deng, Yi Hong, Jiali Li, Hanyue Xu and Mingzhou Zhang
Biosensors 2023, 13(6), 652; https://doi.org/10.3390/bios13060652 - 14 Jun 2023
Cited by 12 | Viewed by 3095
Abstract
The five recognized zoonotic foodborne pathogens, namely, Listeria monocytogenes, Staphylococcus aureus, Streptococcus suis, Salmonella enterica and Escherichia coli O157:H7, pose a major threat to global health and social–economic development. These pathogenic bacteria can cause human and animal diseases through [...] Read more.
The five recognized zoonotic foodborne pathogens, namely, Listeria monocytogenes, Staphylococcus aureus, Streptococcus suis, Salmonella enterica and Escherichia coli O157:H7, pose a major threat to global health and social–economic development. These pathogenic bacteria can cause human and animal diseases through foodborne transmission and environmental contamination. Rapid and sensitive detection for pathogens is particularly important for the effective prevention of zoonotic infections. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) combined with recombinase polymerase amplification (RPA) were developed for the simultaneous quantitative detection of five foodborne pathogenic bacteria. Multiple T lines were designed in a single test strip for increasing the detection throughput. After optimizing the key parameters, the single-tube amplified reaction was completed within 15 min at 37 °C. The fluorescent strip reader recorded the intensity signals from the lateral flow strip and converted the data into a T/C value for quantification measurement. The sensitivity of the quintuple RPA-EuNP-LFSBs reached a level of 101 CFU/mL. It also exhibited good specificity and there was no cross-reaction with 20 non-target pathogens. In artificial contamination experiments, the recovery rate of the quintuple RPA-EuNP-LFSBs was 90.6–101.6%, and the results were consistent with those of the culture method. In summary, the ultrasensitive bacterial LFSBs described in this study have the potential for widespread application in resource-poor areas. The study also provides insights in respect to multiple detection in the field. Full article
(This article belongs to the Special Issue Biosensing Technologies for Bacteria and Virus Detections)
Show Figures

Figure 1

18 pages, 2124 KiB  
Review
Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System
by Saloni Kakkar, Payal Gupta, Navin Kumar and Krishna Kant
Biosensors 2023, 13(2), 249; https://doi.org/10.3390/bios13020249 - 9 Feb 2023
Cited by 25 | Viewed by 6761
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic [...] Read more.
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens. Full article
(This article belongs to the Special Issue Nano-Biosensors for Detection and Monitoring)
Show Figures

Figure 1

14 pages, 4346 KiB  
Article
Ultrasensitive Fluorescence Lateral Flow Assay for Simultaneous Detection of Pseudomonas aeruginosa and Salmonella typhimurium via Wheat Germ Agglutinin-Functionalized Magnetic Quantum Dot Nanoprobe
by Zhijie Tu, Xingsheng Yang, Hao Dong, Qing Yu, Shuai Zheng, Xiaodan Cheng, Chongwen Wang, Zhen Rong and Shengqi Wang
Biosensors 2022, 12(11), 942; https://doi.org/10.3390/bios12110942 - 31 Oct 2022
Cited by 21 | Viewed by 3708
Abstract
Point-of-care testing methods for the rapid and sensitive screening of pathogenic bacteria are urgently needed because of the high number of outbreaks of microbial infections and foodborne diseases. In this study, we developed a highly sensitive and multiplex lateral flow assay (LFA) for [...] Read more.
Point-of-care testing methods for the rapid and sensitive screening of pathogenic bacteria are urgently needed because of the high number of outbreaks of microbial infections and foodborne diseases. In this study, we developed a highly sensitive and multiplex lateral flow assay (LFA) for the simultaneous detection of Pseudomonas aeruginosa and Salmonella typhimurium in complex samples by using wheat germ agglutinin (WGA)-modified magnetic quantum dots (Mag@QDs) as a universal detection nanoprobe. The Mag@QDs-WGA tag with a 200 nm Fe3O4 core and multiple QD-formed shell was introduced into the LFA biosensor for the universal capture of the two target bacteria and provided the dual amplification effect of fluorescence enhancement and magnetic enrichment for ultra-sensitivity detection. Meanwhile, two antibacterial antibodies were separately sprayed onto the two test lines of the LFA strip to ensure the specific identification of P. aeruginosa and S. typhimurium through one test. The proposed LFA exhibited excellent analytical performance, including high capture rate (>80%) to the target pathogens, low detection limit (<30 cells/mL), short testing time (<35 min), and good reproducibility (relative standard deviation < 10.4%). Given these merits, the Mag@QDs-WGA-based LFA has a great potential for the on-site and real-time diagnosis of bacterial samples. Full article
(This article belongs to the Special Issue Advances in Quantum Dots Biosensing)
Show Figures

Figure 1

15 pages, 1374 KiB  
Review
New Advances in Lateral Flow Immunoassay (LFI) Technology for Food Safety Detection
by Guangxu Xing, Xuefeng Sun, Ning Li, Xuewu Li, Tiantian Wu and Fangyu Wang
Molecules 2022, 27(19), 6596; https://doi.org/10.3390/molecules27196596 - 5 Oct 2022
Cited by 37 | Viewed by 6226
Abstract
With the continuous development of China’s economy and society, people and the government have higher and higher requirements for food safety. Testing for food dopants and toxins can prevent the occurrence of various adverse health phenomena in the world’s population. By deploying new [...] Read more.
With the continuous development of China’s economy and society, people and the government have higher and higher requirements for food safety. Testing for food dopants and toxins can prevent the occurrence of various adverse health phenomena in the world’s population. By deploying new and powerful sensors that enable rapid sensing processes, the food industry can help detect trace adulteration and toxic substances. At present, as a common food safety detection method, lateral flow immunochromatography (LFI) is widely used in food safety testing, environmental testing and clinical medical treatment because of its advantages of simplicity, speed, specificity and low cost, and plays a pivotal role in ensuring food safety. This paper mainly focuses on the application of lateral flow immunochromatography and new technologies combined with test strips in food safety detection, such as aptamers, surface-enhanced Raman spectroscopy, quantum dots, electrochemical test strip detection technology, biosensor test strip detection, etc. In addition, sensing principles such as fluorescence resonance energy transfer can also more effective. Different methods have different characteristics. The following is a review of the application of these technologies in food safety detection. Full article
Show Figures

Figure 1

Back to TopTop