Visual Detection of Canine Monocytic Ehrlichiosis Using Polymerase Chain Reaction-Based Lateral Flow Biosensors
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Blood Sample Collection and DNA Extraction
2.3. cPCR Procedures
2.3.1. Amplification of dsb Gene by cPCR and DNA Sequencing
2.3.2. Cloning the dsb Gene
2.3.3. TaqMan Probe-Based qPCR of the dsb Gene
2.4. Detection of PCR Product Using LF Strip
2.4.1. Nucleic Acid LF Immunoassay
2.4.2. Experimental Procedures of the PCR-LFB
2.5. Determination of Limit of Detection (LoD)
2.6. Testing of PCR-LFB Assay in Naturally Infected Dogs
2.7. Statistical Analysis
3. Results
3.1. cPCR Amplification of the dsb Gene of E. canis
3.2. cPCR Conditions
3.2.1. DNA Primers and Probes
3.2.2. Effect of the Amount of DNA Probe on LF Strip Testing
3.3. Detection Limit of PCR-LFB Assay
3.4. Agreement Between PCR-LFB Assay, cPCR, and qPCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iatta, R.; Sazmand, A.; Nguyen, V.L.; Nemati, F.; Ayaz, M.M.; Bahiraei, Z.; Zafari, S.; Giannico, A.; Greco, G.; Dantas-Torres, F.; et al. Vector-borne pathogens in dogs of different regions of Iran and Pakistan. Parasitol. Res. 2021, 120, 4219–4228. [Google Scholar] [CrossRef] [PubMed]
- Mylonakis, M.E.; Theodorou, K.N. Canine monocytic ehrlichiosis: An update on diagnosis and treatment. Acta Vet. 2017, 67, 299–317. [Google Scholar] [CrossRef]
- Milanjeet, M.; Singh, H.; Singh, N.K.; Singh, N.D.; Singh, C.; Rath, S.S. Molecular prevalence and risk factors for the occurrence of canine monocytic ehrlichiosis. Vet. Med. 2014, 59, 129–136. [Google Scholar] [CrossRef]
- Skotarczak, B. Canine ehrlichiosis. Ann. Agric. Environ. Med. 2003, 10, 137–142. [Google Scholar]
- Mylonakis, M.E.; Ceron, J.J.; Leontides, L.; Siarkou, V.I.; Martinez, S.; Tvarijonaviciute, A.; Koutinas, A.F.; Harrus, S. Serum acute phase proteins as clinical phase indicators and outcome predictors in naturally occurring canine monocytic ehrlichiosis. J. Vet. Intern. Med. 2011, 25, 811–817. [Google Scholar] [CrossRef]
- Kaewmongkol, G.; Maneesaay, P.; Suwanna, N.; Tiraphut, B.; Krajarngjang, T.; Chouybumrung, A.; Kaewmongkol, S.; Sirinarumitr, T.; Jittapalapong, S.; Fenwick, S. First detection of Ehrlichia canis in cerebrospinal fluid from a nonthrombocytopenic dog with meningoencephalitis by broad-range PCR. J. Vet. Intern. Med. 2016, 30, 255–259. [Google Scholar] [CrossRef]
- Harrus, S.; Alleman, A.R.; Bark, H.; Mahan, S.M.; Waner, T. Comparison of three enzyme-linked immunosorbent assays with the indirect immunofluorescent antibody test for the diagnosis of canine infection with Ehrlichia canis. Vet. Microbiol. 2002, 86, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Harrus, S.; Waner, T.; Neer, M. Ehrlichia Canis Infection. In Infectious Disease of the Dog and Cat, 4th ed.; Greene, C.E., Ed.; Elsevier: St. Louis, MO, USA, 2012; pp. 227–238. [Google Scholar]
- Sainz, Á.; Roura, X.; Miró, G.; Estrada-Peña, A.; Kohn, B.; Harrus, S.; Solano-Gallego, L. Guideline for veterinary practitioners on canine ehrlichiosis and anaplasmosis in Europe. Parasites Vectors 2015, 8, 75. [Google Scholar] [CrossRef]
- Pinyoowong, D.; Jittapalapong, S.; Suksawat, F.; Stich, R.W.; Thamchaipenet, A. Molecular characterization of Thai Ehrlichia canis and Anaplasma platy strains detected in dogs. Infect. Genet. Evol. 2008, 8, 433–438. [Google Scholar] [CrossRef]
- Piratae, S.; Pimpjong, K.; Vaisusuk, K.; Chatan, W. Molecular detection of Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli in stray dogs in Mahasarakham province, Thailand. Ann. Parasitol. 2015, 61, 183–187. [Google Scholar]
- Liu, M.; Ruttayaporn, N.; Saechan, V.; Jirapattharasate, C.; Vudriko, P.; Moumouni, P.F.; Cao, S.; Inpankaew, T.; Ybanez, A.p.; Suzuki, H.; et al. Molecular survey of canine vector-borne disease in stray dogs in Thailand. Parasitol. Int. 2016, 65, 357–361. [Google Scholar] [CrossRef]
- Nambooppha, B.; Rittipornlertrak, A.; Tattiyapong, M.; Tangtrongsup, S.; Tiwananthagorn, S.; Chung, Y.T.; Sthitmatee, N. Two different genogroups of Ehrlichia canis from dogs in Thailand using immunodominant protein genes. Infect. Genet. Evol. 2018, 63, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Piratae, S.; Senawong, P.; Chalermchat, P.; Harnasa, W.; Sae-Chue, B. Molecular evidence of Ehrlichia canis and Anaplasma platys and the association of infections with hematological response in naturally infected dogs in Kalasin, Thailand. Vet. World 2019, 12, 131–135. [Google Scholar] [CrossRef]
- Kaewmongkol, S.; Suwan, E.; Sirinarumitr, T.; Jittapalapong, S.; Fenwick, S.G.; Kaewmongkol, G. Detection of specific IgM and IgG antibodies in acute canine monocytic ehrlichiosis that recognize recombinant gp36 antigens. Heliyon 2020, 6, e04409. [Google Scholar] [CrossRef] [PubMed]
- Poolsawat, N.; Tazawa, K.; Junsiri, W.; Watthanadirek, A.; Srionrod, N.; Chawengkirttikul, R.; Anuracpreeda, P. Molecular discrimination and genetic diversity of three common tick-borne pathogens in dogs in Thailand. Parasitology 2022, 149, 65–75. [Google Scholar] [CrossRef]
- Doyle, C.K.; Labruna, M.B.; Breitschwerdt, E.B.; Tang, Y.W.; Corstvet, R.E.; Hegarty, B.C.; Bloch, K.C.; Li, P.; Walker, D.H.; Mcbride, J.W. Detection of medically important Ehrlichia by quantitative multicolor taqman real-time polymerase chain reaction of the Dsb gen. J. Mol. Diagn. 2005, 7, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Nakaghi, A.C.H.; Machado, R.Z.; Ferro, J.A.; Labruna, M.B.; Chryssafidis, A.L.; André, M.R.; Baldani, C.D. Sensitivity evaluation of single-step PCR assay using Ehrlichia canis p28 gene as a target and its application in diagnosis of canine ehrlichiosis. Rev. Bras. Parasitol. Vet. 2010, 19, 75–79. [Google Scholar] [CrossRef]
- Thomson, K.; Yaaran, T.; Belshaw, A.; Cruson, L.; Tisi, L.; Maurice, S.; Kiddle, G. A new taqman method for the reliable diagnosis of Ehrlichia spp. in canine whole blood. Parasites Vectors 2018, 11, 350. [Google Scholar] [CrossRef]
- Millar, B.C.; Xu, J.; Moore, J.E. Molecular diagnostics of medically important infections. Curr. Issues Mol. Biol. 2007, 9, 21–40. [Google Scholar] [CrossRef]
- Mohammed, S.; Birhan, G.; Admassu, B.; Shite, A.; Yeneneh, H. Review on polymerase chain reaction and its diagnostic merit over conventional techniques in animal disease. Afr. J. Basic Appl. Sci. 2015, 7, 262–281. [Google Scholar]
- Chikufenji, B.; Chatanga, E.; Galon, E.M.; Mohanta, U.K.; Mdzukulu, G.; Nkhata, M.; Ma, Y.; Umemiya-Shirafuji, R.; Xuan, X. First report of dog ticks and tick-borne pathogens they are carrying in Malawi. J. Vet. Med. Sci. 2024, 86, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T.; Tokishita, S.I.; Yamagata, H. Ethidium bromide and SYBR Green enhance the genotoxicity of UB-irradiation and chemical mutagens in E. coli. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2001, 492, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Haines, A.M.; Tobe, S.S.; Kobus, H.J.; Linacre, A. Properties of nucleic acid staining dyes used in gel electrophoresis. Electrophoresis 2015, 36, 941–944. [Google Scholar] [CrossRef]
- Madadelahi, M.; Agarwal, R.; Martinez-Chapa, S.O.; Madou, M.J. A roadmap to high-speed polymerase chain reaction (PCR): COVID-19 as a technology accelerator. Biosens. Bioelectron. 2024, 246, 115830. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Tay, A.; Pavesi, A.; Yazdi, S.R.; Lim, C.T.; Warkiani, M.E. Advances in microfluidics in combatting infectious diseases. Biotechnol. Adv. 2016, 34, 404–421. [Google Scholar] [CrossRef]
- Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 2015, 15, 30011–30031. [Google Scholar] [CrossRef]
- Blažková, M.; Koets, M.; Rauch, P.; van Amerongen, A. Development of a nucleic acid lateral flow immunoassay for simultaneous detection of listeria spp. and listeria monocytogenes in food. Eur. Food. Res. Technol. 2009, 229, 867–874. [Google Scholar] [CrossRef]
- Poonlapdecha, W.; Seetang-Nun, Y.; Wonglumsom, W.; Tuitemwong, K.; Erickson, L.E.; Hansen, R.R.; Tuitemwong, P. Antibody-conjugated ferromagnetic nanoparticles with lateral flow test strip assay for rapid detection of Campylobacter jejuni in poultry samples. Int. J. Food Microbiol. 2018, 286, 6–14. [Google Scholar] [CrossRef]
- Yrad, F.M.; Castañares, J.M.; Alocilja, E.C. Visual detection of dengue-1 RNA using gold nanoparticle-based lateral flow biosensor. Diagnostics 2019, 9, 74. [Google Scholar] [CrossRef]
- Akineden, O.; Wittwer, T.; Geister, K.; Plotz, M.; Usleber, E. Nucleic acid lateral flow immunoassay (NALFIA) with integrated DNA probe degradation for the rapid detection of Cronobacter sakazakii and Cronobacter malonaticus in powdered infant formula. Food Control 2020, 109, 106952. [Google Scholar] [CrossRef]
- Sumpavong, P.; Sricharern, W.; Inthong, N.; Kaewmongkol, G.; Kaewmongkol, S. Systematic evaluation of taqman real-time PCR polymerase chain reaction assays targeting the dsb gene and gltA loci of Ehrlichia canis in recombinant plasmids and naturally infected dogs. Vet. World 2022, 15, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, P.; Xu, H.; Zhang, Z.; Zhong, X. Highly selective and sensitive visualizable detection of Hg2+ based on anti-aggregation of gold nanoparticles. Talanta 2011, 84, 508–512. [Google Scholar] [CrossRef]
- Loo, J.; Kwok, H.; Leung, C.; Wu, S.; Law, I.; Cheung, Y.; Chin, M.; Kwan, P.; Hui, M.; Kong, S.; et al. Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab-on-a-disc. Biosens. Bioelectron. 2017, 93, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Su, X.; Xu, J.; Wang, J.; Zeng, J.; Li, C.; Chen, W.; Li, T.; Min, X.; Zhang, D.; et al. A point of care platform based on microfluidic chip for nucleic acid extraction in less than 1 minute. Biomicrofluidics 2019, 13, 034102. [Google Scholar] [CrossRef]
- Rosenbohm, J.M.; Robson, J.M.; Singh, R.; Lee, R.; Zhang, J.Y.; Klapperich, C.M.; Pollock, N.R.; Cabodi, M. Rapid electrostatic DNA enrichment for sensitive detection of Trichomonas vaginalis in clinical urinary samples. Anal. Methods. 2020, 12, 1085–1093. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhang, Y.; Xie, K.B. Evaluation of CRISPR/Cas12a-based DNA detection for fast pathogen diagnosis and GMO test in rice. Mol. Breed. 2020, 40, 11. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, J.; Hu, A.; Pan, J.; Deng, G.; Hua, C.; Zhu, C.; Liu, Y.; Yang, K.; Zhu, L. A novel microfluidic device integrated with chitosan-modified capillaries for rapid ZIKV detection. Micromachines 2020, 11, 186. [Google Scholar] [CrossRef]
Oligo | Sequence 5′–3′ | Reference |
---|---|---|
dsb-F | Biotin-TTGCAAAATGATGTCTGAAGATATGAAACA | [17] |
dsb-R | GCTGCTCCACCAATAAATGTATCYCCTA | |
DNA probe | FITC-AGCTAGTGCTGCTTGGGCAACTTTGAGTGAA |
Steps | Temperatures and Time | Number of Cycles |
---|---|---|
Initial denaturation | 94 °C for 1 min | 1 |
Denaturation | 94 °C for 30 s | 45 |
Annealing | 55 °C for 30 s | |
Extension | 72 °C for 45 s | |
Final extension | 72 °C for 10 min | 1 |
Number | cPCR | PCR-LFB | qPCR |
---|---|---|---|
Positive | 14 | 14 | 22 |
Negative | 16 | 16 | 8 |
Test | PCR-LFB | Kappa Value (95%CI) | Degree of Agreement | |
---|---|---|---|---|
Positive | Negative | |||
qPCR | 0.483 (0.22–0.74) | Moderate | ||
Positive | 14 | 8 | ||
Negative | 0 | 8 | ||
cPCR | 1 | Perfect | ||
Positive | 14 | 0 | ||
Negative | 0 | 16 |
Method | Cost per Test | Time-Consuming | Specialized Machine |
---|---|---|---|
cPCR | 5.31 USD | 2.25 h | Thermocycler |
PCR-LFB | 5.37 USD | 2.03 h | Thermocycler |
qPCR | 2.56 USD | 1.40 h | Real-time PCR machine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumpavong, P.; Kaewmongkol, S.; Kaewmongkol, G. Visual Detection of Canine Monocytic Ehrlichiosis Using Polymerase Chain Reaction-Based Lateral Flow Biosensors. Animals 2025, 15, 740. https://doi.org/10.3390/ani15050740
Sumpavong P, Kaewmongkol S, Kaewmongkol G. Visual Detection of Canine Monocytic Ehrlichiosis Using Polymerase Chain Reaction-Based Lateral Flow Biosensors. Animals. 2025; 15(5):740. https://doi.org/10.3390/ani15050740
Chicago/Turabian StyleSumpavong, Peeravit, Sarawan Kaewmongkol, and Gunn Kaewmongkol. 2025. "Visual Detection of Canine Monocytic Ehrlichiosis Using Polymerase Chain Reaction-Based Lateral Flow Biosensors" Animals 15, no. 5: 740. https://doi.org/10.3390/ani15050740
APA StyleSumpavong, P., Kaewmongkol, S., & Kaewmongkol, G. (2025). Visual Detection of Canine Monocytic Ehrlichiosis Using Polymerase Chain Reaction-Based Lateral Flow Biosensors. Animals, 15(5), 740. https://doi.org/10.3390/ani15050740