Introducing Triplex Forming Oligonucleotide into Loop-Mediated Isothermal Amplification for Developing a Lateral Flow Biosensor for Streptococci Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Bacterial Genomic DNA
2.3. TFO Sequence Screening Using Melting Curve Analysis
2.4. Loop-Mediated Isothermal Amplification Assays
2.5. Lateral Flow Assays
2.6. Specimen Processing
3. Results
3.1. Selection of TFO Sequences
3.2. Introducing TTS into LAMP Primer
3.3. Producing Fluorescent Signal Using a TFO Probe in LAMP
3.4. Lateral Flow and Melting Results
3.5. The Detection of Spiked Specimens
4. Discussion
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Mori, Y.; Kitao, M.; Tomita, N.; Notomi, T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods 2004, 59, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Aoi, Y.; Hosogai, M.; Tsuneda, S. Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J. Biotechnol. 2006, 125, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Suebsing, R.; Kampeera, J.; Sirithammajak, S.; Pradeep, P.J.; Jitrakorn, S.; Arunrut, N.; Sangsuriya, P.; Saksmerprome, V.; Senapin, S.; Withyachumnarnkul, B.; et al. Shewanella putrefaciens in cultured tilapia detected by a new calcein-loop-mediated isothermal amplification (Ca-LAMP) method. Dis. Aquat. Organ. 2015, 117, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Suebsing, R.; Kampeera, J.; Sirithammajak, S.; Withyachumnarnkul, B.; Turner, W.; Kiatpathomchai, W. Colorimetric Method of Loop-Mediated Isothermal Amplification with the Pre-Addition of Calcein for Detecting Flavobacterium columnare and its Assessment in Tilapia Farms. J. Aquat. Anim. Health 2015, 27, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Zen, L.P.Y.; Lai, M.Y.; Izzati Binti Rozlan, S.; Abdul Hamid, M.H.; Jelip, J.; Nani Mudin, R.; Lau, Y.L. End-point detection of loop-mediated isothermal amplification (LAMP) on malaria by direct observation with colorimetric dyes. Exp. Parasitol. 2022, 239, 108310. [Google Scholar] [CrossRef]
- He, S.; Zhou, Y.; Xie, Y.; Zhang, K.; He, Q.; Yin, G.; Zou, H.; Hu, Q.; Zhang, S.; He, H.; et al. Isothermal amplification based on specific signal extraction and output for fluorescence and colorimetric detection of nucleic acids. Talanta 2023, 252, 123823. [Google Scholar] [CrossRef] [PubMed]
- Senarath, K.D.; Usgodaarachchi, R.B.; Navaratne, V.; Nagahawatte, A.; Wijayarathna, C.D.; Alvitigala, J.; Goonasekara, C.L. Non Specific Amplification with the LAMP Technique in the Diagnosis of Tuberculosis in Sri Lankan Settings. J. Tuberc. Res. 2014, 02, 168–172. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.; Blakely, H.; Tripathi, A. Mathematical model to reduce loop mediated isothermal amplification (LAMP) false-positive diagnosis. Electrophoresis 2019, 40, 2706–2717. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.E.; Li, B. TaqMan applications in genetic and molecular toxicology. Int. J. Toxicol. 2005, 24, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Du, W.F.; Ge, J.H.; Li, J.J.; Tang, L.J.; Yu, R.Q.; Jiang, J.H. Single-step, high-specificity detection of single nucleotide mutation by primer-activatable loop-mediated isothermal amplification (PA-LAMP). Anal. Chim. Acta 2019, 1050, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Higgins, O.; Clancy, E.; Cormican, M.; Boo, T.W.; Cunney, R.; Smith, T.J. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens. Int. J. Mol. Sci. 2018, 19, 524. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, D.; Wang, Y.; Li, K.; Ye, C. Rapid and Sensitive Detection of Vibrio parahaemolyticus and Vibrio vulnificus by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique. Molecules 2016, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guan, L.; Yao, J.; Li, L.; Liu, C.; Guo, Y.; Xie, G. RART-LAMP: One-Step Extraction-Free Method for Genotyping within 40 min. Anal. Chem. 2023, 95, 12487–12496. [Google Scholar] [CrossRef] [PubMed]
- Mitani, Y.; Lezhava, A.; Kawai, Y.; Kikuchi, T.; Oguchi-Katayama, A.; Kogo, Y.; Itoh, M.; Miyagi, T.; Takakura, H.; Hoshi, K.; et al. Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology. Nat. Methods 2007, 4, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Selvam, K.; Najib, M.A.; Khalid, M.F.; Mohamad, S.; Palaz, F.; Ozsoz, M.; Aziah, I. RT-LAMP CRISPR-Cas12/13-Based SARS-CoV-2 Detection Methods. Diagnostics 2021, 11, 1646. [Google Scholar] [CrossRef] [PubMed]
- Atçeken, N.; Yigci, D.; Ozdalgic, B.; Tasoglu, S. CRISPR-Cas-Integrated LAMP. Biosensors 2022, 12, 1035. [Google Scholar] [CrossRef] [PubMed]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. [Google Scholar] [CrossRef]
- Bekkouche, I.; Shishonin, A.Y.; Vetcher, A.A. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers 2023, 15, 858. [Google Scholar] [CrossRef]
- Conroy, D.W.; Xu, Y.; Shi, H.; Gonzalez Salguero, N.; Purusottam, R.N.; Shannon, M.D.; Al-Hashimi, H.M.; Jaroniec, C.P. Probing Watson-Crick and Hoogsteen base pairing in duplex DNA using dynamic nuclear polarization solid-state NMR spectroscopy. Proc. Natl. Acad. Sci. USA 2022, 119, e2200681119. [Google Scholar] [CrossRef] [PubMed]
- Perkins, B.D.; Wilson, J.H.; Wensel, T.G.; Vasquez, K.M. Triplex targets in the human rhodopsin gene. Biochemistry 1998, 37, 11315–11322. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J.; Seale, A.C.; O’Sullivan, C.; Le Doare, K.; Heath, P.T.; Lawn, J.E.; Bartlett, L.; Cutland, C.; Gravett, M.; Ip, M.; et al. Risk of Early-Onset Neonatal Group B Streptococcal Disease With Maternal Colonization Worldwide: Systematic Review and Meta-analyses. Clin. Infect. Dis. 2017, 65, S152–S159. [Google Scholar] [CrossRef] [PubMed]
- Anthony, B.F.; Okada, D.M.; Hobel, C.J. Epidemiology of group B Streptococcus: Longitudinal observations during pregnancy. J. Infect. Dis. 1978, 137, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Verani, J.R.; McGee, L.; Schrag, S.J. Prevention of perinatal group B streptococcal disease—Revised guidelines from CDC, 2010. MMWR Recomm. Rep. 2010, 59, 1–36. [Google Scholar] [PubMed]
- Raabe, V.N.; Shane, A.L. Group B Streptococcus (Streptococcus agalactiae). Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Kimura, K.; Yanagisawa, H.; Wachino, J.; Shibayama, K.; Arakawa, Y. Rapid and reliable loop-mediated isothermal amplification method for detecting Streptococcus agalactiae. Jpn. J. Infect. Dis. 2013, 66, 546–548. [Google Scholar] [CrossRef] [PubMed]
- McKenna, J.P.; Cox, C.; Fairley, D.J.; Burke, R.; Shields, M.D.; Watt, A.; Coyle, P.V. Loop-mediated isothermal amplification assay for rapid detection of Streptococcus agalactiae (group B streptococcus) in vaginal swabs—A proof of concept study. J. Med. Microbiol. 2017, 66, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, C.; Cheminet, M.; Duployez, C.; Artus, M.; Ballaa, Y.; Devos, L.; Plainvert, C.; Poyart, C.; Le Gall, F.; Tazi, A.; et al. A LAMP-based assay for the molecular detection of group B Streptococcus. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Tittel-Elmer, M.; de Tejada, B.M.; Renzi, G.; Schrenzel, J. Performance of the HiberGene Group B Streptococcus kit, a loop-mediated isothermal amplification-based assay for GBS screening during pregnancy. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 217–219. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 8 March 2021).
- Breiman, L.; Cutler, A. RandomForest: Breiman and Cutler’s Random Forests for Classification and Regression. Available online: https://www.stat.berkeley.edu/~breiman/RandomForests/ (accessed on 8 March 2021).
- Becherer, L.; Knauf, S.; Marks, M.; Lueert, S.; Frischmann, S.; Borst, N.; von Stetten, F.; Bieb, S.; Adu-Sarkodie, Y.; Asiedu, K.; et al. Multiplex Mediator Displacement Loop-Mediated Isothermal Amplification for Detection of Treponema pallidum and Haemophilus ducreyi. Emerg. Infect. Dis. 2020, 26, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Becherer, L.; Bakheit, M.; Frischmann, S.; Stinco, S.; Borst, N.; Zengerle, R.; von Stetten, F. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters. Anal. Chem. 2018, 90, 4741–4748. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Zhang, W.; Zhang, D.Y. Molecular Zipper: A fluorescent probe for real-time isothermal DNA amplification. Nucleic Acids Res. 2006, 34, e81. [Google Scholar] [CrossRef] [PubMed]
Oligonucleotide | Sequence 5′-3′ |
---|---|
FIP | AACACCAGCCATCATAACTCCTAGTCATTCCTGCTCTACCACTT |
BIP | TGGGAGGAAGAAAAGGGAGTTTATTCGAACGTAAACCTGAGAA |
F3 | GATGGCTATGATGGCTACT |
B3 | GCTGTTGGTCCTGTCAAT |
LF | AGGGACTGGAATGAAACC |
LB | TTACTCTTCTTTCTTGTCGG |
LF_Biotin | Biotin-AGGGACTGGAATGAAACC |
BIP_TTS | TGGGAGGAAGAAAAGGGAGTTTATGGAAGAAGAAGAGAAGAAGGAGAGGTCGAACGTAAACCTGAGAA |
TFO_HQ | HEX-GGAGAGGAAGAAGAGAAGAAGAAGG-BHQ1 |
TFO_F | GGAGAGGAAGAAGAGAAGAAGAAGG-FAM |
Positive/Sample No. | Sensitivity | |
---|---|---|
Spike in 30,000 copies | 20/20 | 100% |
Spike in 300 copies | 17/20 | 85% |
negative | 0/20 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, W.; Chou, P.-H.; Wu, C.-T.; Song, J.-D.; Tsai, K.-N.; Chiou, C.-C. Introducing Triplex Forming Oligonucleotide into Loop-Mediated Isothermal Amplification for Developing a Lateral Flow Biosensor for Streptococci Detection. Biosensors 2024, 14, 257. https://doi.org/10.3390/bios14050257
Chang W, Chou P-H, Wu C-T, Song J-D, Tsai K-N, Chiou C-C. Introducing Triplex Forming Oligonucleotide into Loop-Mediated Isothermal Amplification for Developing a Lateral Flow Biosensor for Streptococci Detection. Biosensors. 2024; 14(5):257. https://doi.org/10.3390/bios14050257
Chicago/Turabian StyleChang, Wei, Po-Hao Chou, Cai-Tong Wu, Jheng-Da Song, Kun-Nan Tsai, and Chiuan-Chian Chiou. 2024. "Introducing Triplex Forming Oligonucleotide into Loop-Mediated Isothermal Amplification for Developing a Lateral Flow Biosensor for Streptococci Detection" Biosensors 14, no. 5: 257. https://doi.org/10.3390/bios14050257
APA StyleChang, W., Chou, P. -H., Wu, C. -T., Song, J. -D., Tsai, K. -N., & Chiou, C. -C. (2024). Introducing Triplex Forming Oligonucleotide into Loop-Mediated Isothermal Amplification for Developing a Lateral Flow Biosensor for Streptococci Detection. Biosensors, 14(5), 257. https://doi.org/10.3390/bios14050257