Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = lasers in medicine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1115 KiB  
Review
Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
by Snježana Kaštelan, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić and Ana Šešelja Perišin
Molecules 2025, 30(15), 3262; https://doi.org/10.3390/molecules30153262 - 4 Aug 2025
Viewed by 133
Abstract
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut [...] Read more.
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut microbiota dysregulation. While current treatments, including anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation, have shown clinical efficacy, they are largely limited to advanced stages of DR, require repeated invasive procedures, and do not adequately address early neurovascular and metabolic abnormalities. Resveratrol (RSV), a naturally occurring polyphenol, has emerged as a promising candidate due to its potent antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic properties. This review provides a comprehensive analysis of the molecular mechanisms by which RSV exerts protective effects in DR, including modulation of oxidative stress pathways, suppression of inflammatory cytokines, enhancement of mitochondrial function, promotion of autophagy, and inhibition of pathological neovascularisation. Despite its promising pharmacological profile, the clinical application of RSV is limited by poor aqueous solubility, rapid systemic metabolism, and low ocular bioavailability. Various routes of administration, including intravitreal injection, topical instillation, and oral and sublingual delivery, have been investigated to enhance its therapeutic potential. Recent advances in drug delivery systems, including nanoformulations, liposomal carriers, and sustained-release intravitreal implants, offer potential strategies to address these challenges. This review also explores RSV’s role in combination therapies, its potential as a disease-modifying agent in early-stage DR, and the relevance of personalised medicine approaches guided by metabolic and genetic factors. Overall, the review highlights the therapeutic potential and the key translational challenges in positioning RSV as a multi-targeted treatment strategy for DR. Full article
Show Figures

Figure 1

15 pages, 2979 KiB  
Article
A Metabolomics Exploration of Young Lotus Seeds Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
by Ying Chen, Xiaomeng Xu and Chunping Tang
Molecules 2025, 30(15), 3242; https://doi.org/10.3390/molecules30153242 - 1 Aug 2025
Viewed by 246
Abstract
Lotus (Nelumbo nucifera Gaertn.) is a quintessential medicinal and edible plant, exhibiting marked differences in therapeutic effects among its various parts. The lotus seed constitutes a key component of this plant. Notably, the entire seed and the plumule display distinct medicinal properties. [...] Read more.
Lotus (Nelumbo nucifera Gaertn.) is a quintessential medicinal and edible plant, exhibiting marked differences in therapeutic effects among its various parts. The lotus seed constitutes a key component of this plant. Notably, the entire seed and the plumule display distinct medicinal properties. To investigate the “homologous plants with different effects” phenomenon in traditional Chinese medicine, this study established a Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) method. This study employed immature lotus seeds as the experimental material, diverging from the mature seeds conventionally used. Conductive double-sided tape was employed for sample preparation, and complete longitudinal sections of the seeds were obtained, followed by MALDI-MSI analysis to identify and visualize the spatial distribution of characteristic secondary metabolites within the entire seeds. The results unveiled the diversity of metabolites in lotus seeds and their differential distribution across tissues, with pronounced distinctions in the plumule. A total of 152 metabolites spanning 13 categories were identified in lotus seeds, with 134, 89, 51, and 98 metabolites discerned in the pericarp, seed coat, cotyledon, and plumule, respectively. Strikingly, young lotus seeds were devoid of liensinine/isoliensinine and neferine, the dominant alkaloids of mature lotus seed plumule, revealing an early-stage alkaloid profile that sharply contrasts with the well-documented abundance found in mature seeds and has rarely been reported. We further propose a biosynthetic pathway to explain the presence of the detected benzylisoquinoline and the absence of the undetected bisbenzylisoquinoline alkaloids in this study. These findings present the first comprehensive metabolic atlas of immature lotus seeds, systematically exposing the pronounced chemical divergence from their mature counterparts, and thus lays a metabolomic foundation for dissecting the spatiotemporal mechanisms underlying the nutritional and medicinal value of lotus seeds. Full article
Show Figures

Figure 1

38 pages, 12524 KiB  
Article
Therapeutic Efficacy of Plant-Derived Exosomes for Advanced Scar Treatment: Quantitative Analysis Using Standardized Assessment Scales
by Lidia Majewska, Agnieszka Kondraciuk, Iwona Paciepnik, Agnieszka Budzyńska and Karolina Dorosz
Pharmaceuticals 2025, 18(8), 1103; https://doi.org/10.3390/ph18081103 - 25 Jul 2025
Viewed by 583
Abstract
Background: Wound healing and scar management remain significant challenges in dermatology and aesthetic medicine. Recent advances in regenerative medicine have introduced plant-derived exosome-like nanoparticles (PDENs) as potential therapeutic agents due to their bioactive properties. This study examines the clinical application of rose [...] Read more.
Background: Wound healing and scar management remain significant challenges in dermatology and aesthetic medicine. Recent advances in regenerative medicine have introduced plant-derived exosome-like nanoparticles (PDENs) as potential therapeutic agents due to their bioactive properties. This study examines the clinical application of rose stem cell exosomes (RSCEs) in combination with established treatments for managing different types of scars. Methods: A case series of four patients with different scar etiologies (dog bite, hot oil burn, forehead trauma, and facial laser treatment complications) was treated with RSCEs in combination with microneedling (Dermapen 4.0, 0.2–0.4 mm depth) and/or thulium laser therapy (Lutronic Ultra MD, 8–14 J), or as a standalone topical treatment. All cases underwent sequential treatments over periods ranging from two to four months, with comprehensive photographic documentation of the progression. The efficacy was assessed through clinical photography and objective evaluation using the modified Vancouver Scar Scale (mVSS) and the Patient and Observer Scar Assessment Scale (POSAS), along with assessment of scar appearance, texture, and coloration. Results: All cases demonstrated progressive improvement throughout the treatment course. The dog bite scar showed significant objective improvement, with a 71% reduction in modified Vancouver Scar Scale score (from 7/13 to 2/13) and a 61% improvement in Patient and Observer Scar Assessment Scale scores after four combined treatments. The forehead trauma case exhibited similar outcomes, with a 71% improvement in mVSS score and 55–57% improvement in POSAS scores. The hot oil burn case displayed the most dramatic improvement, with a 78% reduction in mVSS score and over 70% improvement in POSAS scores, resulting in near-complete resolution without visible scarring. The facial laser complication case showed a 75% reduction in mVSS score and ~70% improvement in POSAS scores using only topical exosome application without device-based treatments. Clinical improvements across all cases included reduction in elevation, improved texture, decreased erythema, and better integration with surrounding skin. No adverse effects were reported in any of the cases. Conclusions: This preliminary case series suggests that plant-derived exosome-like nanoparticles, specifically rose stem cell exosomes (RSCEs), may enhance scar treatment outcomes when combined with microneedling and laser therapy, or even as a standalone topical treatment. The documented objective improvements, measured by standardized scar assessment scales, along with clinical enhancements in scar appearance, texture, and coloration across different scar etiologies—dog bite, burn, traumatic injury, and iatrogenic laser damage—suggest that this approach may offer a valuable addition to the current armamentarium of scar management strategies. Notably, the successful treatment of laser-induced complications using only topical exosome application demonstrates the versatility and potential of this therapeutic modality. Full article
Show Figures

Figure 1

18 pages, 2381 KiB  
Article
Influence of Low-Level Red Laser Irradiation on the Proliferation, Viability, and Differentiation of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells
by Khalid M. AlGhamdi, Ashok Kumar, Musaad Alfayez and Amer Mahmood
Life 2025, 15(7), 1125; https://doi.org/10.3390/life15071125 - 17 Jul 2025
Viewed by 612
Abstract
The present investigation was conducted to observe the effects of different energy densities of a low-level red laser (LLRL) on human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs). hESC-MSCs were cultured and irradiated with a LLRL from 0.5 to 5.0 J/cm2 at [...] Read more.
The present investigation was conducted to observe the effects of different energy densities of a low-level red laser (LLRL) on human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs). hESC-MSCs were cultured and irradiated with a LLRL from 0.5 to 5.0 J/cm2 at a wavelength of 635 nm. Biological parameters such as proliferation, viability, and migration were observed after 72 h of LLRL irradiation. Compared with the control, LLRL irradiation significantly increased the proliferation and viability of hESC-MSCs from 0.5 to 2.5 J/cm2 (p < 0.001, p < 0.05). LLRL irradiation from 0.5 to 3.0 J/cm2 significantly increased the migration of hESC-MSCs (p < 0.01). These results revealed that LLRL irradiation at lower energy densities significantly increased the proliferation, viability, and migration of hESC-MSCs. However, higher energy densities were ineffective; this was also true when we examined osteogenic differentiation, as low energy densities of LLRL had a positive effect on differentiation, whereas higher energy densities had a negative effect on alkaline phosphatase activity, Alizarin Red staining and gene expression analysis. In addition, not all stem cell markers were affected by the laser, and a slight decrease in the expression of CD146, which is a stemness marker, was detected, indicating improved differentiation. These findings indicate that low energy densities of LLRL irradiation have positive effects on the proliferation, migration, and differentiation of hESC-MSCs. However, higher energy densities showed inhibitory effects. Full article
Show Figures

Figure 1

9 pages, 206 KiB  
Article
Effect of Prior Laser-Assisted In Situ Keratomileusis on the Calibration Accuracy of Extended Depth of Focus Intraocular Lenses: A Direct Comparative Study
by I-Hung Lin, Chen-Cheng Chao and Chao-Kai Chang
J. Pers. Med. 2025, 15(7), 301; https://doi.org/10.3390/jpm15070301 - 10 Jul 2025
Viewed by 254
Abstract
Background: Personalized precision medicine has become a prevailing trend and applies to the selection of intraocular lenses (IOLs) for cataract surgery based on the unique corneal morphology of each person. The choice of presbyopia-correcting IOLs for post-laser-assisted in situ keratomileusis (LASIK) cataract surgery [...] Read more.
Background: Personalized precision medicine has become a prevailing trend and applies to the selection of intraocular lenses (IOLs) for cataract surgery based on the unique corneal morphology of each person. The choice of presbyopia-correcting IOLs for post-laser-assisted in situ keratomileusis (LASIK) cataract surgery is a significant concern. However, few direct comparison studies exist between eyes with and without LASIK history. We analyzed the performance of extended depth of focus (EDOF) IOL implantation in these two groups. Methods: In this retrospective single-center study, we included patients with or without previous LASIK who underwent cataract surgery and EDOF Symfony IOL implantation, with ≥1 follow up. All patients underwent optical biometry using the IOLMaster. IOL power was calculated using the Sanders Retzslaff Kraff/theoretical and Haigis-L formulas for patients without and with LASIK, respectively. Uncorrected distance visual acuity (UDVA), uncorrected near visual acuity (UNVA), refraction, and corneal tomography were recorded. The prediction error was the absolute difference between the postoperative sphere and target refraction. The right eyes of patients who met the inclusion criteria were selected for analysis. Results: Among the 321 recruited eyes, 18 underwent previous LASIK. After 1:3 age/sex matching, 17 LASIK and 49 non-LASIK eyes from 66 patients were analyzed. No significant preoperative differences existed in target refraction, spherical equivalent, or best-corrected visual acuity. All surgical procedures were uneventful. LASIK exhibited non-inferiority to non-LASIK for predictive refraction error and UNVA. An age/sex-matched regression analysis indicated no UDVA superiority between the two groups. Conclusions: Previous LASIK may have no discernible effect on the visual performance of presbyopia-correcting EDOF IOLs with respect to the absolute refractive error, UNVA, and UDVA. Longer follow-up and larger-scale studies are required to further validate these results. Full article
48 pages, 3906 KiB  
Review
Additive Manufacturing of Biodegradable Metallic Implants by Selective Laser Melting: Current Research Status and Application Perspectives
by Anna Gracheva, Igor Polozov and Anatoly Popovich
Metals 2025, 15(7), 754; https://doi.org/10.3390/met15070754 - 4 Jul 2025
Viewed by 378
Abstract
Biodegradable metallic implants represent a paradigm shift in implantology, eliminating secondary removal surgeries through predictable controlled degradation. This review systematizes current achievements in selective laser melting (SLM) of biodegradable metals (Mg, Fe, Zn), analyzing how processing parameters influence microstructure, mechanical properties, and degradation [...] Read more.
Biodegradable metallic implants represent a paradigm shift in implantology, eliminating secondary removal surgeries through predictable controlled degradation. This review systematizes current achievements in selective laser melting (SLM) of biodegradable metals (Mg, Fe, Zn), analyzing how processing parameters influence microstructure, mechanical properties, and degradation kinetics. Key findings demonstrate that SLM-produced Mg alloys achieve bone-matching modulus (40–45 GPa) with moderate degradation (1–3 mm/year); Fe-based systems provide superior strength (400–600 MPa) but slower degradation (0.1–0.5 mm/year); while Zn alloys offer intermediate properties. Design strategies for porous/lattice structures enhancing osseointegration and enabling property gradients are discussed. Major challenges include controlling degradation kinetics, optimizing SLM parameters for reactive metals, standardizing testing methodologies, and regulatory harmonization. This comprehensive analysis provides systematic guidelines for material selection and process optimization, establishing a foundation for developing next-generation personalized biodegradable implants. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

23 pages, 4426 KiB  
Article
Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example
by Veronika Makarova, Mark Mandrik and Sergey Antonov
Pharmaceutics 2025, 17(7), 875; https://doi.org/10.3390/pharmaceutics17070875 - 3 Jul 2025
Viewed by 420
Abstract
Background: The solubility and phase behavior of APIs are crucial for the development of medicines and ensuring their stability. However, conventional experimental approaches often do not allow for the precise determination of phase transitions and solubility limits, especially for poorly soluble compounds. Purpose: [...] Read more.
Background: The solubility and phase behavior of APIs are crucial for the development of medicines and ensuring their stability. However, conventional experimental approaches often do not allow for the precise determination of phase transitions and solubility limits, especially for poorly soluble compounds. Purpose: The aim of this study was to demonstrate the possibility of using the laser microinterferometry method, traditionally used to define the phase equilibria of polymer systems, to determine the thermodynamic solubility of the APIs. Methods: Using laser microinterferometry, the thermodynamic solubility and phase behavior of amorphous darunavir were determined in various pharmaceutical solvents, including vaseline and olive oils, water, glycerol, alcohols (methanol, ethanol, isopropanol), glycols (propylene glycol, polyethylene glycol 400, polypropylene glycol 425, polyethylene glycol 4000), and ethoxylated polyethylene glycol ether obtained from castor oil in the temperature range of 25–130 °C. Dissolution kinetics was estimated at 25 °C. Hansen solubility parameter calculations were also performed for comparison. Results: Darunavir is practically insoluble in olive and vaseline oils. In water and glycerol, an amorphous equilibrium with an upper critical solution temperature was observed, and phase diagrams were constructed for the first time. In alcohols, glycols, and ethoxylated polyethylene glycol ether obtained from castor oil, darunavir showed high solubility, accompanied by the formation of crystalline solvates. Kinetic evaluation showed that the dissolution rate of darunavir in methanol is four times faster than in ethanol and thirty times faster than in isopropanol. Comparison of the obtained data with previously published and calculated values of solubility parameters demonstrates a good correlation. Conclusions: Laser microinterferometry has been demonstrated as a potential tool for determining the thermodynamic solubility of APIs. This method allows for directly observing the dissolution process, determining the solubility limits, and detecting phase transitions. These studies are necessary for selecting appropriate excipients, preventing the formation of undesirable solvates and predicting formulation stability, which are all critical factors in early-stage drug development and pharmaceutical formulation design. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

20 pages, 4174 KiB  
Article
Methods for Evaluating the Elastic Properties of Stainless Steel Perforated Plates
by Viktors Mironovs, Marija Osipova, Pavel Akishin, Vjcheslavs Zemchenkovs and Dmitrijs Serdjuks
Metals 2025, 15(7), 711; https://doi.org/10.3390/met15070711 - 26 Jun 2025
Viewed by 414
Abstract
Perforated materials are widely used in various fields, including in medicine, for example, in trays for placing and storing cutting tools and for sterilizing disposable materials. Currently, the effective elastic modulus of orthopedic plates is higher than the effective elastic modulus of human [...] Read more.
Perforated materials are widely used in various fields, including in medicine, for example, in trays for placing and storing cutting tools and for sterilizing disposable materials. Currently, the effective elastic modulus of orthopedic plates is higher than the effective elastic modulus of human bone tissue (the effective elastic modulus of bone ranges between 10 and 30 GPa, depending on the type of bone). This difference in effective elastic modulus leads to the phenomenon known as the stress shielding effect, where the bone experiences insufficient mechanical loading. One potential approach to influence the effective elastic modulus of orthopedic plates is through perforations in their design. Stainless steel 316L has garnered significant interest among medical engineering specialists due to its lower weight, higher strength, and superior biocompatibility. The elastic properties of perforated constructions are influenced by their internal quality, dimensions, shapes, and the overall perforation area, making their study important. An experiment was conducted on perforated plates of 316L stainless steel with perforation areas ranging from 3% to 20%. Increasing the perforation area in perforated 316L stainless steel plates (perforated plates had dimensions of 50 mm in height, 20 mm in width, and 1 mm in thickness; hole diameter of 1 mm; and pitch between the holes of 2, 3, 4, and 5 mm) from 3% to 20% resulted in a decrease in Young’s modulus of the perforated plates from 199 GPa to 147.8 GPa, determined using a non-destructive method for determining resonant frequencies using a laser vibrometer. A three-point bending test on the perforated plates confirmed these findings, demonstrating a consistent trend of decreasing Young’s modulus with increasing perforation area, from 194.4 GPa at 3.14% to 142.6 GPa at 19.63%. The three-point bending method was also employed in this study to determine the Young’s modulus of the perforated plates in order to reinforce the obtained results on the elastic properties by determining the resonance frequencies with a laser vibrometer. It was discovered that the Young’s modulus of a perforated plate cannot be determined solely by the perforation area, as it depends on both the perforation diameter and the pitch between the perforations. In addition, finite element method (FEM) simulations were conducted, revealing that increasing perforation diameter and decreasing pitch significantly reduce the Young’s modulus—with values dropping from 201.5 GPa to 72.6 GPa across various configurations. Full article
(This article belongs to the Special Issue Metallic Functional Materials: Development and Applications)
Show Figures

Figure 1

14 pages, 1268 KiB  
Article
Rising Demand for Fetoscopic Laser Therapy for Twin-to-Twin Transfusion Syndrome: Trends, Maternal Age Insights, and Future Challenges in Germany
by Anna Dionysopoulou, Kathrin Stewen, Yaman Degirmenci, Lina Judit Schiestl, Konstantin Hofmann, Annette Hasenburg and Roxana Schwab
J. Clin. Med. 2025, 14(13), 4476; https://doi.org/10.3390/jcm14134476 - 24 Jun 2025
Viewed by 518
Abstract
Background/Objectives: The twin-to twin transfusion syndrome (TTTS) is the most common complication of monochorionic twin pregnancies. Fetal laser therapy (FLT) and serial amniondrainage (SAD) have been used as treatment options for TTTS. This study examines how the management of TTTS in Germany has [...] Read more.
Background/Objectives: The twin-to twin transfusion syndrome (TTTS) is the most common complication of monochorionic twin pregnancies. Fetal laser therapy (FLT) and serial amniondrainage (SAD) have been used as treatment options for TTTS. This study examines how the management of TTTS in Germany has evolved in the past years and addresses future patient needs and potential challenges for healthcare providers and healthcare systems. Methods: The number of TTTS-related interventions between the years 2005 and 2021 were extracted from the German Federal Statistical Office. The trajectory of FLT and SAD procedures over the study period was analyzed. The historical data were used to make projections for future years and address future FLT surgical needs. Further, we aimed to determine age-related influences in monochorionic twin pregnancies requiring FLT. Results: A statistically significant increase in the number of FLT surgeries and a noteworthy decline in the number of SAD procedures with respect to both the number of deliveries per year and the number of multiple pregnancies per year were noted. For the first time, we showed that the percentage of multiple pregnancies requiring FLT was significantly higher in younger mothers under 25 years of age, than in all other age groups. Conclusions: For the moment, FLT poses the only direct and causative treatment of TTTS. The results of our analysis reveal an increasing demand for FLT surgeries for future years. We highlight the need to train more maternal–fetal medicine specialists to be able to perform the procedure safely and to allocate resources efficiently to accommodate the rising number of cases. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

21 pages, 2424 KiB  
Review
The Role of Biomarkers in Temporomandibular Disorders: A Systematic Review
by Joana Maria Soares, Bruno Daniel Carneiro and Daniel Humberto Pozza
Int. J. Mol. Sci. 2025, 26(13), 5971; https://doi.org/10.3390/ijms26135971 - 21 Jun 2025
Viewed by 1032
Abstract
Temporomandibular disorders (TMDs) impact quality of life and present diagnostic and treatment challenges. Biomarkers may serve as an additional tool to support diagnosis and monitor disease progression, offering supplementary information for treatment strategies in specific and selected patients. This systematic review aimed to [...] Read more.
Temporomandibular disorders (TMDs) impact quality of life and present diagnostic and treatment challenges. Biomarkers may serve as an additional tool to support diagnosis and monitor disease progression, offering supplementary information for treatment strategies in specific and selected patients. This systematic review aimed to assess the role of biomarkers in diagnosing TMD and guiding personalized treatment. It also examined key biomarkers linked to chronic temporomandibular joint (TMJ) pain and how therapies affect biomarker levels and clinical outcomes. A comprehensive search was conducted in PubMed, Scopus, and Web of Science to identify observational and interventional studies assessing the role of biomarkers in synovial fluid/tissue, saliva, and blood. The research was registered in PROSPERO, adhered to PRISMA guidelines, and employed Cochrane Risk of Bias tools. To assess the effect, only studies examining biomarker levels were considered. A total of forty-six studies met the inclusion criteria: three randomized controlled trials were rated as having some concerns, as were most of the observational studies. Elevated levels of interleukins (1ß and 6), tumour necrosis factor alpha, and prostaglandin E2 in synovial fluid were correlated with temporomandibular joint (TMJ) inflammation. Increased matrix metalloproteinases (2, 7, and 9) indicated cartilage deterioration, while oxidative stress markers such as malondialdehyde were higher in TMD patients. Treatments including hyaluronic acid, platelet-rich plasma, and low-level laser therapy effectively reduced inflammatory biomarkers and improved symptoms. Biomarkers show potential to contribute to the understanding of pathophysiological mechanisms in TMD and may support future diagnostic and therapeutic strategies for selected patients. After high-quality studies confirm these findings, this approach will enable personalized medicine by tailoring treatments to individual patient profiles, ultimately leading to improved outcomes and quality of life. Full article
(This article belongs to the Special Issue Pain in Human Health and Disease)
Show Figures

Figure 1

17 pages, 2898 KiB  
Article
Selective Laser Sintering of Atomoxetine Tablets: An Innovative Approach for Small-Scale, Personalized Production
by Gordana Stanojević, Ivana Adamov, Snežana Mugoša, Veselinka Vukićević and Svetlana Ibrić
Pharmaceutics 2025, 17(6), 794; https://doi.org/10.3390/pharmaceutics17060794 - 18 Jun 2025
Viewed by 532
Abstract
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing [...] Read more.
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing it with conventional direct compression. Methods: Atomoxetine tablets were produced using SLS 3D printing with varying laser scanning speeds and compared to tablets made via a compaction simulator. Formulations were based on hydroxypropyl methylcellulose (HPMC) as the primary matrix former. The physical properties, drug content, disintegration time, and dissolution profiles were evaluated. The structural and chemical integrity were assessed using SEM, FTIR, DSC, and XRPD. Results: The SLS tablets exhibited comparable mechanical properties and drug content to those made by compaction. Lower laser speeds produced harder tablets with slower disintegration, while higher speeds yielded more porous tablets with ultra-rapid drug release (>85% in 15 min). All tablets met the European Pharmacopoeia dissolution criteria. No significant drug–excipient interactions or changes in crystallinity were detected. Conclusions: SLS printing is a viable alternative to traditional tablet manufacturing, offering control over drug release profiles through parameter adjustment. The technique supports the development of high-quality, patient-specific dosage forms and shows promise for broader implementation in personalized pharmaceutical therapy. Full article
Show Figures

Graphical abstract

15 pages, 4096 KiB  
Article
Fs-Laser-Induced Micro- and Nanostructures on Polycarbonate and Cellulose Acetate Butyrate for Cell Alignment
by Lukas Wagner, Werner Baumgartner, Agnes Weth, Sebastian Lifka and Johannes Heitz
Appl. Sci. 2025, 15(12), 6754; https://doi.org/10.3390/app15126754 - 16 Jun 2025
Viewed by 393
Abstract
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type [...] Read more.
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type of glial cell that can support the regeneration of nerve pathways by guiding the neuronal axons in the direction of their alignment. Polymer surfaces, i.e., polycarbonate (PC) or cellulose acetate butyrate (CAB), were exposed to the beam of a 1040 nm Yb-based amplified fs-laser system with a pulse length of about 350 fs. With appropriate parameters, the laser exposure resulted in a surface topography with oriented micro-grooves, which, for PC, were covered with nano-ripples. Schwann cell growth on these substrates was inspected after 3 to 5 days of cultivation by means of scanning electron microscopy (SEM). We show that Schwann cells can grow in a certain direction, predetermined by micro-groove or nano-ripple orientation. In contrast, cells cultivated on randomly oriented nanofibers or unstructured surfaces show an omnidirectional growth behavior. This method may be used in the future to produce nerve conduits for the treatment of injuries to the peripheral nervous system. Full article
(This article belongs to the Special Issue Ultrafast and Nonlinear Laser Applications)
Show Figures

Figure 1

19 pages, 2372 KiB  
Review
Frontier Advances and Challenges of High-Power Thulium-Doped Fiber Lasers in Minimally Invasive Medicine
by Wen-Yue Xu, Gong Wang, Yun-Fei Li, Yu Yu, Yulei Wang and Zhiwei Lu
Photonics 2025, 12(6), 614; https://doi.org/10.3390/photonics12060614 - 16 Jun 2025
Viewed by 808
Abstract
Lasers are increasingly used in the biomedical field because of their concentrated energy, good stability, ease of use, and other advantages, promoting the development of precision medicine to a higher level. Medical laser equipment has transformed from a single therapeutic tool in an [...] Read more.
Lasers are increasingly used in the biomedical field because of their concentrated energy, good stability, ease of use, and other advantages, promoting the development of precision medicine to a higher level. Medical laser equipment has transformed from a single therapeutic tool in an intelligent and precise diagnostic system. Existing clinical laser equipment has significant technical bottlenecks regarding soft-tissue ablation precision and multimodal diagnostic compatibility, which seriously restricts its clinical application. High-power thulium-doped fiber lasers with operating wavelengths of 1.9–2.1 μm provide a revolutionary solution for minimally invasive surgery due to their high compatibility with the absorption peaks of water molecules in biological tissues. This study reviews recent advances in high-power thulium-doped fiber lasers for minimally invasive therapies in the biomedical field. Breakthrough results in four major clinical application scenarios, namely, urological lithotripsy, tumor precision ablation, disfiguring dermatological treatment, and minimally invasive endovenous laser ablation, are also summarized. By systematically evaluating its potential for multimodal diagnostic and therapeutic applications and thoroughly exploring the technical challenges and strategies for clinical transformation, we aim to provide a theoretical basis and practical guidance for the clinical transformation and industrialization of new-generation medical laser technology. Full article
Show Figures

Figure 1

29 pages, 4999 KiB  
Systematic Review
Integrating Acupuncture and Herbal Medicine into Assisted Reproductive Technology: A Systematic Review and Meta-Analysis of East Asian Traditional Medicine
by Xiangping Peng, Bo Wu, Siyu Zhou, Yinghan Xu, Atsushi Ogihara, Shoji Nishimura, Qun Jin and Gerhard Litscher
Healthcare 2025, 13(11), 1326; https://doi.org/10.3390/healthcare13111326 - 3 Jun 2025
Cited by 2 | Viewed by 1400
Abstract
Background: Assisted reproductive technologies (ARTs) are essential in treating infertility but often face limited success due to low implantation and live birth rates. East Asian traditional medicine (EATM), including acupuncture and herbal medicine (HM), may enhance physiological responses during ART cycles. This study [...] Read more.
Background: Assisted reproductive technologies (ARTs) are essential in treating infertility but often face limited success due to low implantation and live birth rates. East Asian traditional medicine (EATM), including acupuncture and herbal medicine (HM), may enhance physiological responses during ART cycles. This study evaluated the effectiveness and safety of EATM in improving clinical pregnancy and live birth outcomes in women undergoing ART. Methods: This review, registered in PROSPERO (CRD42023411712), systematically searched 11 databases up to 31 March 2023. We included randomized controlled trials (RCTs) comparing EATM interventions to control groups. Data extraction and quality assessment were performed independently by two authors. Meta-analysis used the inverse-variance method in Stata 12.0. A total of 37 RCTs involving 10,776 women (aged 29–38) were analyzed. Studies addressed infertility causes including polycystic ovary syndrome, tubal blockage, diminished ovarian reserve, and unexplained infertility. Acupuncture therapies included body, electro-, laser, and auricular acupuncture. Herbal treatments were administered as powders, pills, granules, decoctions, and ointments based on traditional Chinese formulas. Results: EATM interventions were associated with significant improvements in clinical pregnancy and live birth rates. Acupuncture increased clinical pregnancy rates (CPR: RR 1.316, 95% CI 1.171–1.480) and live birth rates (LBR: RR 1.287, 95% CI 1.081–1.533). HM also enhanced CPRs (RR 1.184) and LBRs (RR 1.147). Subgroup analysis showed true acupuncture and HM were more effective than sham or placebo. No significant differences in adverse events were found. Conclusions: EATM, particularly acupuncture and HM, appears to be a safe and effective complementary therapy that can be used to improve ART outcomes. Future research should focus on developing standardized acupuncture and herbal protocols to optimize integration with ART. Full article
Show Figures

Figure 1

13 pages, 3186 KiB  
Article
The Design and Performance Evaluation of an Eye-Tracking System Based on an Electrostatic MEMS Scanning Mirror
by Minqiang Li, Lin Qin, Xiasheng Wang, Jiaojiao Wen, Tong Wu, Xiaoming Huang, Hongbo Yin, Yi Tian and Zhuqing Wang
Micromachines 2025, 16(6), 640; https://doi.org/10.3390/mi16060640 - 28 May 2025
Viewed by 2634
Abstract
In this paper, we proposed an eye-tracking system featuring a small size and high scanning frequency, utilizing an electrostatic biaxial scanning mirror fabricated through a micro-electro-mechanical system (MEMS) process. A laser beam is directed onto the mirror, and the two axes of the [...] Read more.
In this paper, we proposed an eye-tracking system featuring a small size and high scanning frequency, utilizing an electrostatic biaxial scanning mirror fabricated through a micro-electro-mechanical system (MEMS) process. A laser beam is directed onto the mirror, and the two axes of the mirror generate a Lissajous scanning pattern within an artificial eyeball. The scanning pattern reflected from the eyeball is detected by a linear photodiode sensor array (LPSA). The direction and rotation angle of the artificial eyeball result in varying grayscale values across a series of pixels detected by the LPSA, in which the average grayscale values change accordingly. By performing a linear fit between different rotation angles of the same eye movement direction and the corresponding grayscale values, we can determine the correlation between the direction of eye movement and the signal magnitude received by the LPSA, thereby enabling precise eye tracking. The results demonstrated that the minimum resolution was 0.6°. This preliminary result indicates that the system has good accuracy. In the future, this eye-tracking system can be integrated into various wearable glasses devices and applied in various fields, including medicine and psychology. Full article
Show Figures

Figure 1

Back to TopTop