Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = laser transmission welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 15835 KiB  
Article
Research on Laser Direct Transmission Welding of Transparent Polystyrene and Polycarbonate Based on Laser Surface Modification
by Kehui Zhai, Fuhao Yang, Qiyan Gu, Yu Lin, Minqiu Liu, Deqin Ouyang, Yewang Chen, Ying Zhang, Qitao Lue and Shuangchen Ruan
Polymers 2025, 17(3), 409; https://doi.org/10.3390/polym17030409 - 4 Feb 2025
Viewed by 1074
Abstract
The conventional near-infrared laser transmission welding (LTW) process for joining dissimilar transparent polymers is limited by the need to incorporate optical absorbents, which compromises joint performance and raises biocompatibility concerns. To address these issues, this study proposed a surface modification technique using femtosecond [...] Read more.
The conventional near-infrared laser transmission welding (LTW) process for joining dissimilar transparent polymers is limited by the need to incorporate optical absorbents, which compromises joint performance and raises biocompatibility concerns. To address these issues, this study proposed a surface modification technique using femtosecond laser ablation prior to the welding process. Experiments involved 520 nm femtosecond laser ablation of transparent polymers, followed by LTW of dissimilar transparent polymers using an 808 nm laser, with subsequent characterization and mechanical property evaluations. A maximum joint strength of 13.65 MPa was achieved. A comprehensive investigation was conducted into the physical and chemical mechanisms through which laser ablation improved the welding performance of dissimilar transparent polymers. The results demonstrated that laser ablation generated microstructures that serve as substitutes for optical absorbents while also facilitating the formation of numerous oxygen-containing functional groups. These enhancements improve miscibility and bonding performance between dissimilar polymers, enabling absorbent-free welding between ablated polycarbonate (PC) and polystyrene (PS). This work confirms both the feasibility and potential application of this process for direct LTW of dissimilar transparent polymers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

24 pages, 26404 KiB  
Article
Effects of Different Surface Treatment Methods on Laser Welding of Aluminum Alloy and Glass
by Changjun Chen, Lei Li, Min Zhang and Wei Zhang
Coatings 2024, 14(10), 1318; https://doi.org/10.3390/coatings14101318 - 15 Oct 2024
Cited by 1 | Viewed by 1870
Abstract
Hermetic glass-to-metal sealing (GMTS) technology combines metal and glass and can be used to construct vacuum tubes; electric discharge tubes; semiconductor diodes; reed switches; and pressure-tight glass-to-metal windows, optical windows, and lenses in electronics or electronic systems. The hermetic and mechanically strong seals [...] Read more.
Hermetic glass-to-metal sealing (GMTS) technology combines metal and glass and can be used to construct vacuum tubes; electric discharge tubes; semiconductor diodes; reed switches; and pressure-tight glass-to-metal windows, optical windows, and lenses in electronics or electronic systems. The hermetic and mechanically strong seals engineered using GTMS are highly reliable, making them suitable for deployment in harsh environments and for applications requiring high performance. However, it has always been challenging to precisely and robustly join glass and metal due to the significant disparities in their properties. In this study, the laser transmission welding of borosilicate glass and aluminum alloy using a pulsed Nd:YAG laser to achieve hermetic glass–metal seals was experimentally investigated. This research focused on various processing parameters and the influence of surface conditions on bonding quality. Three different types of surfaces—a polished surface, a surface subjected to preoxidation, and a laser-modified surface—were compared. To evaluate the weld strength, shear-tensile separation forces were measured. The analysis of fracture and separation encompassed detailed examinations of the weld morphology, microstructure, and elemental composition. The results revealed that increasing the laser welding energy initially enhanced the weld strength until a saturation point was reached. Among the three different surface treatments tested, the laser surface modification of aluminum alloy yielded the highest weld strength. The maximum achieved bond force exceeded 35.38 N, demonstrating the feasibility of using cost-effective pulsed laser welding for glass-to-metal sealing. The results were significantly better than those from previous research in which aluminum alloy surfaces were pretreated using microarc oxidation. Full article
(This article belongs to the Special Issue Laser-Assisted Processes and Thermal Treatments of Materials)
Show Figures

Figure 1

21 pages, 10988 KiB  
Article
Study on Laser Transmission Welding Technology of TC4 Titanium Alloy and High-Borosilicate Glass
by Changjun Chen, Lei Li, Min Zhang, Mengxuan Xu and Wei Zhang
Materials 2024, 17(17), 4371; https://doi.org/10.3390/ma17174371 - 4 Sep 2024
Cited by 2 | Viewed by 1378
Abstract
As the demand for high-performance dissimilar material joining continues to increase in fields such as aerospace, biomedical engineering, and electronics, the welding technology of dissimilar materials has become a focus of research. However, due to the differences in material properties, particularly in the [...] Read more.
As the demand for high-performance dissimilar material joining continues to increase in fields such as aerospace, biomedical engineering, and electronics, the welding technology of dissimilar materials has become a focus of research. However, due to the differences in material properties, particularly in the welding between metals and non-metals, numerous challenges arise. The formation and quality of the weld seam are strongly influenced by laser process parameters. In this study, successful welding of high-borosilicate glass to a TC4 titanium alloy, which was treated with high-temperature oxidation, was achieved using a millisecond pulsed laser. A series of process parameter comparison experiments were designed, and the laser welding behavior of the titanium alloy and glass under different process parameters was investigated using scanning electron microscopy (SEM) and a universal testing machine as the primary analysis and testing equipment. The results revealed that changes in process parameters significantly affect the energy input and accumulation during the welding process. The maximum joint strength of 60.67 N was obtained at a laser power of 180 W, a welding speed of 3 mm/s, a defocus distance of 0 mm, and a frequency of 10 Hz. Under the action of the laser, the two materials mixed and penetrated into the molten pool, thus achieving a connection. A phase, Ti5Si3, was detected at the fracture site, indicating that both mechanical bonding and chemical bonding reactions occurred between the high-borosilicate glass and the TC4 titanium alloy during the laser welding process. Full article
(This article belongs to the Topic Laser Processing of Metallic Materials)
Show Figures

Figure 1

19 pages, 14305 KiB  
Article
Realization of Joints of Aluminosilicate Glass and 6061 Aluminum Alloy via Picosecond Laser Welding without Optical Contact
by Caiwang Tan, Xing Lu, Fuyun Liu, Wei Song, Guanghui Guo, Qige Li, Yuhang Liu, Jianhui Su and Xiaoguo Song
Materials 2024, 17(17), 4299; https://doi.org/10.3390/ma17174299 - 30 Aug 2024
Cited by 2 | Viewed by 3995
Abstract
To achieve laser direct welding of glass and metal without optical contact is hard, owing to the large difference in thermal expansion and thermal conductivity between glass and metal and an insignificant melting area. In this study, the high-power picosecond pulsed laser was [...] Read more.
To achieve laser direct welding of glass and metal without optical contact is hard, owing to the large difference in thermal expansion and thermal conductivity between glass and metal and an insignificant melting area. In this study, the high-power picosecond pulsed laser was selected to successfully weld the aluminosilicate glass/6061 aluminum alloy with a gap of 35 ± 5 μm between glass and metal. The results show that the molten glass and metal diffuse and mix at the interface. No defects such as microcracks or holes are observed in the diffusion mixing zone. Due to the relatively large gap, the glass collapsed after melting and caulking, resulting in an approximately arc-shaped microcrack between modified glass and unmodified glass or weakly modified glass. The shape of the glass modification zone and thermal accumulation are influenced by the single-pulse energy and linear energy density of the picosecond laser during welding, resulting in variations in the number and size of defects and the shape of the glass modification zone. By reasonably tuning the two factors, the shear strength of the joint reaches 15.98 MPa. The diffusion and mixing at the interface and the mechanical interlocking effect of the glass modification zone are the main reasons for achieving a high shear strength of the joint. This study will provide reference and new ideas for the laser transmission welding of glass and metal in the non-optical contact conditions. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites)
Show Figures

Figure 1

15 pages, 9413 KiB  
Article
Experimental and Numerical Investigation of the Use of Ultrasonic Waves to Assist Laser Welding
by Mohamad Salimi, Ahmed Teyeb, Evelyne El Masri, Samiul Hoque, Phil Carr, Wamadeva Balachandran and Tat-Hean Gan
Materials 2024, 17(11), 2521; https://doi.org/10.3390/ma17112521 - 23 May 2024
Cited by 3 | Viewed by 1664
Abstract
This study evaluates the enhancement of laser welding using ultrasonic waves aimed at reorganising the intermetallic position in such a fashion that leads to increased mechanical properties of welds in battery pack assemblies for electric vehicles. The experiment employed 20 kHz and 40 [...] Read more.
This study evaluates the enhancement of laser welding using ultrasonic waves aimed at reorganising the intermetallic position in such a fashion that leads to increased mechanical properties of welds in battery pack assemblies for electric vehicles. The experiment employed 20 kHz and 40 kHz High-Power Ultrasound Transducers (HPUTs) in both contact and contactless modes. A simplified experimental configuration is suggested to represent conditions similar to those found in electric vehicle battery pack assemblies. Measurements of vibration transmission to aluminium alloy 1050 plates revealed more than a 1000-fold increase in acceleration amplitude in contact mode compared to contactless mode. The 20 kHz transducer in contactless mode demonstrated superior performance, showing a 10% increase in load and 27% increase in extension compared to welding without ultrasonic assistance. On the other hand, the 40 kHz transducer, while still improved over non-ultrasonic methods, showed less pronounced benefits. This suggests that lower-frequency ultrasonic assistance (20 kHz) is more effective in this specific context. The study explores ultrasonic assistance in laser welding copper (Cu101) to aluminium alloy 1050 using 20 kHz and 40 kHz HPUTs, showing that both transducers enhance microstructural integrity by reducing copper homogenisation into aluminium, with the 20 kHz frequency proving more effective in this context. A numerical simulation was conducted to evaluate the transmission of pressure into the molten pool of the weld, correlated with the vibration results obtained from the 20 kHz transducer. The numerical simulation confirms that no cavitation is initiated in the molten pool area, and all improvements are solely due to the ultrasonic waves. Full article
Show Figures

Figure 1

15 pages, 4305 KiB  
Article
Investigating the Effect of Interface Temperature on Molecular Interdiffusion during Laser Transmission Welding of 3D-Printed Composite Parts
by Anh-Duc Le, André Chateau Akué Asséko, Benoît Cosson and Patricia Krawczak
Materials 2023, 16(18), 6121; https://doi.org/10.3390/ma16186121 - 7 Sep 2023
Cited by 2 | Viewed by 2071
Abstract
The present study investigated the influence of temperature on molecular interdiffusion at the interface during the laser transmission welding of 3D-printed continuous carbon-fiber-reinforced thermoplastic composites. In order to accurately measure the temperature at the weld interface, a series of thermocouples were embedded in [...] Read more.
The present study investigated the influence of temperature on molecular interdiffusion at the interface during the laser transmission welding of 3D-printed continuous carbon-fiber-reinforced thermoplastic composites. In order to accurately measure the temperature at the weld interface, a series of thermocouples were embedded in the laser-absorbent composite part. Two different molecular interdiffusion models were implemented to calculate the degree of healing and to predict the effects of temperature on the welding process. The degree of healing and the weld line width were computed and compared with microscopy observations. The discrepancy between the two proposed numerical models was less than 6%. Both models showed good agreement with the experimental data, with an average error of 13.28% and 7.26%, respectively. The results revealed a significant correlation between the thermal history and molecular interdiffusion at the interface. Furthermore, the relationship between the welding parameters (laser beam scanning speed) and weld line width was established. The findings of this study provide a comprehensive understanding of the underlying mechanisms involved in the laser welding of 3D-printed composites and offer insights to optimize the welding process for enhanced weld quality and superior mechanical properties in the final product. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Polymer Composites)
Show Figures

Figure 1

19 pages, 2200 KiB  
Review
Laser Light as an Emerging Method for Sustainable Food Processing, Packaging, and Testing
by Prasad Chavan, Rahul Yadav, Pallavi Sharma and Amit K. Jaiswal
Foods 2023, 12(16), 2983; https://doi.org/10.3390/foods12162983 - 8 Aug 2023
Cited by 9 | Viewed by 5436
Abstract
In this review article, we systematically investigated the diverse applications of laser technology within the sphere of food processing, encompassing techniques such as laser ablation, microbial inactivation, state-of-the-art food packaging, and non-destructive testing. With a detailed exploration, we assess the utility of laser [...] Read more.
In this review article, we systematically investigated the diverse applications of laser technology within the sphere of food processing, encompassing techniques such as laser ablation, microbial inactivation, state-of-the-art food packaging, and non-destructive testing. With a detailed exploration, we assess the utility of laser ablation for the removal of surface contaminants from foodstuffs, while also noting the potential financial and safety implications of its implementation on an industrial scale. Microbial inactivation by laser shows promise for reducing the microbial load on food surfaces, although concerns have been raised about potential damage to the physio-characteristics of some fruits. Laser-based packaging techniques, such as laser perforation and laser transmission welding, offer eco-friendly alternatives to traditional packaging methods and can extend the shelf life of perishable goods. Despite the limitations, laser technology shows great promise in the food industry and has the potential to revolutionize food processing, packaging, and testing. Future research needs to focus on optimizing laser equipment, addressing limitations, and developing mathematical models to enhance the technology’s uses. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

28 pages, 10384 KiB  
Review
Numerical Simulation of Laser Transmission Welding—A Review on Temperature Field, Stress Field, Melt Flow Field, and Thermal Degradation
by Shuangxi Hu, Fang Li and Pei Zuo
Polymers 2023, 15(9), 2125; https://doi.org/10.3390/polym15092125 - 29 Apr 2023
Cited by 20 | Viewed by 4714
Abstract
Laser transmission welding (LTW) is an excellent process for joining plastics and is widely used in industry. Numerical simulation is an important method and area for studying LTW. It can effectively shorten the experimental time and reduce research costs, aid in understanding the [...] Read more.
Laser transmission welding (LTW) is an excellent process for joining plastics and is widely used in industry. Numerical simulation is an important method and area for studying LTW. It can effectively shorten the experimental time and reduce research costs, aid in understanding the welding mechanism, and enable the acquisition of ideal process parameters. To enhance understanding of numerical simulation studies on LTW and facilitate research in this area, this paper presents a comprehensive overview of the progress made in numerical simulation of LTW, covering the following aspects: (a) characteristics of the three heat source models for LTW temperature field simulation, including surface heat source model, volumetric heat source model, and hybrid heat source model, along with the methods, results, and applications of temperature field simulation based on these models and experimental validation; (b) numerical simulation of thermal and residual stresses based on the temperature field; (c) numerical simulation of the melt flow field; and (d) predictive simulation of material degradation. The conclusion of the review and the prospects for further research work are eventually addressed. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

10 pages, 39816 KiB  
Article
Laser Welding of Fiber and Quartz Glass Ferrule
by Wenhua Wang
Micromachines 2023, 14(5), 939; https://doi.org/10.3390/mi14050939 - 26 Apr 2023
Viewed by 2416
Abstract
Optical fiber sensors fabricated by bonding have several limitations. To address these limitations, a CO2 laser welding process for an optical fiber and quartz glass ferrule is proposed in this study. A deep penetration welding method with optimal penetration (penetrating the base [...] Read more.
Optical fiber sensors fabricated by bonding have several limitations. To address these limitations, a CO2 laser welding process for an optical fiber and quartz glass ferrule is proposed in this study. A deep penetration welding method with optimal penetration (penetrating the base material only) is presented to weld a workpiece according to the requirements of the optical fiber light transmission, size characteristics of the optical fiber, and the keyhole effect of the deep penetration laser welding. Moreover, the influence of laser action time on the keyhole penetration is studied. Finally, laser welding is performed with a frequency of 24 kHz, power of 60 W, and duty cycle of 80% for 0.9 s. Subsequently, the optical fiber is subjected to out-of-focus annealing (0.83 mm, 20% duty cycle). The results show that deep penetration welding produces a perfect welding spot and has good quality; the hole generated from deep penetration welding has a smooth surface; the fiber can bear a maximum tensile force of 1.766 N. The performance of the optical fiber sensor is stable, and the maximum pressure deviation corresponding to the cavity length fluctuation is about 7.2 Pa. Additionally, the linear correlation coefficient R of the sensor is 0.99998. Full article
(This article belongs to the Special Issue Advanced Laser Fabrication for Optical Sensors)
Show Figures

Figure 1

9 pages, 3510 KiB  
Communication
Research on Adjustable Ring-Mode Fiber Signal Combiner
by Min Fu, Jiawei Wang, Zhixian Li, Weiyi Yuan, Zefeng Wang and Zilun Chen
Photonics 2023, 10(2), 195; https://doi.org/10.3390/photonics10020195 - 12 Feb 2023
Cited by 4 | Viewed by 1876
Abstract
Nowadays, fiber laser has been widely used in industrial processing, especially in welding, cutting and other fields, and the appearance of adjustable ring-mode fiber laser improves effectively the quality of processing. In this paper, a (6 + 1) × 1 adjustable ring-mode fiber [...] Read more.
Nowadays, fiber laser has been widely used in industrial processing, especially in welding, cutting and other fields, and the appearance of adjustable ring-mode fiber laser improves effectively the quality of processing. In this paper, a (6 + 1) × 1 adjustable ring-mode fiber signal combiner is developed based on the technology of fiber cladding corrosion. The test results show that under the same injection condition, the beam quality transmitted through the central port of the combiner is degraded by only 8.3% compared with that transmitted through a single 50/250 μm fiber. It is proven to be feasible to maintain the beam quality of the (6 + 1) × 1 combiner by fiber corrosion technology. In order to improve the power of the central port of the (6 + 1) × 1 adjustable ring-mode combiner, a 3 × 1 fiber signal combiner and the central port of (6 + 1) × 1 combiner are cascaded. The output beam quality is M2 = 4.45 and the overall transmission efficiency is greater than 95%. This combiner can choose the mode of the output beam according to the actual application requirements, so as to achieve a better application effect. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

16 pages, 2899 KiB  
Article
Predicting Characteristics of Dissimilar Laser Welded Polymeric Joints Using a Multi-Layer Perceptrons Model Coupled with Archimedes Optimizer
by Essam B. Moustafa and Ammar Elsheikh
Polymers 2023, 15(1), 233; https://doi.org/10.3390/polym15010233 - 2 Jan 2023
Cited by 95 | Viewed by 4488
Abstract
This study investigates the application of a coupled multi-layer perceptrons (MLP) model with Archimedes optimizer (AO) to predict characteristics of dissimilar lap joints made of polymethyl methacrylate (PMMA) and polycarbonate (PC). The joints were welded using the laser transmission welding (LTW) technique equipped [...] Read more.
This study investigates the application of a coupled multi-layer perceptrons (MLP) model with Archimedes optimizer (AO) to predict characteristics of dissimilar lap joints made of polymethyl methacrylate (PMMA) and polycarbonate (PC). The joints were welded using the laser transmission welding (LTW) technique equipped with a beam wobbling feature. The inputs of the models were laser power, welding speed, pulse frequency, wobble frequency, and wobble width; whereas, the outputs were seam width and shear strength of the joint. The Archimedes optimizer was employed to obtain the optimal internal parameters of the multi-layer perceptrons. In addition to the Archimedes optimizer, the conventional gradient descent technique, as well as the particle swarm optimizer (PSO), was employed as internal optimizers of the multi-layer perceptrons model. The prediction accuracy of the three models was compared using different error measures. The AO-MLP outperformed the other two models. The computed root mean square errors of the MLP, PSO-MLP, and AO-MLP models are (39.798, 19.909, and 2.283) and (0.153, 0.084, and 0.0321) for shear strength and seam width, respectively. Full article
(This article belongs to the Special Issue Processing of Polymeric Materials)
Show Figures

Figure 1

25 pages, 6749 KiB  
Article
Assembling of Carbon Fibre/PEEK Composites: Comparison of Ultrasonic, Induction, and Transmission Laser Welding
by Adrian Korycki, Christian Garnier, Margot Bonmatin, Elisabeth Laurent and France Chabert
Materials 2022, 15(18), 6365; https://doi.org/10.3390/ma15186365 - 13 Sep 2022
Cited by 17 | Viewed by 4179
Abstract
In the present work, an ultrasonic, an induction, and a through transmission laser welding were compared to join carbon fibre reinforced polyetheretherketone (CF/PEEK) composites. The advantages and drawbacks of each process are discussed, as well as the material properties required to fit each [...] Read more.
In the present work, an ultrasonic, an induction, and a through transmission laser welding were compared to join carbon fibre reinforced polyetheretherketone (CF/PEEK) composites. The advantages and drawbacks of each process are discussed, as well as the material properties required to fit each process. CF/PEEK plates were consolidated at 395 °C with an unidirectional sequence and cross-stacking ply orientation. In some configurations, a polyetherimide (PEI) layer or substrate was used. The thermal, mechanical, and optical properties of the materials were measured to highlight the specific properties required for each process. The drying conditions were defined as 150 °C during at least 8 h for PEI and 24 h for CF/PEEK to avoid defects due to water. The optical transmission factor of PEI is above 40% which makes it suitable for through transmission laser welding. The thermal conductivity of CF/PEEK is at most 55 W·(m·K)−1, which allows it to weld by induction without a metallic susceptor. Ultrasonic welding is the most versatile process as it does not necessitate any specific properties. Then, the mechanical resistance of the welds was measured by single lap shear. For CF/PEEK on CF/PEEK, the maximum lap shear strength (LSS) of 28.6 MPa was reached for a joint obtained by ultrasonic welding, while an induction one brought 17.6 MPa. The maximum LSS of 15.2 MPa was obtained for PEI on CF/PEEK assemblies by laser welding. Finally, interfacial resistances were correlated to the fracture modes through observations of the fractured surfaces. CF/PEEK on CF/PEEK joints resulted in mixed cohesive/adhesive failure at the interface and within the inner layers of both substrates. This study presents a guideline to select the suitable welding process when assembling composites for the aerospace industry. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Polymer Composites)
Show Figures

Figure 1

15 pages, 4460 KiB  
Article
Development of a Laser Scanning Machining System Supporting On-the-Fly Machining and Laser Power Follow-Up Adjustment
by Yisheng Yin, Chengrui Zhang, Tieshuang Zhu, Liangcheng Qu and Geng Chen
Materials 2022, 15(16), 5479; https://doi.org/10.3390/ma15165479 - 9 Aug 2022
Cited by 11 | Viewed by 2946
Abstract
In this study, a laser scanning machining system supporting on-the-fly machining and laser power follow-up adjustment was developed to address the increasing demands for high-speed, wide-area, and high-quality laser scanning machining. The developed laser scanning machining system is based on the two-master and [...] Read more.
In this study, a laser scanning machining system supporting on-the-fly machining and laser power follow-up adjustment was developed to address the increasing demands for high-speed, wide-area, and high-quality laser scanning machining. The developed laser scanning machining system is based on the two-master and multi-slave architecture with synchronization mechanism, and realizes the integrated and synchronous collaborative control of the motion stage or robot, the galvanometer scanner, and the laser over standard industrial ethernet networks. The galvanometer scanner can be connected to the industrial ethernet topology as a node, via the self-developed galvanometer scanner control gateway module, and a “one-transmission and multiple-conversion” approach is proposed to ensure real-time ability and synchronization. The proposal of a laser power follow-up adjustment approach could realize real-time synchronous modulation of the laser power, along with the motion of the galvanometer scanner, which is conducive to ensuring the machining quality. In addition, machining software was developed to realize timesaving and high-quality laser scanning machining. The feasibility and practicability of this laser scanning machining system were verified using specific cases. Results showed that the proposed system overcame the limitation of working field size and isolation between the galvanometer scanner controller with the stage motion controller, and achieved high-speed and efficient laser scanning machining for both large-area consecutively and discontinuously arrayed patterns. Moreover, the integration of laser power follow-up adjustment into the system was conducive to ensuring welding quality and inhibiting welding defects. The proposed system paves the way for high-speed, wide-area, and high-quality laser scanning machining and provides technical convenience and cost advantages for customized laser-processing applications, exhibiting great research value and application potential in the field of material processing engineering. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems, 2nd Volume)
Show Figures

Figure 1

11 pages, 2312 KiB  
Article
Optical Coherence Tomography for 3D Weld Seam Localization in Absorber-Free Laser Transmission Welding
by Frederik Maiwald, Clemens Roider, Michael Schmidt and Stefan Hierl
Appl. Sci. 2022, 12(5), 2718; https://doi.org/10.3390/app12052718 - 5 Mar 2022
Cited by 4 | Viewed by 3722
Abstract
Quality and reliability are of the utmost importance for manufacturing in the optical and medical industries. Absorber-free laser transmission welding enables the precise joining of identical polymers without additives or adhesives and is well-suited to meet the demands of the aforementioned industries. To [...] Read more.
Quality and reliability are of the utmost importance for manufacturing in the optical and medical industries. Absorber-free laser transmission welding enables the precise joining of identical polymers without additives or adhesives and is well-suited to meet the demands of the aforementioned industries. To attain sufficient absorption of laser energy without absorbent additives, thulium fiber lasers, which emit in the polymers’ intrinsic absorption spectrum, are used. Focusing the laser beam with a high numerical aperture provides significant intensity gradients inside the workpiece and enables selective fusing of the internal joining zone without affecting the surface of the device. Because seam size and position are crucial, the high-quality requirements demand internal weld seam monitoring. In this work, we propose a novel method to determine weld seam location and size using optical coherence tomography. Changes in optical material properties because of melting and re-solidification during welding allow for weld seam differentiation from the injection-molded base material. Automatic processing of the optical coherence tomography data enables the identification and measurement of the weld seam geometry. The results from our technique are consistent with microscopic images of microtome sections and demonstrate that weld seam localization in polyamide 6 is possible with an accuracy better than a tenth of a millimeter. Full article
(This article belongs to the Special Issue State-of-the-Art of Optical Micro/Nano-Metrology and Instrumentation)
Show Figures

Figure 1

23 pages, 65422 KiB  
Article
Influence of Preheating Temperature on Structural and Mechanical Properties of a Laser-Welded MMC Cobalt Based Coating Reinforced by TiC and PCD Particles
by Artur Czupryński and Mirosława Pawlyta
Materials 2022, 15(4), 1400; https://doi.org/10.3390/ma15041400 - 14 Feb 2022
Cited by 7 | Viewed by 2709
Abstract
This article presents research on the structural and mechanical properties of an innovative metal matrix composite (MMC) coating designed for use in conditions of intense metal-mineral abrasive wear. The layer, which is intended to protect the working surface of drilling tools used in [...] Read more.
This article presents research on the structural and mechanical properties of an innovative metal matrix composite (MMC) coating designed for use in conditions of intense metal-mineral abrasive wear. The layer, which is intended to protect the working surface of drilling tools used in the oil and natural gas extraction sector, was padded using the multi-run technique on a sheet made of AISI 4715 low-alloy structural steel by Laser Direct Metal Deposition (LDMD) using a high-power fiber laser (FL). An innovative cobalt alloy matrix powder with a ceramic reinforcement of crushed titanium carbide (TiC) and tungsten-coated synthetic polycrystalline diamond (PCD) was used as the surfacing material. The influence of the preheating temperature of the base material on the susceptibility to cracking and abrasive wear of the composite coating was assessed. The structural properties of the coating were characterized by using methods such as optical microscopy, scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The mechanical properties of the hardfaced coating were assessed on the basis of the results of a metal-mineral abrasive wear resistance test, hardness measurement, and the observation of the abrasion area with a scanning laser microscope. The results of laboratory tests showed a slight dissolution of the tungsten coating protecting the synthetic PCD particles and the transfer of its components into the metallic matrix of the composite. Moreover, it was proved that an increase in the preheating temperature of the base material prior to welding has a positive effect on reducing the susceptibility of the coating to cracking, reducing the porosity of the metal deposit and increasing the resistance to abrasive wear. Full article
Show Figures

Figure 1

Back to TopTop