Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (599)

Search Parameters:
Keywords = laser surface modifications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3123 KiB  
Article
Effect of Surface Modification for Efficient Electroplating of 3D-Printed Components
by Dagmar Klichová, Hana Krupová, Jakub Měsíček, František Botko and Světlana Radchenko
Machines 2025, 13(7), 630; https://doi.org/10.3390/machines13070630 - 21 Jul 2025
Viewed by 94
Abstract
This article explores the issue of surface modification through tumbling and vaporisation of 3D-printed materials, and its impact on the electrolytic deposition of metal coatings on previously non-conductive materials. Plastic materials represent an affordable alternative, but their surface treatment, in the form of [...] Read more.
This article explores the issue of surface modification through tumbling and vaporisation of 3D-printed materials, and its impact on the electrolytic deposition of metal coatings on previously non-conductive materials. Plastic materials represent an affordable alternative, but their surface treatment, in the form of post-coating, achieves properties comparable to those of metal parts while saving expensive metal material. Samples prepared by selective laser sintering (SLS) with different surface treatments were used. Polyamide 12 (PA12) was chosen as the base material and copper (Cu) as the metallic coating. Graphite was sprayed on the samples to ensure conductivity. The Cu coating was electrodeposited from an acidic copper electrolyte. The quantitative analysis of the surface was carried out using standard ISO parameters. The thickness of the deposited copper layer was determined using destructive measurements on a digital microscope. The results show that surface modification has a significant effect on the functional properties of the surface quality and the thickness of the deposited copper layer. Full article
(This article belongs to the Special Issue Surface Engineering Techniques in Advanced Manufacturing)
Show Figures

Figure 1

19 pages, 9988 KiB  
Article
Research on Modification Technology of Laser Cladding Stellite6/Cu Composite Coating on the Surface of 316L Stainless Steel Plow Teeth
by Wenhua Wang, Qilang He, Wenqing Shi and Weina Wu
Micromachines 2025, 16(7), 827; https://doi.org/10.3390/mi16070827 - 20 Jul 2025
Viewed by 203
Abstract
Plow loosening machines are essential agricultural machinery in the agricultural production process. Improving the surface strengthening process and extending the working life of the plow teeth of the plow loosening machine are of great significance. In this paper, the preparation of Stellite6/Cu composite [...] Read more.
Plow loosening machines are essential agricultural machinery in the agricultural production process. Improving the surface strengthening process and extending the working life of the plow teeth of the plow loosening machine are of great significance. In this paper, the preparation of Stellite6/Cu composite coating on the surface of 316L steel substrate intended for strengthening the plow teeth of a plow loosening machine using laser cladding technology was studied. The influence of different laser process parameters on the microstructure and properties of Stellite6/Cu composite coating was investigated. The composite coating powder was composed of Stellite6 powder with a different weight percent of copper. Microstructural analysis, phase composition, elemental distribution, microhardness, wear resistance, and corrosion resistance of the composite coatings on the plow teeth were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness testing, energy dispersive spectroscopy (EDS), friction and wear testing, and electrochemical workstation measurements. The results showed that (1) When the laser power was 1000 W, the average hardness of the prepared Stellite6/Cu composite layer achieved the highest hardness, approximately 1.36 times higher than the average hardness of the substrate, and the composite coating prepared exhibited the best wear resistance; (2) When the scanning speed was 800 mm/min, the composite coating exhibited the lowest average friction coefficient and the optimal corrosion resistance in a 3.5% wt.% NaCl solution with a self-corrosion current density of −7.55 µA/cm2; (3) When the copper content was 1 wt.%, the composite coating achieved the highest average hardness with 515.2 HV, the lowest average friction coefficient with 0.424, and the best corrosion resistance with a current density of −8.878 µA/cm2. Full article
Show Figures

Figure 1

14 pages, 3449 KiB  
Article
Superhydrophobic Coating on 6061 Aluminum Alloy Fabricated by Femtosecond Laser Etching and Anodic Oxidation
by Quanlv Liu and Yuxin Wang
Coatings 2025, 15(7), 816; https://doi.org/10.3390/coatings15070816 - 11 Jul 2025
Viewed by 402
Abstract
A superhydrophobic surface with hierarchical micro/nano-array structures was successfully fabricated on 6061 aluminum alloy through a combination of femtosecond laser etching and anodic oxidation. Femtosecond laser etching formed a regularly arranged microscale “pit-protrusion” array on the aluminum alloy surface. After modification with a [...] Read more.
A superhydrophobic surface with hierarchical micro/nano-array structures was successfully fabricated on 6061 aluminum alloy through a combination of femtosecond laser etching and anodic oxidation. Femtosecond laser etching formed a regularly arranged microscale “pit-protrusion” array on the aluminum alloy surface. After modification with a fluorosilane ethanol solution, the surface exhibited superhydrophobicity with a contact angle of 154°. Subsequently, the anodic oxidation process formed an anodic oxide film dominated by an array of aluminum oxide (Al2O3) nanopores at the submicron scale. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that the nanopore structures uniformly and continuously covered the laser-ablated layer. This hierarchical structure significantly increased the surface water contact angle to 162°. Wettability analysis showed that the prepared composite coating formed an air layer accounting for 91% of the surface area. Compared with the sample only treated by femtosecond laser etching, the presence of the Al2O3 nanopore structure significantly enhanced the mechanical durability, superhydrophobic durability, and corrosion resistance of the superhydrophobic surface. The proposed multi-step fabrication strategy offers an innovative method for creating multifunctional, durable superhydrophobic coatings and has important implications for their large-scale industrial use. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings, 2nd Edition)
Show Figures

Figure 1

19 pages, 8722 KiB  
Article
Effect of Laser Power on Microstructure and Tribological Performance of Ni60/WC Bionic Unit Fabricated via Laser Cladding
by You Lv, Bo Cui, Zhaolong Sun and Yan Tong
Metals 2025, 15(7), 771; https://doi.org/10.3390/met15070771 - 8 Jul 2025
Viewed by 270
Abstract
The unique structures and properties of natural organisms provide abundant inspiration for surface modification research in materials science. In this paper, the tribological advantages of radial ribs found on shell surfaces were combined with laser cladding to address challenges in material surface strengthening. [...] Read more.
The unique structures and properties of natural organisms provide abundant inspiration for surface modification research in materials science. In this paper, the tribological advantages of radial ribs found on shell surfaces were combined with laser cladding to address challenges in material surface strengthening. Laser cladding technology was used to fabricate bionic units on the surface of 20CrMnTi steel. The alloy powder consisted of a Ni-based alloy with added WC particles. The influence of laser power (1.0 kW–3.0 kW) on the dimensions, microstructure, hardness, surface roughness, and tribological properties of the bionic units was investigated to enhance the tribological performance of the Ni60/WC bionic unit. The microstructure, phase composition, hardness, and tribological behavior of the bionic units were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), a microhardness tester, and a wear tester. Experimental results show that the dimensions of the bionic units increased with laser power. However, beyond a certain threshold, the growth rate of the width and height gradually slowed due to heat conduction and edge cooling effects. The microstructure primarily consisted of equiaxed and dendritic crystals, with grain refinement observed at higher laser powers. The addition of WC resulted in average hardness values of 791 HV0.2, 819 HV0.2, 835 HV0.2, and 848 HV0.2 across the samples. This enhancement in hardness was attributed to dispersion strengthening and grain refinement. Increasing the laser power also reduced the surface roughness of the bionic units, though excessively high laser power led to a roughness increase. The presence of WC altered the wear mechanism of the bionic units. Compared to the wear observed in the N60 sample, the wear amount of the WC-containing samples decreased by 73.7%, 142.1%, 157.5%, and 263.1%, respectively. Hard WC particles played a decisive role in enhancing tribological performance of the bionic unit. Full article
Show Figures

Figure 1

29 pages, 5671 KiB  
Review
Research Progress in and Defect Improvement Measures for Laser Cladding
by Bo Cui, Peiqing Zhou and You Lv
Materials 2025, 18(13), 3206; https://doi.org/10.3390/ma18133206 - 7 Jul 2025
Viewed by 306
Abstract
Laser cladding, a cutting-edge surface modification technique for metals, offers a novel approach to enhancing the wear and corrosion resistance of substrates due to its rapid heating and cooling capabilities, precise control over coating thickness and dilution rates, and non-contact processing characteristics. However, [...] Read more.
Laser cladding, a cutting-edge surface modification technique for metals, offers a novel approach to enhancing the wear and corrosion resistance of substrates due to its rapid heating and cooling capabilities, precise control over coating thickness and dilution rates, and non-contact processing characteristics. However, disparities in the physical properties between the coating material and the substrate, coupled with the improper utilization of process parameters, can lead to coating defects, thereby compromising the quality of the coating. This paper examines the effects of material systems and process parameters on laser cladding composite coatings and shows that cracking is mainly caused by thermal and residual stresses. This article summarizes the methods for crack improvement and prevention in five aspects: the selection of processes in the preparation stage, the application of auxiliary fields in the cladding process, heat treatment technology, the use of auxiliary software, and the search for new processes and new structural materials. Finally, the future development trends of laser cladding technology are presented. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 11417 KiB  
Article
Microstructure and Mechanical Properties of Functionally Graded Materials on a Ti-6Al-4V Titanium Alloy by Laser Cladding
by Lanyi Liu, Xiaoyang Huang, Guocheng Wang, Xiaoyong Zhang, Kechao Zhou and Bingfeng Wang
Materials 2025, 18(13), 3032; https://doi.org/10.3390/ma18133032 - 26 Jun 2025
Viewed by 410
Abstract
Functionally graded materials (FGMs) are fabricated on Ti-6Al-4V alloy surfaces to improve insufficient surface hardness and wear resistance. Microstructure and mechanical properties and strengthening–toughening mechanisms of FGMs were investigated. The FGM cladding layer exhibits distinct gradient differentiation, demonstrating gradient variations in the nanoindentation [...] Read more.
Functionally graded materials (FGMs) are fabricated on Ti-6Al-4V alloy surfaces to improve insufficient surface hardness and wear resistance. Microstructure and mechanical properties and strengthening–toughening mechanisms of FGMs were investigated. The FGM cladding layer exhibits distinct gradient differentiation, demonstrating gradient variations in the nanoindentation hardness, wear resistance, and Al/V elemental composition. Molten pool dynamics analysis reveals that Marangoni convection drives Al/V elements toward the molten pool surface, forming compositional gradients. TiN-AlN eutectic structures generated on the FGM surface enhance wear resistance. Rapid solidification enables heterogeneous nucleation for grain refinement. The irregular wavy interface morphology strengthens interfacial bonding through mechanical interlocking, dispersing impact loads and suppressing crack propagation. FGMs exhibit excellent wear resistance and impact toughness compared with Ti-6Al-4V titanium alloy. The specific wear rate is 1.17 × 10−2 mm3/(N·m), dynamic compressive strength reaches 1701.6 MPa, and impact absorption energy achieves 189.6 MJ/m3. This work provides theoretical guidance for the design of FGM strengthening of Ti-6Al-4V surfaces. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

20 pages, 8742 KiB  
Article
Directional Effect of Plasticity Ball Burnishing on Surface Finish, Microstructure, Residual Stress and Hardness of Laser Direct Energy Deposited Stellite 21 Alloy
by Mohammad Uddin, Joel Rech, Colin Hall and Thomas Schlaefer
Materials 2025, 18(13), 2971; https://doi.org/10.3390/ma18132971 - 23 Jun 2025
Viewed by 335
Abstract
This paper investigates the effect of plasticity ball burnishing on characteristics of surface integrity, residual stress and hardness of laser direct energy deposited (DEDed) Stellite 21 alloys, with a focus on the burnishing directional effect on surface and microstructural deformation. The results demonstrated [...] Read more.
This paper investigates the effect of plasticity ball burnishing on characteristics of surface integrity, residual stress and hardness of laser direct energy deposited (DEDed) Stellite 21 alloys, with a focus on the burnishing directional effect on surface and microstructural deformation. The results demonstrated that the burnishing improved surface finish, reducing Sa and Sz by 24% and 47%, respectively. The burnishing flattened and modified the cellular/columnar grains at a depth of 50 µm, with the most notable changes observed on the cross-sectional plane normal to the burnishing direction. Compared to the ground surface, the burnishing introduced higher and deeper compressive stresses along normal to the burnishing/grinding direction (−1341 MPa and 61 µm) as compared to that along the burnishing direction (−449 MPa and 56 µm). Likewise, the burnishing increased the full width at half maximum (FWHM) in the same fashion by broadening XRD peaks along normal to the burnishing direction. Due to higher grain modification and dislocation density, the burnishing has improved microhardness at a depth of 320 µm by 26% along normal to the burnishing direction. These findings demonstrate that the plasticity ball burnishing has a directional effect on plastic deformation and can be considered a plausible technique for tailored surface integrity, residual stress and hardness, which potentially improve the service performance of DEDed Stellite 21 alloy components. Full article
Show Figures

Figure 1

14 pages, 2422 KiB  
Article
Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics
by Amit Sarode and Gymama Slaughter
Energies 2025, 18(12), 3167; https://doi.org/10.3390/en18123167 - 16 Jun 2025
Cited by 1 | Viewed by 521
Abstract
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and [...] Read more.
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and isolated thylakoid membranes. LIG provided a porous, conductive scaffold, while PEDOT enhanced electrode compatibility, electrical conductivity, and operational stability. Compared to MXene-based systems that involve complex, multi-step synthesis, PEDOT offers a cost-effective and scalable alternative for bioelectrode fabrication. Thylakoid membranes were immobilized onto the PEDOT-modified LIG surface to enable light-driven electron generation. Electrochemical characterization revealed enhanced redox activity following PEDOT modification and stable photocurrent generation under light illumination, achieving a photocurrent density of approximately 18 µA cm−2. The assembled photo-bioelectrochemical fuel cell employing a gas diffusion platinum cathode demonstrated an open-circuit voltage of 0.57 V and a peak power density of 36 µW cm−2 in 0.1 M citrate buffer (pH 5.5) under light conditions. Furthermore, the integration of a charge pump circuit successfully boosted the harvested voltage to drive a low-power light-emitting diode, showcasing the practical viability of the system. This work highlights the potential of combining biological photosystems with conductive nanomaterials for the development of self-powered, light-driven bioelectronic devices. Full article
Show Figures

Figure 1

26 pages, 4725 KiB  
Review
Hybrid Surface Treatment Technologies Based on the Electrospark Alloying Method: A Review
by Oksana Haponova, Viacheslav Tarelnyk, Tomasz Mościcki and Nataliia Tarelnyk
Coatings 2025, 15(6), 721; https://doi.org/10.3390/coatings15060721 - 16 Jun 2025
Viewed by 561
Abstract
Technologies for functional coatings are evolving rapidly, with electrospark alloying (ESA) emerging as a promising method for surface modification due to its efficiency and localized impact. This review analyzes the fundamental principles of ESA and the effects of process parameters on coating characteristics [...] Read more.
Technologies for functional coatings are evolving rapidly, with electrospark alloying (ESA) emerging as a promising method for surface modification due to its efficiency and localized impact. This review analyzes the fundamental principles of ESA and the effects of process parameters on coating characteristics and highlights its advantages and limitations. Particular attention is given to hybrid ESA-based technologies, including combinations with laser treatment, plastic deformation, vapor deposition, and polymer-metal overlays. These hybrid methods significantly improve coating quality by enhancing hardness, adhesion, and structural integrity and reducing roughness and defects. However, the multi-parameter nature of these processes presents optimization challenges. This review identifies knowledge gaps related to process reproducibility, control of microstructure formation, and long-term performance under service conditions. Recent breakthroughs in combining ESA with high-energy surface treatments are discussed. Future research should focus on systematic parameter optimization, in situ diagnostics, and predictive modeling to enable the design of application-specific hybrid coatings. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

23 pages, 4562 KiB  
Review
Biomimetic Superhydrophobic Surfaces: From Nature to Application
by Yingke Wang, Jiashun Li, Haoran Song, Fenxiang Wang, Xuan Su, Donghe Zhang and Jie Xu
Materials 2025, 18(12), 2772; https://doi.org/10.3390/ma18122772 - 12 Jun 2025
Cited by 1 | Viewed by 641
Abstract
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy [...] Read more.
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy chemical modifications, researchers have devised various fabrication strategies—including laser etching, sol-gel processes, electrochemical deposition, and molecular self-assembly—to achieve superhydrophobic surfaces characterized by contact angles exceeding 150° and sliding angles below 5°. These technologies have found widespread applications in self-cleaning architectural coatings, efficient oil–water separation membranes, anti-icing materials for aviation, and anti-biofouling medical devices. This article begins by examining natural organisms exhibiting superhydrophobic properties, elucidating the principles underlying their surface structures and the wetting states of droplets on solid surfaces. Subsequently, it categorizes and highlights key fabrication methods and application domains of superhydrophobic surfaces, providing an in-depth and comprehensive discussion. Full article
Show Figures

Figure 1

15 pages, 3869 KiB  
Article
Correlation Between Plume Emission and Material Modifications in Fiber Laser Processing of Titanium
by Antaryami Mohanta and Marc Leparoux
Processes 2025, 13(6), 1761; https://doi.org/10.3390/pr13061761 - 3 Jun 2025
Viewed by 513
Abstract
The plume emission generated during the interaction of a fiber laser with titanium is spectrally analyzed to investigate the thermal effect-based spectral signature with a focus on surface impact and penetration depth. A wobble head coupled with the fiber laser forms circular patterns [...] Read more.
The plume emission generated during the interaction of a fiber laser with titanium is spectrally analyzed to investigate the thermal effect-based spectral signature with a focus on surface impact and penetration depth. A wobble head coupled with the fiber laser forms circular patterns on the surface during the interaction. The effects of wobble speed and laser peak power on the track width of the circular pattern, penetration depth, and plume emission characteristics were studied. Decreasing the wobble speed and increasing the laser peak power led to wider tracks and a deeper penetration. The variation in track width, penetration depth, and line emission intensities follows a similar pattern, indicating a correlation between plume emission and material modifications. A transition point at approximately 400 W of laser peak power was observed in track width, penetration depth, line emission intensities, and plume temperature variations. The increase in track width and line emission intensities with laser peak power shows growth at a slower rate below the transition point and at a higher rate above it. By contrast, the penetration depth and plume temperature increase at a higher rate below the transition compared to above it. This indicates that the increasing laser peak power leads to a more pronounced surface impact, resulting in an increase in track width and to a greater plume formation, causing enhanced line emission intensities and laser beam shielding that reduces the rate of increase in penetration depth above the transition point. Full article
(This article belongs to the Special Issue Progress in Laser-Assisted Manufacturing and Materials Processing)
Show Figures

Figure 1

16 pages, 3337 KiB  
Article
Fabrication of Palladium-Decorated Zinc Oxide Nanostructures for Non-Enzymatic Glucose Sensing
by Reagan Aviha, Anju Joshi and Gymama Slaughter
Chemosensors 2025, 13(6), 201; https://doi.org/10.3390/chemosensors13060201 - 1 Jun 2025
Cited by 2 | Viewed by 1315
Abstract
The growing global burden of diabetes necessitates the development of glucose sensors that are not only reliable and sensitive but also cost-effective and amenable to point-of-care use. In this work, we report a non-enzymatic electrochemical glucose sensor based on laser-induced graphene (LIG), functionalized [...] Read more.
The growing global burden of diabetes necessitates the development of glucose sensors that are not only reliable and sensitive but also cost-effective and amenable to point-of-care use. In this work, we report a non-enzymatic electrochemical glucose sensor based on laser-induced graphene (LIG), functionalized with zinc oxide (ZnO) and palladium (Pd) nanostructures. The ZnO nanostructures were systematically optimized on the LIG surface by varying electrochemical deposition parameters, including applied potential, temperature, and deposition time, to enhance the electrocatalytic oxidation of glucose in alkaline medium. Subsequent modification with Pd nanostructures further improved the electrocatalytic activity and sensitivity of the sensor. The performance of the LIG/ZnO/Pd sensor was investigated using chronoamperometric and cyclic voltammetric analysis in 0.1 M NaOH at an applied potential of 0.65 V. The sensor exhibited a wide dynamic range (2–10 mM; 10–24 mM) with a limit of detection of 130 μM, capturing hypo- and hyperglycemia conditions. Moreover, a sensitivity of 25.63 µA·mM−1·cm−2 was observed. Additionally, the sensor showcased selective response towards glucose in the presence of common interferents. These findings highlight the potential of the LIG/ZnO/Pd platform for integration into next-generation, non-enzymatic glucose monitoring systems for clinical and point-of-care applications. Full article
Show Figures

Figure 1

21 pages, 7266 KiB  
Article
High-Performance NIR Laser-Beam Shaping and Materials Processing at 350 W with a Spatial Light Modulator
by Shuchen Zuo, Shuai Wang, Cameron Pulham, Yin Tang, Walter Perrie, Olivier J. Allegre, Yue Tang, Martin Sharp, Jim Leach, David J. Whitehead, Matthew Bilton, Wajira Mirihanage, Paul Mativenga, Stuart P. Edwardson and Geoff Dearden
Photonics 2025, 12(6), 544; https://doi.org/10.3390/photonics12060544 - 28 May 2025
Viewed by 1046
Abstract
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power [...] Read more.
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power with a Gaussian profile, restricting potential applications due to the non-linear (NL) phase response of the liquid crystal above this threshold. In this study, we present experimental tests of a new SLM device, demonstrating high first-order diffraction efficiency of η = 0.98 ± 0.01 at 300 W average power and a phase range Δφ > 2π at P = 383 W, an exceptional performance. The numerically calculated device temperature response with power closely matches that measured, supporting the higher power-handling capability. Surface modification of mild steel and molybdenum up to P = 350 W exposure is demonstrated when employing a single-mode (SM) fibre laser source. Exposure on mild steel with a vortex beam (m = +6) displays numerous ringed regions with varying micro-structures and clear elemental separation created by the radial heat flow. On molybdenum, with multi-spot Gaussian exposure, both MoO3 films and recrystallisation rings were observed, exposure-dependent. The step change in device capability will accelerate new applications for this LC-SLM in both subtractive and additive manufacturing. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Vortex Beams)
Show Figures

Figure 1

18 pages, 2832 KiB  
Article
Effects of Grape Seed Extract-Modified Etchants on Collagenolytic Activity, Interface Formation, and Bonding Longevity of Adhesive–Dentin Interfaces
by Viviane Hass, Xiaomei Yao and Yong Wang
Materials 2025, 18(11), 2416; https://doi.org/10.3390/ma18112416 - 22 May 2025
Viewed by 485
Abstract
This study investigated the effects of acid etching with grape seed extract (GSE)-modified etchants, varying phosphoric acid (PA) concentrations, on endogenous collagenolytic activity of etched dentin, adhesive–dentin (A/D) interfacial formation, and bond strength over time. Three PA concentrations (5%, 10%, and 20%) were [...] Read more.
This study investigated the effects of acid etching with grape seed extract (GSE)-modified etchants, varying phosphoric acid (PA) concentrations, on endogenous collagenolytic activity of etched dentin, adhesive–dentin (A/D) interfacial formation, and bond strength over time. Three PA concentrations (5%, 10%, and 20%) were combined with 2% GSE (5PA/GSE, 10PA/GSE, and 20PA/GSE) and compared to a control (CT) group using 32% PA gel (3M Universal Scotchbond etchant). Seventy-four caries-free human third molars were sectioned to expose dentin surfaces, which were etched and analyzed. In situ zymography with confocal laser microscopy was used to assess endogenous collagenolytic activity in etched dentin specimens. For A/D interfacial morphology and bond strength, etched dentin was bonded with Adper Single Bond Plus adhesive (3M ESPE) and composite buildup. The interfacial morphology of A/D specimens was evaluated using either Goldner’s trichrome staining under light microscopy after microtomy sectioning or scanning electron microscopy. A/D specimens were stored in either TESCA buffer or collagenase solution and tested immediately (IM) or at multiple time points over one year using the microtensile bond strength (μTBS) test. Data were analyzed by one- or three-way ANOVA followed by Games–Howell or Tukey’s tests (α = 0.05). GSE-modified etchants significantly reduced endogenous collagenolytic activity (p < 0.05). Although GSE-modified etchants resulted in thinner A/D interfaces, the bond strength remained unaffected (p > 0.05). Bond strength stability was prolonged up to one year with 5PA/GSE and 10PA/GSE (p < 0.001), while CT or 20PA/GSE showed significant degradation by 17 weeks (p < 0.01). Storage in the more aggressive collagenase solution did not further reduce the bond strength compared to TESCA buffer (p = 0.966). Acid etching with GSE-modified etchants effectively inhibits endogenous MMP-mediated collagenolytic activity. At 5% and 10% PA, this approach enhances the stability of the A/D bond strength, offering a promising modification for dentin bonding protocols. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Applications)
Show Figures

Figure 1

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1019
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

Back to TopTop