Promoter Regulation of mtx1 in Lysinibacillus sphaericus and Heterologous Production of the Mosquitocidal Protein Mtx1 in Bacillus subtilis
Abstract
1. Introduction
2. Material and Methods
2.1. Bacterial Strains, Plasmids, and Culture Conditions
2.2. Transformation Procedures
2.3. Construction of Pmtx1 Variants
2.4. Fluorescence Intensity Measurement
2.5. Western Blot Analysis
2.6. Construction of pHT43-tMtx1, Culture Collection, and Larvicidal Activity Assay Against Culex quinquefasciatus Larvae
3. Results
3.1. Role of Inverted Repeat in Regulation of mtx1 Expression
3.2. tMtx1 Expression and Secretion in BsuWB800N
3.3. Larvicidal Activity of Secreted tMtx1
4. Discussion
4.1. The Pmtx1 Inverted Repeat Functions as a Host-Specific Repressor
4.2. Suitability of BsuWB800N for tMtx1 Secretion
4.3. Larvicidal Activity and Expression Context
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berry, C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol. 2012, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Valtierra-de-Luis, D.; Villanueva, M.; Berry, C.; Caballero, P. Potential for Bacillus thuringiensis and other bacterial toxins as biological control agents to combat Dipteran pests of medical and agronomic importance. Toxins 2020, 12, 773. [Google Scholar] [CrossRef]
- Crickmore, N.; Zeigler, D.R.; Feitelson, J.; Schnepf, E.; Van Rie, J.; Lereclus, D.; Baum, J.; Dean, D.H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef] [PubMed]
- Broadwell, A.H.; Baumann, L.; Baumann, P. The 42- and 51-kilodalton mosquitocidal proteins of Bacillus sphaericus 2362: Construction of recombinants with enhanced expression and in vivo studies of processing and toxicity. J. Bacteriol. 1990, 172, 2217–2223. [Google Scholar] [CrossRef]
- Charles, J.F.; Nielson-LeRoux, C.; Delecluse, A. Bacillus sphaericus toxins: Molecular biology and mode of action. Annu. Rev. Entomol. 1996, 41, 451–472. [Google Scholar] [CrossRef]
- Baumann, P.; Clark, M.A.; Baumann, L.; Broadwell, A.H. Bacillus sphaericus as a mosquito pathogen: Properties of the organism and its toxins. Microbiol. Rev. 1991, 55, 425–436. [Google Scholar] [CrossRef]
- Chan, S.W.; Thanabalu, T.; Wee, B.Y.; Porter, A.G. Unusual amino acid determinants of host range in the Mtx2 family of mosquitocidal toxins. J. Biol. Chem. 1996, 271, 14183–14187. [Google Scholar] [CrossRef]
- Liu, J.W.; Porter, A.G.; Wee, B.Y.; Thanabalu, T. New gene from nine Bacillus sphaericus strains encoding highly conserved 35.8-kilodalton mosquitocidal toxins. Appl. Environ. Microbiol. 1996, 62, 2174–2176. [Google Scholar] [CrossRef]
- Thanabalu, T.; Berry, C.; Hindley, J. Cytotoxicity and ADP-ribosylating activity of the mosquitocidal toxin from Bacillus sphaericus SSII-1: Possible roles of the 27- and 70-kilodalton peptides. J. Bacteriol. 1993, 175, 2314–2320. [Google Scholar] [CrossRef]
- Schirmer, J.; Wieden, H.J.; Rodnina, M.V.; Aktories, K. Inactivation of the elongation factor Tu by mosquitocidal toxin-catalyzed mono-ADP-ribosylation. Appl. Environ. Microbiol. 2002, 68, 4894–4899. [Google Scholar] [CrossRef] [PubMed]
- Thanabalu, T.; Hindley, J.; Jackson-Yap, J.; Berry, C. Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1. J. Bacteriol. 1991, 173, 2776–2785. [Google Scholar] [CrossRef] [PubMed]
- Thanabalu, T.; Hindley, J.; Berry, C. Proteolytic processing of the mosquitocidal toxin from Bacillus sphaericus SSII-1. J. Bacteriol. 1992, 174, 5051–5056. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rungrod, A.; Tjahaja, N.K.; Soonsanga, S.; Audtho, M.; Promdonkoy, B. Bacillus sphaericus Mtx1 and Mtx2 toxins co-expressed in Escherichia coli are synergistic against Aedes aegypti larvae. Biotechnol. Lett. 2009, 31, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.C.; Yang, Y.; Walton, W.E.; Federici, B.A.; Berry, C. Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl. Environ. Microbiol. 2007, 73, 6066–6071. [Google Scholar] [CrossRef]
- Su, T.; Thieme, J.; Ocegueda, C.; Ball, M.; Cheng, M.-L. Resistance to Lysinibacillus sphaericus and other commonly used pesticides in Culex pipiens (Diptera: Culicidae) from Chico, California. J. Med. Entomol. 2018, 55, 423–428. [Google Scholar] [CrossRef]
- Menezes, H.S.G.; Costa-Latgé, S.G.; Genta, F.A.; Napoleão, T.H.; Paiva, P.M.G.; Romão, T.P.; Silva-Filha, M.H.N.L. A Culex quinquefasciatus strain resistant to the binary toxin from Lysinibacillus sphaericus displays altered enzyme activities and energy reserves. Parasit. Vectors 2023, 16, 273. [Google Scholar] [CrossRef]
- Ahmed, H.K.; Mitchell, W.J.; Priest, F.G. Regulation of mosquitocidal toxin synthesis in Bacillus sphaericus. Appl. Microbiol. Biotechnol. 1995, 43, 310–314. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Gaviria, A.; Yuan, Z.; Berry, C. Proteolytic stability of insecticidal toxins expressed in recombinant bacilli. Appl. Environ. Microbiol. 2007, 73, 218–225. [Google Scholar] [CrossRef][Green Version]
- Gold, L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 1988, 57, 199–233. [Google Scholar] [CrossRef]
- Babitzke, P.; Baker, C.S.; Romeo, T. Regulation of translation initiation by RNA binding proteins. Annu. Rev. Microbiol. 2009, 63, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.; Yin, G.; Zuo, W.; Zhang, L.; Du, G.; Chen, J.; Wang, Y.; Kang, Z. Regulatory RNAs in Bacillus subtilis: A review on regulatory mechanism and applications in synthetic biology. Synth. Syst. Biotechnol. 2024, 9, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Tants, J.-N.; Schlundt, A. The role of structure in regulatory RNA elements. Biosci. Rep. 2024, 44, BSR20240139. [Google Scholar] [CrossRef]
- Gómez-Garzón, C.; Hernández-Santana, A.; Dussán, J. A genome-scale metabolic reconstruction of Lysinibacillus sphaericus unveils unexploited biotechnological potentials. PLoS ONE 2017, 12, e0179666. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Jeong, D.; Park, S.; Kim, S.; Choi, S. Complete genome sequence of Bacillus subtilis strain WB800N, an extracellular protease-deficient derivative of strain 168. Microbiol. Resour. Announc. 2018, 7, e01380-18. [Google Scholar] [CrossRef]
- Neef, J.; van Dijl, J.M.; Buist, G. Recombinant protein secretion by Bacillus subtilis and Lactococcus lactis: Pathways, applications, and innovation potential. Essays Biochem. 2021, 65, 187–195. [Google Scholar] [CrossRef]
- Lenz, P.; Bakkes, P.J.; Müller, C.; Malek, M.; Freudl, R.; Oldiges, M.; Drepper, T.; Jaeger, K.; Knapp, A. Analysis of protein secretion in Bacillus subtilis by combining a secretion stress biosensor strain with an in vivo split GFP assay. Microb. Cell Fact. 2023, 22, 203. [Google Scholar] [CrossRef]
- Öktem, A.; Pranoto, D.A.; van Dijl, J.M. Post-translational secretion stress regulation in Bacillus subtilis is controlled by intra- and extracellular proteases. New Biotechnol. 2024, 79, 71–81. [Google Scholar] [CrossRef]
- Promdonkoy, B.; Promdonkoy, P.; Tanapongpipat, S.; Luxananil, P.; Chewawiwat, N.; Audtho, M.; Panyim, S. Cloning and characterization of a mosquito larvicidal toxin produced during vegetative stage of Bacillus sphaericus 2297. Curr. Microbiol. 2004, 49, 84–88. [Google Scholar] [CrossRef]
- Dunn, A.K.; Handelsman, J. A vector for promoter trapping in Bacillus cereus. Gene 1999, 226, 297–305. [Google Scholar] [CrossRef]
- Lertcanawanichakul, M.; Wiwat, C. Improved shuttle vector for expression of chitinase gene in Bacillus thuringiensis. Lett. Appl. Microbiol. 2000, 31, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Bone, E.J.; Ellar, D.J. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol. Lett. 1989, 58, 171–178. [Google Scholar] [CrossRef][Green Version]
- Kunst, F.; Msadek, T.; Rapoport, G. Signal transduction network controlling degradative enzyme synthesis and competence in Bacillus subtilis. In Regulation of Bacterial Differentiation; Piggot, P.J., Moran, C.P., Jr., Youngman, P., Eds.; ASM Press: Washington, DC, USA, 1994; pp. 1–20. [Google Scholar]
- Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Val-Calvo, J.; Miguel-Arribas, A.; Abia, D.; Wu, L.J.; Meijer, W.J.J. pLS20 is the archetype of a new family of conjugative plasmids harboured by Bacillus species. NAR Genom. Bioinform. 2021, 3, lqab096. [Google Scholar] [CrossRef] [PubMed]
- Van Assche, E.; Van Puyvelde, S.; Vanderleyden, J.; Steenackers, H.P. RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol. 2015, 6, 141. [Google Scholar] [CrossRef]
- Romeo, T.; Babitzke, P. Global regulation by CsrA and its RNA antagonists. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Woodson, S.A. RNA folding and ribosome assembly. Curr. Opin. Chem. Biol. 2008, 12, 667–673. [Google Scholar] [CrossRef]
- Taggart, J.C.; Dierksheide, K.J.; LeBlanc, H.J.; Lalanne, J.-B.; Durand, S.; Braun, F.; Condon, C.; Li, G.-W. A high-resolution view of RNA endonuclease cleavage in Bacillus subtilis. Nucleic Acids Res. 2025, 53, gkaf030. [Google Scholar] [CrossRef]
- Chen, F.; Cocaign-Bousquet, M.; Girbal, L.; Nouaille, S. 5′UTR sequences influence protein levels in Escherichia coli by regulating translation initiation and mRNA stability. Front. Microbiol. 2022, 13, 1088941. [Google Scholar] [CrossRef]
- Pi, H.; Weiss, A.; Laut, C.L.; Grunenwald, C.M.; Lin, H.K.; Yi, X.I.; Stauff, D.L.; Skaar, E.P. An RNA-binding protein acts as a major post-transcriptional modulator in Bacillus anthracis. Nat. Commun. 2022, 13, 1491. [Google Scholar] [CrossRef]
- Guo, D.; Li, M.; Jiang, M.; Cong, G.; Liu, Y.; Wang, C.; Li, X. Enhanced extracellular production and characterization of sucrose isomerase in Bacillus subtilis with optimized signal peptides. Foods 2022, 11, 2468. [Google Scholar] [CrossRef]
- Trakulnaleamsai, C.; Promdonkoy, B.; Soonsanga, S. Production of Lysinibacillus sphaericus mosquitocidal protein Mtx2 from Bacillus subtilis as a secretory protein. Protein Pept. Lett. 2021, 28, 1054–1060. [Google Scholar] [CrossRef]
- Fu, L.L.; Xu, Z.R.; Li, W.F.; Shuai, J.B.; Lu, P.; Hu, C.X. Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol. Adv. 2007, 25, 1–12. [Google Scholar] [CrossRef]
- Fiedler, S.M.; Graumann, P.L. Bacillus subtilis Sec and Srp systems show dynamic adaptations to different conditions of protein secretion. Cells 2024, 13, 377. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, F.; Schlichting, N.; Eichenlaub, M.; Costea, P.I.; Sauer, C.; Jenewein, S.; Kabisch, J. Automation-aided construction and characterization of Bacillus subtilis PrsA strains for the secretion of amylases. Front. Bioeng. Biotechnol. 2025, 12, 1479626. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Mukherjee, A.K. Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Trop. 2006, 97, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Geetha, I.; Manonmani, A.M.; Paily, K.P. Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl. Microbiol. Biotechnol. 2010, 86, 1737–1744. [Google Scholar] [CrossRef]
- Manonmani, A.M.; Geetha, I.; Bhuvaneswari, S. Enhanced production of mosquitocidal cyclic lipopeptide from Bacillus subtilis subsp. subtilis. Indian. J. Med. Res. 2011, 134, 476–482. [Google Scholar]
- Revathi, K.; Chandrasekaran, R.; Thanigaivel, A.; Kirubakaran, S.A.; Sathish-Narayanan, S.; Senthil-Nathan, S. Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. Pestic. Biochem. Physiol. 2013, 107, 369–376. [Google Scholar]
- Cosby, W.M.; Vollenbroich, D.; Lee, O.H.; Zuber, P. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J. Bacteriol. 1998, 180, 1438–1445. [Google Scholar] [CrossRef]
- Utamatho, M.; Ratlerdkarn, M.; Promdonkoy, B. DNA Vector for Recombinant Protein Production in Bacterial Hosts, Bacillus spp. Thailand Patent Filing No. 0901004207, 17 September 2009. [Google Scholar]
- Utamatho, M.; Ratlerdkarn, M.; Panyasiri, C.; Promdonkoy, B. DNA Plasmid for Production of Vegetative Insecticidal Proteins (Vips) in Bacterial Hosts, Bacillus spp. Thailand Patent Filing No. 1001001520, 30 September 2010. [Google Scholar]
- Porcar, M.; Juarez-Perez, V.; Delecluse, A. Isolation and characterization of a strong promoter from Bacillus sphaericus strain 2297. J. Invertebr. Pathol. 2002, 81, 57–58. [Google Scholar] [CrossRef]
- Soonsanga, S.; Rungrod, A.; Phaonakrop, N.; Roytrakul, S.; Promdonkoy, B. Proteomic analysis and promoter modification of Bacillus thuringiensis to improve insecticidal Vip3A protein production. Mol. Biotechnol. 2022, 64, 100–107. [Google Scholar] [CrossRef]




| Primer | Sequence (5′–3′) | Restriction Site |
|---|---|---|
| Pmtx1F | CATACTTGTCGAATTCCTGACAGG | EcoRI |
| Pmtx1R | ACTCGACGGATCCATTAACCATG | - |
| pAD123-checkF | CGTCTAAGAAACCATTATTATC | - |
| gfpRev | TCGAAGCTCGGCGGATTTGT | - |
| A | TAATAGTTATATATTTATTTTGAAGG | - |
| B | ACCAAAAAGAGGTGCAA TTGATATG | - |
| C | GTATTTAATAACATTAAATAAAAAT | - |
| D | CATAATTTAATAATAAAAAATAAAT | - |
| E | TAATATTATAGTTTATTATTGAATAATAGTTATATATTTATTTTGAAGG | - |
| tMtx1f-XbaI | TCCCCGGAATTCTCTAGACCGGCT | XbaI |
| tMtx1r-AatII | CACTAGTGATTCCGACGTCTCATT | AatII |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Soonsanga, S.; Promdonkoy, B. Promoter Regulation of mtx1 in Lysinibacillus sphaericus and Heterologous Production of the Mosquitocidal Protein Mtx1 in Bacillus subtilis. Appl. Biosci. 2026, 5, 4. https://doi.org/10.3390/applbiosci5010004
Soonsanga S, Promdonkoy B. Promoter Regulation of mtx1 in Lysinibacillus sphaericus and Heterologous Production of the Mosquitocidal Protein Mtx1 in Bacillus subtilis. Applied Biosciences. 2026; 5(1):4. https://doi.org/10.3390/applbiosci5010004
Chicago/Turabian StyleSoonsanga, Sumarin, and Boonhiang Promdonkoy. 2026. "Promoter Regulation of mtx1 in Lysinibacillus sphaericus and Heterologous Production of the Mosquitocidal Protein Mtx1 in Bacillus subtilis" Applied Biosciences 5, no. 1: 4. https://doi.org/10.3390/applbiosci5010004
APA StyleSoonsanga, S., & Promdonkoy, B. (2026). Promoter Regulation of mtx1 in Lysinibacillus sphaericus and Heterologous Production of the Mosquitocidal Protein Mtx1 in Bacillus subtilis. Applied Biosciences, 5(1), 4. https://doi.org/10.3390/applbiosci5010004

