Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = larval–pupal transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7040 KiB  
Article
Identification and Characterization of Troponin T Associated with Development, Metabolism and Reproduction in Tribolium castaneum
by Wenzhuo Li, Yaning Sun, Yuanye Liang, Yifan Wang, Yongmei Fan, Mengmeng Li, Ranfeng Sun and Jia Xie
Int. J. Mol. Sci. 2025, 26(6), 2786; https://doi.org/10.3390/ijms26062786 - 19 Mar 2025
Viewed by 474
Abstract
As a tropomyosin-binding component, troponin T (TnT) is essential for the Ca2+ regulation of striated muscles’ contraction and locomotion activity, but its impacts on the growth and development of insects have rarely been reported. In this study, TnT was identified and functionally [...] Read more.
As a tropomyosin-binding component, troponin T (TnT) is essential for the Ca2+ regulation of striated muscles’ contraction and locomotion activity, but its impacts on the growth and development of insects have rarely been reported. In this study, TnT was identified and functionally characterized in Tribolium castaneum by RNA interference (RNAi) and transcriptome analysis. The TnT of T. castaneum contained a 1152 bp open reading frame encoding 383 amino acids. It displayed the highest expression in late pupae and was highly expressed in the integument and CNS. Both the larval and early pupal injection of dsTnT led to 100% cumulative mortality before the pupal–adult transition. Late pupal RNAi caused 26.01 ± 4.29% pupal mortality; the survivors successfully became adults, but 49.71 ± 6.51% died in 10 days with a dried and shriveled abdomen, poorly developed reproductive system and no offspring. Additionally, RNA sequencing results indicated that key ecdysteroid and juvenile hormone biosynthesis genes (CYP314A1, aldehyde dehydrogenase family 3 member B1 and farnesol dehydrogenase) were affected, as well as several cuticle protein, nutrition metabolism and immune-related genes, suggesting that TnT may play prominent roles in development, metabolism and reproduction by affecting these pathways. This study could provide a brand-new target gene in the RNAi strategy for pest control. Full article
Show Figures

Figure 1

12 pages, 1462 KiB  
Review
Pierisin, Cytotoxic and Apoptosis-Inducing DNA ADP-Ribosylating Protein in Cabbage Butterfly
by Azusa Takahashi-Nakaguchi, Yu Horiuchi, Masafumi Yamamoto, Yukari Totsuka and Keiji Wakabayashi
Toxins 2024, 16(6), 270; https://doi.org/10.3390/toxins16060270 - 14 Jun 2024
Cited by 1 | Viewed by 1658
Abstract
Pierisin-1 was serendipitously discovered as a strong cytotoxic and apoptosis-inducing protein from pupae of the cabbage butterfly Pieris rapae against cancer cell lines. This 98-kDa protein consists of the N-terminal region (27 kDa) and C-terminal region (71 kDa), and analysis of their biological [...] Read more.
Pierisin-1 was serendipitously discovered as a strong cytotoxic and apoptosis-inducing protein from pupae of the cabbage butterfly Pieris rapae against cancer cell lines. This 98-kDa protein consists of the N-terminal region (27 kDa) and C-terminal region (71 kDa), and analysis of their biological function revealed that pierisin-1 binds to cell surface glycosphingolipids on the C-terminal side, is taken up into the cell, and is cleaved to N- and C-terminal portions, where the N-terminal portion mono-ADP-ribosylates the guanine base of DNA in the presence of NAD to induce cellular genetic mutation and apoptosis. Unlike other ADP-ribosyltransferases, pieisin-1 was first found to exhibit DNA mono-ADP-ribosylating activity and show anti-cancer activity in vitro and in vivo against various cancer cell lines. Pierisin-1 was most abundantly produced during the transition from the final larval stage to the pupal stage of the cabbage butterfly, and this production was regulated by ecdysteroid hormones. This suggests that pierisn-1 might play a pivotal role in the process of metamorphosis. Moreover, pierisin-1 could contribute as a defense factor against parasitization and microbial infections in the cabbage butterfly. Pierisin-like proteins in butterflies were shown to be present not only among the subtribe Pierina but also among the subtribes Aporiina and Appiadina, and pierisin-2, -3, and -4 were identified in these butterflies. Furthermore, DNA ADP-ribosylating activities were found in six different edible clams. Understanding of the biological nature of pierisin-1 with DNA mono-ADP-ribosylating activity could open up exciting avenues for research and potential therapeutic applications, making it a subject of great interest in the field of molecular biology and biotechnology. Full article
(This article belongs to the Special Issue ADP-Ribosylation and Beyond)
Show Figures

Figure 1

15 pages, 7151 KiB  
Article
The Baboon Gene Encodes Three Functionally Distinct Transforming Growth Factor β Type I Receptor Variants in Henosepilachna vigintioctopunctata
by Yuxing Zhang, Feng Chen, Lin Jin and Guoqing Li
Agriculture 2024, 14(6), 915; https://doi.org/10.3390/agriculture14060915 - 9 Jun 2024
Cited by 1 | Viewed by 1338
Abstract
The Transforming Growth Factor-β (TGF-β) cascade plays a critical role in insect metamorphosis and involves cell-surface receptors known as type I and II, respectively (TβRI and TβRII). In Drosophila melanogaster, the TβRI receptor, Baboon (Babo), consists of three variants (BaboA, BaboB, and [...] Read more.
The Transforming Growth Factor-β (TGF-β) cascade plays a critical role in insect metamorphosis and involves cell-surface receptors known as type I and II, respectively (TβRI and TβRII). In Drosophila melanogaster, the TβRI receptor, Baboon (Babo), consists of three variants (BaboA, BaboB, and BaboC), each with isoform-specific functions. However, the isoforms and functional specifications of Babo in non-Drosophilid insects have not been established. Here, we examined babo transcripts from seven coleopteran species whose genomes have been published and found that mutually exclusive alternative splicing of the third exon produces three babo isoforms, identical to the Drosophila babo gene. The same three transcript variants were accordingly recognized from the transcriptome data of a coleopteran Henosepilachna vigintioctopunctata. RNA interference (RNAi)-mediated knockdown of all three babo transcripts at the fourth-instar larval stage hindered gut modeling and arrested larval development in H. vigintioctopunctata. All the resultant larvae became arrested prepupae; they were gradually dried and darkened and, eventually, died. Depletion of HvbaboA rather than HvbaboB or HvbaboC is similar to the phenotypic alterations caused by simultaneous RNAi of all three babo isoforms. Therefore, our results established diverged roles of the three Babo isoforms and highlighted the regulatory role of BaboA during larval-pupal transition in a non-Drosophilid insect species. Full article
Show Figures

Figure 1

14 pages, 2753 KiB  
Article
MicroRNA miR-263b-5p Regulates Developmental Growth and Cell Association by Suppressing Laminin A in Drosophila
by Chae Jeong Kim, Hyun Ho Kim, Hee Kyung Kim, Sojeong Lee, Daegyu Jang, Chanhyeok Kim and Do-Hwan Lim
Biology 2023, 12(8), 1096; https://doi.org/10.3390/biology12081096 - 7 Aug 2023
Cited by 4 | Viewed by 2045
Abstract
Basement membranes (BMs) play important roles under various physiological conditions in animals, including ecdysozoans. During development, BMs undergo alterations through diverse intrinsic and extrinsic regulatory mechanisms; however, the full complement of pathways controlling these changes remain unclear. Here, we found that fat body-overexpression [...] Read more.
Basement membranes (BMs) play important roles under various physiological conditions in animals, including ecdysozoans. During development, BMs undergo alterations through diverse intrinsic and extrinsic regulatory mechanisms; however, the full complement of pathways controlling these changes remain unclear. Here, we found that fat body-overexpression of Drosophila miR-263b, which is highly expressed during the larval-to-pupal transition, resulted in a decrease in the overall size of the larval fat body, and ultimately, in a severe growth defect accompanied by a reduction in cell proliferation and cell size. Interestingly, we further observed that a large proportion of the larval fat body cells were prematurely disassociated from each other. Moreover, we present evidence that miR-263b-5p suppresses the main component of BMs, Laminin A (LanA). Through experiments using RNA interference (RNAi) of LanA, we found that its depletion phenocopied the effects in miR-263b-overexpressing flies. Overall, our findings suggest a potential role for miR-263b in developmental growth and cell association by suppressing LanA expression in the Drosophila fat body. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Graphical abstract

22 pages, 4215 KiB  
Article
The MicroRNA Ame-Bantam-3p Controls Larval Pupal Development by Targeting the Multiple Epidermal Growth Factor-like Domains 8 Gene (megf8) in the Honeybee, Apis mellifera
by Jing Yu, Hongyu Song, Hongfang Wang, Ying Wang, Zhenguo Liu and Baohua Xu
Int. J. Mol. Sci. 2023, 24(6), 5726; https://doi.org/10.3390/ijms24065726 - 17 Mar 2023
Cited by 7 | Viewed by 2612
Abstract
20-Hydroxyecdysone (20E) plays an essential role in coordinating developmental transitions in insects through responsive protein-coding genes and microRNAs (miRNAs). However, the interplay between 20E and miRNAs during insect metamorphosis is unknown. In this study, using small RNA sequencing, a comparative miRNA transcriptomic analysis [...] Read more.
20-Hydroxyecdysone (20E) plays an essential role in coordinating developmental transitions in insects through responsive protein-coding genes and microRNAs (miRNAs). However, the interplay between 20E and miRNAs during insect metamorphosis is unknown. In this study, using small RNA sequencing, a comparative miRNA transcriptomic analysis in different development stages, and 20E treatment, we identified ame-bantam-3p as a key candidate miRNA involved in honeybee metamorphosis. Target prediction and in vitro dual-luciferase assays confirmed that ame-bantam-3p interacts with the coding region of the megf8 gene and promotes its expression. Meanwhile, temporal expression analysis revealed that the expression of ame-bantam-3p is higher in the larval stage than in prepupal and pupal stages, and that this expression pattern is similar to that of megf8. In vivo, we found that the mRNA level of megf8 was significantly increased after the injection of ame-bantam-3p agomir. A 20E feeding assay showed that 20E downregulated the expression of both ame-bantam-3p and its target gene megf8 on larval days five, six, and seven. Meanwhile, the injection of ame-bantam-3p agomir also reduced the 20E titer, as well as the transcript levels of essential ecdysteroid synthesis genes, including Dib, Phm, Sad, and Nvd. The transcript levels of 20E cascade genes, including EcRA, ECRB1, USP, E75, E93, and Br-c, were also significantly decreased after ame-bantam-3p agomir injection. However, ame-bantam-3p antagomir injection and dsmegf8 injection showed the opposite effect to ame-bantam-3p agomir injection. Ame-bantam-3p agomir treatment ultimately led to mortality and the failure of larval pupation by inhibiting ecdysteroid synthesis and the 20E signaling pathway. However, the expression of 20E signaling-related genes was significantly increased after megf8 knockdown, and larvae injected with dsmegf8 showed early pupation. Combined, our results indicate that ame-bantam-3p is involved in the 20E signaling pathway through positively regulating its target gene megf8 and is indispensable for larval–pupal development in the honeybee. These findings may enhance our understanding of the relationship between 20E signaling and small RNAs during honeybee development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

18 pages, 10052 KiB  
Article
Knockdown of Ecdysone-Induced Protein 93F Causes Abnormal Pupae and Adults in the Eggplant Lady Beetle
by Jian-Jian Wu, Feng Chen, Rui Yang, Chen-Hui Shen, Long-Ji Ze, Lin Jin and Guo-Qing Li
Biology 2022, 11(11), 1640; https://doi.org/10.3390/biology11111640 - 9 Nov 2022
Cited by 8 | Viewed by 2422
Abstract
Ecdysone-induced protein 93F (E93) plays triple roles during post-embryonic development in insects whose juvenile instars are more than four. However, it only acts as a specifier of adult structures in Drosophila flies whose larval instars are fixed at three. In this study, we [...] Read more.
Ecdysone-induced protein 93F (E93) plays triple roles during post-embryonic development in insects whose juvenile instars are more than four. However, it only acts as a specifier of adult structures in Drosophila flies whose larval instars are fixed at three. In this study, we determined the functions of E93 in the eggplant lady beetle (Henosepilachna vigintioctopunctata), which has four larval instars. We uncovered that E93 was abundantly expressed at the prepupal and pupal stages. A precocious inhibition of the juvenile hormone signal by RNA interference (RNAi) of HvKr-h1 or HvHairy, two vital downstream developmental effectors, at the penultimate instar larval stage increased the expression of E93, Conversely, ingestion of JH by the third-instar larvae stimulated the expression of HvKr-h1 but repressed the transcription of either HvE93X1 or HvE93X2. However, disturbance of the JH signal neither drove premature metamorphosis nor caused supernumerary instars. In contrast, depletion of E93 at the third- and fourth-instar larval and prepupal stages severely impaired pupation and caused a larval-pupal mixed phenotype: pupal spines and larval scoli were simultaneously presented on the cuticle. RNAi of E93 at the pupal stage affected adult eclosion. When the beetles had suffered from a dsE93 injection at the fourth-instar larval and pupal stages, a few resultant adults emerged, with separated elytra, abnormally folded hindwings, a small body size and short appendages. Taken together, our results suggest the larval instars are fixed in H. vigintioctopunctata; E93 serves as a repressor of larval characters and a specifier of adult structures during the larval–pupal–adult transition. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Insects Metamorphosis and Sex Determination)
Show Figures

Figure 1

17 pages, 3001 KiB  
Article
Metabolite Changes in Orange Dead Leaf Butterfly Kallima inachus during Ontogeny and Diapause
by Ming-Jie Li, Guo-Fang Jiang and Wei Wang
Metabolites 2022, 12(9), 804; https://doi.org/10.3390/metabo12090804 - 27 Aug 2022
Cited by 5 | Viewed by 3343
Abstract
Holometabolism is a form of insect development which includes four life stages: egg, larva, pupa, and imago (or adult). The developmental change of whole body in metabolite levels of holometabolous insects are usually ignored and lack study. Diapause is an alternative life-history strategy [...] Read more.
Holometabolism is a form of insect development which includes four life stages: egg, larva, pupa, and imago (or adult). The developmental change of whole body in metabolite levels of holometabolous insects are usually ignored and lack study. Diapause is an alternative life-history strategy that can occur during the egg, larval, pupal, and adult stages in holometabolous insects. Kallima inachus (Lepidoptera: Nymphalidae) is a holometabolous and adult diapausing butterfly. This study was intended to analyze metabolic changes in K. inachus during ontogeny and diapause through a non-targeted UPLC-MS/MS (ultra-performance liquid chromatograph coupled with tandem mass spectrometry) based metabolomics analysis. A variety of glycerophospholipids (11), amino acid and its derivatives (16), and fatty acyls (nine) are crucial to the stage development of K. inachus. 2-Keto-6-acetamidocaproate, N-phenylacetylglycine, Cinnabarinic acid, 2-(Formylamino) benzoic acid, L-histidine, L-glutamate, and L-glutamine play a potentially important role in transition of successive stages (larva to pupa and pupa to adult). We observed adjustments associated with active metabolism, including an accumulation of glycerophospholipids and carbohydrates and a degradation of lipids, as well as amino acid and its derivatives shifts, suggesting significantly changed in energy utilization and management when entering into adult diapause. Alpha-linolenic acid metabolism and ferroptosis were first found to be associated with diapause in adults through pathway analyses. Our study lays the foundation for a systematic study of the developmental mechanism of holometabolous insects and metabolic basis of adult diapause in butterflies. Full article
(This article belongs to the Special Issue Endocrine and Metabolic Regulation in Insects)
Show Figures

Figure 1

11 pages, 13638 KiB  
Article
FKBP39 Controls the Larval Stage JH Activity and Development in Drosophila melanogaster
by Xinyu Wang, Ying Zhou, Jianwen Guan, Yang Cheng, Yingying Lu and Youheng Wei
Insects 2022, 13(4), 330; https://doi.org/10.3390/insects13040330 - 28 Mar 2022
Cited by 1 | Viewed by 2591
Abstract
FK506-binding protein 39kD (FKBP39) localizes in the nucleus and contains multiple functional domains. Structural analysis suggests that FKBP39 might function as a transcriptional factor and control juvenile hormone (JH) activity. Here, we show that FKBP39 expresses at a high level and localizes in [...] Read more.
FK506-binding protein 39kD (FKBP39) localizes in the nucleus and contains multiple functional domains. Structural analysis suggests that FKBP39 might function as a transcriptional factor and control juvenile hormone (JH) activity. Here, we show that FKBP39 expresses at a high level and localizes in the nucleolus of fat body cells during the first two larval stages and early third larval stage. The fkbp39 mutant displays delayed larval-pupal transition and an increased expression of Kr-h1, the main mediator of the JH pathway, at the early third larval stage. Moreover, the fkbp39 mutant has a fertility defect that is independent of JH activity. Interestingly, the expression of rp49, the most widely used reference gene for qRT-PCR in Drosophila, significantly decreased in the fkbp39 mutant, suggesting that FKBP39 might regulate ribosome assembly. Taken together, our data demonstrate the expression pattern and physiological roles of FKBP39 in Drosophila. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

16 pages, 6009 KiB  
Article
Dissecting the Isoform-Specific Roles of FTZ-F1 in the Larval–Larval and Larval–Pupal Ecdyses in Henosepilachna vigintioctopunctata
by Jian-Jian Wu, Min-Di Cheng, Long-Ji Ze, Chen-Hui Shen, Lin Jin and Guo-Qing Li
Insects 2022, 13(3), 228; https://doi.org/10.3390/insects13030228 - 25 Feb 2022
Cited by 9 | Viewed by 2577
Abstract
Fushi Tarazu Factor 1 (FTZ-F1), a member of the nuclear receptor superfamily, is the downstream factor of 20-hydroxyecdysone signaling. In Drosophila melanogaster, alternative transcription start and splicing in the FTZ-F1 gene generate αFTZ-F1 and βFTZ-F1 isoforms, which are vital for pair-rule segmentation [...] Read more.
Fushi Tarazu Factor 1 (FTZ-F1), a member of the nuclear receptor superfamily, is the downstream factor of 20-hydroxyecdysone signaling. In Drosophila melanogaster, alternative transcription start and splicing in the FTZ-F1 gene generate αFTZ-F1 and βFTZ-F1 isoforms, which are vital for pair-rule segmentation in early embryogenesis and post-embryonic development, respectively. However, whether the same mRNA isoforms are present and exert the conservative roles remains to be clarified in other insects. In the present paper, we first mined the genomic data of representative insect species and unveiled that the same post-transcriptional processing in FTZ-F1 occurred in coleopterans, lepidopterans, dipterans and hymenopterans. Our expression data in Henosepilachna vigintioctopunctata, a serious polyphagous defoliator damaging a wide range of crops in Solanaceae and Cucurbitaceae, showed that both αFTZ-F1 and βFTZ-F1 were actively transcribed throughout the development, from embryo to adult. The RNA interference-aided knockdown of both isoforms completely arrested larval ecdysis from the third to the fourth instar, in contrast to the depletion of either isoform. In contrast, silencing βFTZ-F1, rather than αFTZ-F1, severely impaired the larval–pupal transformation. We accordingly propose that both FTZ-F1 isoforms are essential but mutually interchangeable for larval–larval molting, while βFTZ-F1 is necessary for the larval–pupal transition and sufficient to exert the role of both FTZ-F1s during larval–pupal metamorphosis in H. vigintioctopunctata. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

14 pages, 3272 KiB  
Article
Dynamics of the Queensland Fruit Fly Microbiome through the Transition from Nature to an Established Laboratory Colony
by Rajib Majumder, Phillip W. Taylor and Toni A. Chapman
Microorganisms 2022, 10(2), 291; https://doi.org/10.3390/microorganisms10020291 - 26 Jan 2022
Cited by 12 | Viewed by 3618
Abstract
The transition from nature to laboratory or mass rearing can impose significant physiological and evolutionary impact on insects. The Queensland fruit fly (also known as ‘Qfly’), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is a serious economic pest that presents major challenges for horticulture industries [...] Read more.
The transition from nature to laboratory or mass rearing can impose significant physiological and evolutionary impact on insects. The Queensland fruit fly (also known as ‘Qfly’), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is a serious economic pest that presents major challenges for horticulture industries in Australia. The sterile insect technique (SIT) is being developed to manage outbreaks in regions that remain free of Qfly and to suppress populations in regions where this species is endemic. The biology of Qfly is intimately connected to its microbiome. Therefore, changes in the microbiome that occur through domestication have implications for SIT. There are numerous studies of the microbiome in Qfly larvae and adults, but there is little information on how the microbiome changes as Qfly laboratory colonies are established. In this study, high-throughput Illumina sequencing was used to assess the Qfly microbiome in colonies reared from wild larvae, collected from fruit, for five generations, on a gel-based larval diet. Beta diversity analysis showed that the bacterial communities from Generation 5 (G5) clustered separately from earlier generations. At the genus level, bacterial communities were significantly different between the generations and mostly altered at G5. However, communities were found similar at phyla to family taxonomic levels. We observed high abundance of Morganella and Burkholderia at the genus level in the larval and pupal stages respectively at G5, but these were not detected in earlier generations. Overall, our findings demonstrate that the domestication process strongly affects the Qfly microbiome and prompts questions about the functional relationship between the Qfly and its microbiome, as well as implications for the performance of insects that have been domesticated and mass-reared for SIT programs. Full article
(This article belongs to the Special Issue Microbiota in Insects)
Show Figures

Figure 1

12 pages, 2066 KiB  
Article
Hemolymph Ecdysteroid Titer Affects Maternal mRNAs during Bombyx mori Oogenesis
by Meirong Zhang, Pingzhen Xu and Tao Chen
Insects 2021, 12(11), 969; https://doi.org/10.3390/insects12110969 - 27 Oct 2021
Cited by 2 | Viewed by 2783
Abstract
Silkworm larval–pupal metamorphosis and the first half of pupal–adult development occur during oogenesis from previtellogenesis to vitellogenesis and include two peaks of the hemolymph ecdysteroid titer. Moreover, a rise in 20-hydroxyecdysone titer in early pupae can trigger the first major transition from previtellogenesis [...] Read more.
Silkworm larval–pupal metamorphosis and the first half of pupal–adult development occur during oogenesis from previtellogenesis to vitellogenesis and include two peaks of the hemolymph ecdysteroid titer. Moreover, a rise in 20-hydroxyecdysone titer in early pupae can trigger the first major transition from previtellogenesis to vitellogenesis in silkworm oogenesis. In this study, we first investigated the expression patterns of 66 maternal genes in the ovary at the wandering stage. We then examined the developmental expression profiles in six time-series samples of ovaries or ovarioles by reverse transcription–quantitative PCR. We found that the transcripts of 22 maternal genes were regulated by 20-hydroxyecdysone in the isolated abdomens of the pupae following a single injection of 20-hydroxyecdysone. This study is the first to determine the relationship between 20-hydroxyecdysone and maternal genes during silkworm oogenesis. These findings provide a basis for further research into the embryonic development of Bombyx mori. Full article
(This article belongs to the Special Issue Silkworm and Silk: Traditional and Innovative Applications)
Show Figures

Figure 1

23 pages, 3557 KiB  
Article
All-Atomic Molecular Dynamic Studies of Human and Drosophila CDK8: Insights into Their Kinase Domains, the LXXLL Motifs, and Drug Binding Site
by Wu Xu, Xiao-Jun Xie, Ali K. Faust, Mengmeng Liu, Xiao Li, Feng Chen, Ashlin A. Naquin, Avery C. Walton, Peter W. Kishbaugh and Jun-Yuan Ji
Int. J. Mol. Sci. 2020, 21(20), 7511; https://doi.org/10.3390/ijms21207511 - 12 Oct 2020
Cited by 11 | Viewed by 2632
Abstract
Cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC) play conserved roles in modulating RNA polymerase II (Pol II)-dependent gene expression. To understand the structure and function relations of CDK8, we analyzed the structures of human and Drosophila CDK8 proteins using [...] Read more.
Cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC) play conserved roles in modulating RNA polymerase II (Pol II)-dependent gene expression. To understand the structure and function relations of CDK8, we analyzed the structures of human and Drosophila CDK8 proteins using molecular dynamics simulations, combined with functional analyses in Drosophila. Specifically, we evaluated the structural differences between hCDK8 and dCDK8 to predict the effects of the LXXLL motif mutation (AQKAA), the P154L mutations, and drug binding on local structures of the CDK8 proteins. First, we have observed that both the LXXLL motif and the kinase activity of CDK8 are required for the normal larval-to-pupal transition in Drosophila. Second, our molecular dynamic analyses have revealed that hCDK8 has higher hydrogen bond occupation of His149-Asp151 and Asp151-Asn156 than dCDK8. Third, the substructure of Asp282, Phe283, Arg285, Thr287 and Cys291 can distinguish human and Drosophila CDK8 structures. In addition, there are two hydrogen bonds in the LXXLL motif: a lower occupation between L312 and L315, and a relatively higher occupation between L312 and L316. Human CDK8 has higher hydrogen bond occupation between L312 and L316 than dCDK8. Moreover, L312, L315 and L316 in the LXXLL motif of CDK8 have the specific pattern of hydrogen bonds and geometries, which could be crucial for the binding to nuclear receptors. Furthermore, the P154L mutation dramatically decreases the hydrogen bond between L312 and L315 in hCDK8, but not in dCDK8. The mutations of P154L and AQKAA modestly alter the local structures around residues 154. Finally, we identified the inhibitor-induced conformational changes of hCDK8, and our results suggest a structural difference in the drug-binding site between hCDK8 and dCDK8. Taken together, these results provide the structural insights into the roles of the LXXLL motif and the kinase activity of CDK8 in vivo. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulations 2.0)
Show Figures

Graphical abstract

19 pages, 2841 KiB  
Article
Microbiome of the Queensland Fruit Fly through Metamorphosis
by Rajib Majumder, Brodie Sutcliffe, Phillip W. Taylor and Toni A. Chapman
Microorganisms 2020, 8(6), 795; https://doi.org/10.3390/microorganisms8060795 - 26 May 2020
Cited by 26 | Viewed by 5396
Abstract
Bactrocera tryoni (Froggatt) (Queensland fruit fly, or “Qfly”) is a highly polyphagous tephritid fruit fly and a serious economic pest in Australia. Qfly biology is intimately linked to the bacteria and fungi of its microbiome. While there are numerous studies of the microbiome [...] Read more.
Bactrocera tryoni (Froggatt) (Queensland fruit fly, or “Qfly”) is a highly polyphagous tephritid fruit fly and a serious economic pest in Australia. Qfly biology is intimately linked to the bacteria and fungi of its microbiome. While there are numerous studies of the microbiome in larvae and adults, the transition of the microbiome through the pupal stage remains unknown. To address this knowledge gap, we used high-throughput Next-Generation Sequencing (NGS) to examine microbial communities at each developmental stage in the Qfly life cycle, targeting the bacterial 16S rRNA and fungal ITS regions. We found that microbial communities were similar at the larval and pupal stage and were also similar between adult males and females, yet there were marked differences between the larval and adult stages. Specific bacterial and fungal taxa are present in the larvae and adults (fed hydrolyzed yeast with sugar) which is likely related to differences in nutritional biology of these life stages. We observed a significant abundance of the Acetobacteraceae at the family level, both in the larval and pupal stages. Conversely, Enterobacteriaceae was highly abundant (>80%) only in the adults. The majority of fungal taxa present in Qfly were yeasts or yeast-like fungi. In addition to elucidating changes in the microbiome through developmental stages, this study characterizes the Qfly microbiome present at the establishment of laboratory colonies as they enter the domestication process. Full article
(This article belongs to the Section Systems Microbiology)
Show Figures

Figure 1

16 pages, 3197 KiB  
Article
Cloning, Expression Analysis, 20-Hydroxyecdysone Induction, and RNA Interference Study of Autophagy-Related Gene 8 from Heortia vitessoides Moore
by Zhixing Li, Zihao Lyu, Qingya Ye, Jie Cheng, Chunyan Wang and Tong Lin
Insects 2020, 11(4), 245; https://doi.org/10.3390/insects11040245 - 15 Apr 2020
Cited by 10 | Viewed by 3217
Abstract
Autophagy is a highly conserved and regulated process in eukaryotic cells and remodels cytoplasm, recovers essential nutrients, and disposes of unwanted cytoplasmic components. Autophagy-related gene (ATG) 8, identified in Heortia vitessoides Moore, which is an oligophagous pest of Aquilaria sinensis (Lour.), was characterized [...] Read more.
Autophagy is a highly conserved and regulated process in eukaryotic cells and remodels cytoplasm, recovers essential nutrients, and disposes of unwanted cytoplasmic components. Autophagy-related gene (ATG) 8, identified in Heortia vitessoides Moore, which is an oligophagous pest of Aquilaria sinensis (Lour.), was characterized (HvATG8). Multiple sequence alignment showed that HvATG8 possesses highly conserved domain structures. Stage- and tissue-specific expressions indicated that HvATG8 is highly expressed in prepupal, pupal, and adult stages and in the midgut of larvae and abdomen of adults. Lack of function of HvATG8 by RNA interference resulted in a significant decrease in survival rate and an increase in abnormal or nonviable phenotypes in H. vitessoides. Transition rate from larval to pupal stages was 33.0% and from pupal to adult stages was 15.0% after injection. Reduction of ATG8 expression reduced survival of H. vitessoides. Therefore, HvATG8 possibly plays a key role in normal growth stage of H. vitessoides. HvATG8 suppression downregulates HvATG3 expression, suggesting that the two genes are interconnected. Further, HvATG8 expression increased by 20-hydroxyecdysone treatment, starvation, and extreme temperature exposure. Starvation also altered expression of other ATGs in H. vitessoide. This study may be used to guide research on molecular mechanisms of autophagy in insects. Full article
Show Figures

Figure 1

14 pages, 4870 KiB  
Article
Comparative Transcriptome Analysis Provides Novel Insight into Morphologic and Metabolic Changes in the Fat Body during Silkworm Metamorphosis
by Jian Peng, Zheng Li, Yan Yang, Peng Wang, Xuan Zhou, Tujing Zhao, Mengpei Guo, Meng Meng, Tianlei Zhang, Wenliang Qian, Qingyou Xia, Daojun Cheng and Ping Zhao
Int. J. Mol. Sci. 2018, 19(11), 3525; https://doi.org/10.3390/ijms19113525 - 9 Nov 2018
Cited by 25 | Viewed by 6125
Abstract
The fat body plays key roles in energy storage and utilization as well as biosynthetic and metabolic activities in insects. During metamorphosis from larva to pupa, the fat body undergoes dramatic changes in morphology and metabolic processes. However, the genetic basis underlying these [...] Read more.
The fat body plays key roles in energy storage and utilization as well as biosynthetic and metabolic activities in insects. During metamorphosis from larva to pupa, the fat body undergoes dramatic changes in morphology and metabolic processes. However, the genetic basis underlying these changes has not been completely understood. In this study, the authors performed a time-course transcriptome analysis of the fat body during silkworm metamorphosis using RNA-sequencing. A total of 5217 differentially expressed genes (DEGs) were identified in the fat body at different developmental time points. DEGs involved in lipid synthesis and degradation were highly expressed at the third day of the last larval instar and during the prepupal-pupal transition, respectively. DEGs involved in the ecdysone signaling and bone morphogenetic protein (BMP) signaling pathways that modulate organ development exhibited a high expression level during the fat body remodeling process from prepupa to pupa. Intriguingly, the RNA interference-mediated knockdown of either decapentaplegic (Dpp) or protein 60A (Gbb), two DEGs involved in the BMP signaling pathway, inhibited fat body dissociation but promoted lipid mobilization, suggesting that the BMP signaling pathway not only is required for fat body remodeling, but also moderately inhibits lipid mobilization to ensure an appropriate lipid supply during the pupal-adult transition. In conclusion, the comparative transcriptome analysis provides novel insight into morphologic and metabolic changes in the fat body during silkworm metamorphosis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop