Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (471)

Search Parameters:
Keywords = landscape reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 19225 KB  
Article
Multi-Resolution and Multi-Temporal Satellite Remote Sensing Analysis to Understand Human-Induced Changes in the Landscape for the Protection of Cultural Heritage: The Case Study of the MapDam Project, Syria
by Nicodemo Abate, Diego Ronchi, Sara Elettra Zaia, Gabriele Ciccone, Alessia Frisetti, Maria Sileo, Nicola Masini, Rosa Lasaponara, Tatiana Pedrazzi and Marina Pucci
Land 2025, 14(11), 2233; https://doi.org/10.3390/land14112233 - 11 Nov 2025
Viewed by 396
Abstract
This study presents a multi-resolution and multi-temporal remote sensing approach to assess human-induced changes in cultural landscapes, with a focus on the archaeological site of Amrit (Syria) within the MapDam project. By integrating satellite archives (KH, Landsat series, NASADEM) with ancillary geospatial data [...] Read more.
This study presents a multi-resolution and multi-temporal remote sensing approach to assess human-induced changes in cultural landscapes, with a focus on the archaeological site of Amrit (Syria) within the MapDam project. By integrating satellite archives (KH, Landsat series, NASADEM) with ancillary geospatial data (OpenStreetMap) and advanced analytical methods, four decades (1984–2024) of land-use/land-cover (LULC) change and shoreline dynamics were reconstructed. Machine learning classification (Random Forest) achieved high accuracy (Test Accuracy = 0.94; Kappa = 0.89), enabling robust LULC mapping, while predictive modelling of urban expansion, calibrated through a Gradient Boosting Machine, attained a Figure of Merit of 0.157, confirming strong predictive reliability. The results reveal path-dependent urban growth concentrated on low-slope terrains (≤5°) and consistent with proximity to infrastructure, alongside significant shoreline regression after 1974. A Business-as-Usual projection for 2024–2034 estimates 8.676 ha of new anthropisation, predominantly along accessible plains and peri-urban fringes. Beyond quantitative outcomes, this study demonstrates the replicability and scalability of open-source, data-driven workflows using Google Earth Engine and Python 3.14, making them applicable to other high-risk heritage contexts. This transparent methodology is particularly critical in conflict zones or in regions where cultural assets are neglected due to economic constraints, political agendas, or governance limitations, offering a powerful tool to document and safeguard endangered archaeological landscapes. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Graphical abstract

16 pages, 682 KB  
Review
Epigenomic Transcriptome Regulation of Growth and Development and Stress Response in Cucurbitaceae Plants: The Role of RNA Methylation
by Guangchao Yu, Zhipeng Wang, Lian Jia and Hua Huang
Curr. Issues Mol. Biol. 2025, 47(11), 938; https://doi.org/10.3390/cimb47110938 - 11 Nov 2025
Viewed by 176
Abstract
RNA methylation, particularly N6-methyladenosine (m6A) and 5-methylcytosine (m5C), functions as a pivotal post-transcriptional regulatory mechanism and plays a central role in plant growth, development, and stress responses. This review provides a systematic summary of recent advances in RNA methylation [...] Read more.
RNA methylation, particularly N6-methyladenosine (m6A) and 5-methylcytosine (m5C), functions as a pivotal post-transcriptional regulatory mechanism and plays a central role in plant growth, development, and stress responses. This review provides a systematic summary of recent advances in RNA methylation research in cucurbit crops. To date, high-throughput technologies such as MeRIP-seq and nanopore direct RNA sequencing have enabled the preliminary construction of RNA methylation landscapes in cucurbit species, revealing their potential regulatory roles in key agronomic traits, including fruit development, responses to biotic and abiotic stresses, and disease resistance. Nevertheless, this field remains in its early stages for cucurbit crops and faces several major challenges: First, mechanistic understanding is still limited, with insufficient knowledge regarding the composition and biological functions of the core protein families involved in methylation dynamics—namely, “writers,” “erasers,” and “readers.” Second, functional validation remains inadequate, as direct evidence linking specific RNA methylation events to downstream gene regulation and phenotypic outcomes is largely lacking. Third, resources are scarce; compared to model species such as Arabidopsis thaliana and rice, cucurbit crops possess limited species-specific genetic data and genetic engineering tools (e.g., CRISPR/Cas9-based gene editing systems), which significantly hampers comprehensive functional studies. To overcome these limitations, future research should prioritize the development and application of more sensitive detection methods, integrate multi-omics datasets—including transcriptomic and methylomic profiles—to reconstruct regulatory networks, and conduct rigorous functional assays to establish causal relationships between RNA methylation modifications and phenotypic variation. The ultimate objective is to fully elucidate the biological significance of RNA methylation in cucurbit plants and harness its potential for crop improvement through genetic and biotechnological approaches. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants—3rd Edition)
Show Figures

Figure 1

43 pages, 1150 KB  
Systematic Review
Sustainable Reconstruction Planning from Natural Disasters (Earthquakes): A Systematic Mapping Study of Machine Learning and Technological Approaches
by Ghulam Mudassir and Antinisca Di Marco
Sustainability 2025, 17(22), 10035; https://doi.org/10.3390/su172210035 - 10 Nov 2025
Viewed by 309
Abstract
Natural disasters have various adverse effects on human lives, making it challenging for authorities to manage post-disaster situations with limited resources. Due to the extreme extent of the damage, the huge amount of resources needed to restore life to normality makes such a [...] Read more.
Natural disasters have various adverse effects on human lives, making it challenging for authorities to manage post-disaster situations with limited resources. Due to the extreme extent of the damage, the huge amount of resources needed to restore life to normality makes such a situation challenging. For this purpose, different methodologies have been proposed to effectively handle these types of situations. All these methodologies consider different aspects of the post-earthquake context, taking into account core parameters such as the time and cost required for reconstruction, as well as the people directly affected by the earthquake. In this paper, we conduct a Systematic Literature Review (SLR) of various state-of-the-art techniques proposed for different phases of post-earthquake situations, specifically for reconstruction planning with sustainability considerations. All these proposed solutions are differentiated on the basis of input data, parameters, and type of solutions (data sciences, civil engineering, socio-economics, and modelling). The time range chosen to filter out relevant studies is between 2000 and 2025. Eventually, we reviewed 55 related articles out of 47,539 analysed from seven different digital libraries. The findings of this SLR reveal that optimization and simulation-based approaches dominate the current research landscape, with a growing trend toward data-driven and AI-assisted reconstruction planning. However, only a few studies focus on integrating socio-economic, environmental, and physical infrastructure aspects, which represents a major research gap. These findings provide insights that can guide future researchers in designing more comprehensive frameworks to improve post-earthquake reconstruction in a sustainable manner by prioritising economic, social, and environmental infrastructures, as well as facilities for affected individuals, thereby utilising available resources more effectively. Full article
Show Figures

Figure 1

19 pages, 12357 KB  
Article
Ecological Wisdom Study of the Han Dynasty Settlement Site in Sanyangzhuang Based on Landscape Archaeology
by Yingming Cao, He Jiang, MD Abdul Mueed Choudhury, Hangzhe Liu, Guohang Tian, Xiang Wu and Ernesto Marcheggiani
Heritage 2025, 8(11), 466; https://doi.org/10.3390/heritage8110466 - 6 Nov 2025
Viewed by 270
Abstract
This study systematically investigates settlement sites that record living patterns of ancient humans, aiming to reveal the interactive mechanisms of human–environment relationships. The core issues of landscape archeology research are the surface spatial structure, human spatial cognition, and social practice activities. This article [...] Read more.
This study systematically investigates settlement sites that record living patterns of ancient humans, aiming to reveal the interactive mechanisms of human–environment relationships. The core issues of landscape archeology research are the surface spatial structure, human spatial cognition, and social practice activities. This article takes the Han Dynasty settlement site in Sanyangzhuang, Neihuang County, Anyang City, Henan Province, as a typical case. It comprehensively uses ArcGIS 10.8 spatial analysis and remote sensing image interpretation techniques to construct spatial distribution models of elevation, slope, and aspect in the study area, and analyzes the process of the Yellow River’s ancient course changes. A regional historical geographic information system was constructed by integrating multiple data sources, including archeological excavation reports, excavated artifacts, and historical documents. At the same time, the sequences of temperature and dry–wet index changes in the study area during the Qin and Han dynasties were quantitatively reconstructed, and a climate evolution map for this period was created based on ancient climate proxy indicators. Drawing on three dimensions of settlement morphology, architectural spatial organization, and agricultural technology systems, this paper provides a deep analysis of the site’s spatial cognitive logic and the ecological wisdom it embodies. The results show the following: (1) The Sanyangzhuang Han Dynasty settlement site reflects the efficient utilization strategy and environmental adaptation mechanism of ancient settlements for land resources, presenting typical scattered characteristics. Its formation mechanism is closely related to the evolution of social systems in the Western Han Dynasty. (2) In terms of site selection, settlements consider practicality and ceremony, which can not only meet basic living needs, but also divide internal functional zones based on the meaning implied by the orientation of the constellations. (3) The widespread use of iron farming tools has promoted the innovation of cultivation techniques, and the implementation of the substitution method has formed an ecological regulation system to cope with seasonal climate change while ensuring agricultural yield. The above results comprehensively reflect three types of ecological wisdom: “ecological adaptation wisdom of integrating homestead and farmland”, “spatial cognitive wisdom of analogy, heaven, law, and earth”, and “agricultural technology wisdom adapted to the times”. This study not only deepens our understanding of the cultural value of the Han Dynasty settlement site in Sanyangzhuang, but also provides a new theoretical perspective, an important paradigm reference, and a methodological reference for the study of ancient settlement ecological wisdom. Full article
Show Figures

Figure 1

27 pages, 5936 KB  
Article
Holistic–Relational Approach to the Analysis, Evaluation, and Protection Strategies of Historic Urban Eight Views: A Case Study of ‘Longmen Haoyue’ in Chongqing, China
by Weishuai Xie, Junjie Fu, Ruolin Chen and Huasong Mao
Heritage 2025, 8(11), 465; https://doi.org/10.3390/heritage8110465 - 6 Nov 2025
Viewed by 780
Abstract
Eight Views is a time-honored East Asian cultural-landscape paradigm in which eight emblematic natural—cultural scenes fuse regional character, historical memory, and aesthetic ideals into a coherent narrative. It encodes the collective memory and identity of a city (or garden/region), a premodern ‘mental map’ [...] Read more.
Eight Views is a time-honored East Asian cultural-landscape paradigm in which eight emblematic natural—cultural scenes fuse regional character, historical memory, and aesthetic ideals into a coherent narrative. It encodes the collective memory and identity of a city (or garden/region), a premodern ‘mental map’ or proto- ‘city brand’. In China, the historic Urban Eight Views are rooted in local environments and traditions and constitute significant, high-value landscape heritage today. Yet rapid urbanization has inflicted severe physical damage on these ensembles. Coupled with insufficient holistic and systemic understanding among managers and the public, this has led, during development and conservation alike, to spatial insularization, fragmentation, and even disappearance, alongside widening divergences in cultural cognition and biases in value judgment. Taking Longmen Haoyue in Chongqing, one of the historic Urban Eight Views, as a case that manifests these issues, this study develops a holistic–relational approach for the urban, historical Eight Views and explores landscape-based pathways to protect the spatial structure and cultural connotations of the heritage that has been severely damaged and is in a state of disappearance or semi-disappearance amid modernization. Methodologically, we employ decomposition analysis to extract the historical information elements of Longmen Haoyue and its internal relational structure and corroborate its persistence through field surveys. We then apply the FAHP method to grade the conservation value and importance of elements within the Eight Views, quantitatively clarifying protection hierarchies and priorities. In parallel, a multidimensional corpus is constructed to analyze online dissemination and public perception, revealing multiple challenges in the evolution and reconstruction of Longmen Haoyue, including symbolic misreading and cultural decontextualization. In response, we propose an integrated strategy comprising graded element protection and intervention, reconstruction of relational structures, and the building of a coherent cultural-semantic and symbol system. This study provides a systematic theoretical basis and methodological support for the conservation of the urban historic Eight Views cultural landscapes, the place-making of distinctive spatial character, and the enhancement of cultural meanings. It develops an integrated research framework, element extraction, value assessment, perception analysis, and strategic response that is applicable not only to the Eight Views heritage in China but is also transferable to World Heritage properties with similar attributes worldwide, especially composite cultural landscapes composed of multiple natural and cultural elements, sustained by narrative traditions of place identity, and facing risks of symbolic weakening, decontextualization, or public misperception. Full article
(This article belongs to the Section Cultural Heritage)
Show Figures

Figure 1

16 pages, 13233 KB  
Article
Robotized Fabrication Strategy for Large-Scale 3D Conformal Electronics
by Jiaying Ge, Hao Wu, Hongyang Wang and Dong Ye
Materials 2025, 18(21), 5015; https://doi.org/10.3390/ma18215015 - 4 Nov 2025
Viewed by 345
Abstract
Conformal electronics are distinguished by their unique characteristics, such as the integration of structure and function and their conformability with complex geometries. These features unlock a broad spectrum of applications, including structural health monitoring and the creation of metasurfaces. However, the current landscape [...] Read more.
Conformal electronics are distinguished by their unique characteristics, such as the integration of structure and function and their conformability with complex geometries. These features unlock a broad spectrum of applications, including structural health monitoring and the creation of metasurfaces. However, the current landscape of large-scale curved electronic fabrication is characterized by a significant gap in specialized equipment and standardized strategies. In this context, we introduce a pioneering strategy that leverages robotized electrohydrodynamic (EHD) printing for the conformal fabrication of large-scale curved electronics on 3D surfaces. This comprehensive multi-robot EHD conformal printing strategy integrates several critical components, including plasma surface treatment, EHD conformal printing, and near-infrared (NIR) sintering processes. These are supported by enabling technologies such as 3D surface reconstruction and precise hybrid positioning. Notably, our strategy achieves 5 µm printing resolution via EHD lithography and 35 µm repeatable positioning accuracy. After plasma treatment, conductive patterns on FR4 substrates reach 5B-level adhesion strength. NIR sintering enables high-efficiency sintering within only 125 s. Seamless integration of these processes into multi-robot collaborative equipment enables the fabrication of large-area conformal electronics, such as 400 mm × 1000 mm unmanned aerial vehicle wings and 650 mm × 350 mm satellite shells, and supports multi-layer systems including wires, LED arrays, antennas, and sensors. This strategy possesses substantial potential to transcend the limitations inherent in traditional fabrication methods, paving the way for new frontiers in conformal electronics across a variety of applications, including smart wings and satellite surfaces. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

13 pages, 972 KB  
Article
Including Small Fires in Global Historical Burned Area Products: Promising Results from a Landsat-Based Product
by Davide Fornacca, Yuhan Ye, Xiaokang Li and Wen Xiao
Fire 2025, 8(11), 422; https://doi.org/10.3390/fire8110422 - 30 Oct 2025
Viewed by 669
Abstract
State-of-the-art historical global burned area (BA) products largely rely on MODIS data, offering long temporal coverage but limited spatial resolution. As a result, small fires and complex landscapes remain underrepresented in global fire history reconstructions. By contrast, Landsat provides the only continuous satellite [...] Read more.
State-of-the-art historical global burned area (BA) products largely rely on MODIS data, offering long temporal coverage but limited spatial resolution. As a result, small fires and complex landscapes remain underrepresented in global fire history reconstructions. By contrast, Landsat provides the only continuous satellite record extending back to the 1980s, with substantially finer resolution. However, its use at a global scale has long been hindered by infrequent revisit times, cloud contamination, massive data volumes, and processing demands. We compared MODIS FireCCI51 with the only existing Landsat-based global product, GABAM, in a mountainous region characterized by frequent, small-scale fires. GABAM detected a higher number of burn scars, including small events, with higher Producer’s Accuracy (0.68 vs. 0.08) and similar User’s Accuracy (0.85 vs. 0.83). These results emphasize the value of Landsat for reconstructing past fire regimes in complex landscapes. Crucially, recent advances in cloud computing, data cubes, and processing pipelines now remove many of the former barriers to exploiting the Landsat archive globally. A more systematic integration of Landsat data into MODIS-based routines may help produce more complete and accurate databases of historical fire activity, ultimately enabling improved understanding of long-term global fire dynamics. Full article
Show Figures

Figure 1

18 pages, 3329 KB  
Review
Bionic Sensing and BCI Technologies for Olfactory Improvement and Reconstruction
by Yajie Zhang, Qifei Wang, Fan Wu, Qin Yang, Xinrui Tang, Shunuo Shang, Sunhong Hu, Guojin Zhou and Liujing Zhuang
Chemosensors 2025, 13(11), 381; https://doi.org/10.3390/chemosensors13110381 - 29 Oct 2025
Viewed by 630
Abstract
Olfactory dysfunction (OD) is an early symptom associated with a variety of diseases, including COVID-19, Alzheimer’s disease, and Parkinson’s disease, where patients commonly experience hyposmia or anosmia. Effective restoration of olfactory function is therefore crucial for disease diagnosis and management, and improving overall [...] Read more.
Olfactory dysfunction (OD) is an early symptom associated with a variety of diseases, including COVID-19, Alzheimer’s disease, and Parkinson’s disease, where patients commonly experience hyposmia or anosmia. Effective restoration of olfactory function is therefore crucial for disease diagnosis and management, and improving overall quality of life. Traditional treatment approaches have primarily relied on medication and surgical intervention. However, recent advances in bionic sensing and brain–computer interface (BCI) technologies have opened up novel avenues for olfactory rehabilitation, facilitating the reconstruction of neural circuits and the enhancement of connectivity within the central nervous system. This review provides an overview of the current research landscape on OD-related diseases and highlights emerging olfactory restoration strategies, including olfactory training (OT), electrical stimulation, neural regeneration, and BCI-based approaches. These developments lay a theoretical foundation for achieving more rapid and reliable clinical recovery of olfactory function. Full article
(This article belongs to the Special Issue Advancements of Chemosensors and Biosensors in China—2nd Edition)
Show Figures

Figure 1

33 pages, 6392 KB  
Article
Green Building Renovation Through the Benefits of the 110% Superbonus: Process, Technical and Economic-Appraisal Aspects
by Mariangela Musolino, Domenico Enrico Massimo, Francesco Calabrò and Roberta Errigo
Sustainability 2025, 17(21), 9566; https://doi.org/10.3390/su17219566 - 28 Oct 2025
Viewed by 760
Abstract
In recent years, European and national policies on energy efficiency and sustainable construction have promoted a profound rethinking of building practices and strategies for upgrading the existing building stock. With the conversion of Law Decree No. 34 of 19 May 2020 (Decreto [...] Read more.
In recent years, European and national policies on energy efficiency and sustainable construction have promoted a profound rethinking of building practices and strategies for upgrading the existing building stock. With the conversion of Law Decree No. 34 of 19 May 2020 (Decreto Rilancio) into Law No. 77 of 17 July 2020, and of Law Decree No. 76 of 16 July 2020 (Decreto Semplificazioni) into Law No. 120 of 11 September 2020, the tax deduction rate was increased to 110% for expenses related to specific interventions such as seismic risk reduction, energy retrofit, installation of photovoltaic systems, and charging infrastructures for electric vehicles in buildings—commonly known as the Superbonus 110%. Furthermore, the category of “building renovation,” as defined in Presidential Decree No. 380 of 6 June 2001 (art. 3, paragraph 1, letter d), was expanded with specific reference to demolition and reconstruction of existing buildings, allowing—under certain conditions—interventions that do not comply with the original footprint, façades, site layout, volumetric features, or typological characteristics. These measures were designed not only to positively affect household investment levels, thereby significantly contributing to national income growth, but also to support the broader objective of decarbonising the building sector while improving seismic safety. Within this regulatory and policy framework, instruments such as the Superbonus 110% have acted as a driving force for the diffusion of renovation projects aimed at enhancing energy performance and reducing greenhouse gas emissions, in line with the objectives of the European Green Deal and the Energy Performance of Buildings Directive (EPBD). This paper is situated within such a context and examines a real-world case of bio-based renovation admitted to fiscal incentives under the Superbonus 110%. The focus is placed on the procedural framework as well as on the technical, economic, and evaluative aspects, adopting a multidimensional perspective that combines regulatory, operational, and financial considerations. The case study concerns the demolition and reconstruction of a single-family residential chalet, designed according to near-Zero-Energy Building (nZEB) standards, located in the municipality of San Roberto, in the province of Reggio Calabria. The intervention is set within an environmentally and culturally sensitive area, being situated in the Aspromonte National Park and subject to landscape protection restrictions under Article 142 of Legislative Decree No. 42/2004. The aim of the study is to highlight, through the analysis of this case, both the opportunities and the challenges of applying the Superbonus 110% in protected contexts. By doing so, it seeks to contribute to the scientific debate on the interplay between incentive-based regulations, energy sustainability, and landscape–environmental protection requirements, while providing insights for academics, practitioners, and policymakers engaged in the ecological transition of the construction sector. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

15 pages, 621 KB  
Review
The Pathogenesis and Virulence of the Major Enterovirus Pathogens Associated with Severe Clinical Manifestations: A Comprehensive Review
by Yuwei Liu, Maiheliya Maisimu, Zhihang Ge, Suling Xiao and Haoran Wang
Cells 2025, 14(20), 1617; https://doi.org/10.3390/cells14201617 - 17 Oct 2025
Viewed by 778
Abstract
Enteroviruses (EVs), particularly those within the species Enterovirus A and B, represent a significant global public health burden, especially in infants and young children. While often causing self-limiting hand, foot, and mouth disease (HFMD), certain serotypes can lead to severe neurological and cardiopulmonary [...] Read more.
Enteroviruses (EVs), particularly those within the species Enterovirus A and B, represent a significant global public health burden, especially in infants and young children. While often causing self-limiting hand, foot, and mouth disease (HFMD), certain serotypes can lead to severe neurological and cardiopulmonary complications. This comprehensive review focuses on the major pathogenic serotypes, including enterovirus A71 (EV-A71), coxsackievirus A16 (CV-A16), coxsackievirus A6 (CV-A6), coxsackievirus B3 (CV-B3), and enterovirus D68 (EV-D68). We began by reconstructing a phylogenetic tree based on VP1 protein sequences, elucidating the genetic relationships and evolutionary patterns among these serotypes, which underpin their diverse antigenicity and epidemiology. Building upon this genetic foundation, the review then provides a detailed synthesis of their distinct pathogenesis, highlighting the five-phase clinical progression from exanthematous phase to convalescence, and their unique tropisms for target organs such as the central nervous system and heart. Progressing to the molecular mechanisms, a critical component of this work is a systematic summary of the specific host receptors that mediate viral entry, including SCARB2 for EV-A71 and CV-A16, sialic acid and ICAM-5 for EV-D68, and CAR/CD55 for CV-B3, explaining the mechanistic basis for their tissue specificity and pathogenicity. Finally, to translate these insights into clinical applications, we critically evaluate the current landscape of vaccine development, noting the high efficacy (~90%) of inactivated EV-A71 vaccines in Asia and the significant global success of poliovirus vaccines, while also addressing the stark lack of cross-protective or licensed vaccines for other prevalent serotypes like CV-A16, CV-A6, and EV-D68. The review concludes that the high genetic diversity and serotype-specific immunity of enteroviruses pose a major challenge, necessitating a concerted shift towards the development of broad-spectrum vaccines and therapeutics informed by an integrated understanding of viral evolution, receptor usage, and pathogenesis. Full article
Show Figures

Figure 1

19 pages, 6433 KB  
Article
Quantifying Mining-Induced Phenological Disturbance and Soil Moisture Regulation in Semi-Arid Grasslands Using HLS Time Series
by Yanling Zhao, Shenshen Ren and Yanjie Tang
Land 2025, 14(10), 2011; https://doi.org/10.3390/land14102011 - 7 Oct 2025
Viewed by 416
Abstract
Coal mining disturbances in semi-arid grasslands affect land surface phenology (LSP), impacting ecosystem functions, restoration target setting, and carbon sequestration; however, the magnitude and spatial extent of these disturbances and their detectability across vegetation indices (VIs), remain insufficiently constrained. We developed and applied [...] Read more.
Coal mining disturbances in semi-arid grasslands affect land surface phenology (LSP), impacting ecosystem functions, restoration target setting, and carbon sequestration; however, the magnitude and spatial extent of these disturbances and their detectability across vegetation indices (VIs), remain insufficiently constrained. We developed and applied a streamlined quantitative framework to delineate the extent and intensity of mining-induced phenological disturbance and to compare the sensitivity and stability of commonly used VIs. Using Harmonized Landsat Sentinel (HLS) surface reflectance data over the Yimin mine, we reconstructed multitemporal VI trajectories and derived phenological metrics; directional phenology gradients were used to delineate disturbance, and VI responsiveness was evaluated via mean difference (MD) and standard deviation (SD) between affected and control areas. Research findings indicate that the impact of mining extends to an area approximately four times the size of the mining site, with the start of season (SOS) in affected areas occurring about 10 days later than in unaffected areas. Responses varied markedly among VIs, with the Modified Soil-Adjusted Vegetation Index (MSAVI) exhibiting the highest spectral stability under disturbance. This framework yields an information-rich quantification of phenological impacts attributable to mining and provides operational guidance for index selection and the prioritization of restoration and environmental management in semi-arid mining landscapes. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

23 pages, 11972 KB  
Article
The Variability in the Thermophysical Properties of Soils for Sustainability of the Industrial-Affected Zone of the Siberian Arctic
by Tatiana V. Ponomareva, Kirill Yu. Litvintsev, Konstantin A. Finnikov, Nikita D. Yakimov, Georgii E. Ponomarev and Evgenii I. Ponomarev
Sustainability 2025, 17(19), 8892; https://doi.org/10.3390/su17198892 - 6 Oct 2025
Viewed by 690
Abstract
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the [...] Read more.
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the seasonally thawed soil layer. The study concentrated on the variability in the soil’s thermophysical properties in Central Siberia’s permafrost zone (the northern part of Krasnoyarsk Region, Taimyr, Russia). In the industrially affected area of interest, we evaluated and contrasted the differences in the thermophysical properties of soils between two opposing types of landscapes. On the one hand, these are soils that are characteristic of the natural landscape of flat shrub tundra, with a well-developed moss–lichen cover. An alternative is the soils in the landscape, which have exhibited significant degradation in the vegetation cover due to both natural and human-induced factors. The heat-insulating properties of background areas are controlled by the layer of moss and shrubs, while its disturbance determines the excessive heating of the soil at depth. In comparison to the background soil characteristics, degradation of on-ground vegetation causes the active layer depth of the soils to double and the temperature gradient to decrease. With respect to depth, we examine the changes in soil temperature and heat flow dynamics (q, W/m2). The ranges of thermal conductivity (λ, W/(m∙K)) were assessed using field-measured temperature profiles and heat flux values in the soil layers. The background soil was discovered to have lower thermal conductivity values, which are typical of organic matter, in comparison to the soil of the transformed landscape. Thermal diffusivity coefficients for soil layers were calculated using long-term temperature monitoring data. It is shown that it is possible to use an adjusted model of the thermal conductivity coefficient to reconstruct the dynamics of moisture content from temperature dynamics data. A satisfactory agreement is shown when the estimated (Wcalc, %) and observed (Wexp, %) moisture content values in the soil layer are compared. The findings will be employed to regulate the effects on landscapes in order to implement sustainable nature management in the region, thereby preventing the significant degradation of ecosystems and the concomitant risks to human well-being. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

26 pages, 20743 KB  
Article
Assessing Rural Landscape Change Within the Planning and Management Framework: The Case of Topaktaş Village (Van, Turkiye)
by Feran Aşur, Kübra Karaman, Okan Yeler and Simay Kaskan
Land 2025, 14(10), 1991; https://doi.org/10.3390/land14101991 - 3 Oct 2025
Viewed by 556
Abstract
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. [...] Read more.
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. Using ArcGIS 10.8 and the Analytic Hierarchy Process (AHP), we integrate DEM, slope, aspect, CORINE land cover Plus, surface-water presence/seasonality, and proximity to hazards (active and surface-rupture faults) and infrastructure (Karasu Stream, highways, village roads). A risk overlay is treated as a hard constraint. We produce suitability maps for settlement, agriculture, recreation, and industry; derive a composite optimum land-use surface; and translate outputs into decision rules (e.g., a 0–100 m fault no-build setback, riparian buffers, and slope thresholds) with an outline for implementation and monitoring. Key findings show legacy footprints at lower elevations, while new footprints cluster near the upper elevation band (DEM range 1642–1735 m). Most of the area exhibits 0–3% slopes, supporting low-impact access where hazards are manageable; however, several newly designated settlement tracts conflict with risk and water-service conditions. Although limited to a single case and available data resolutions, the workflow is transferable: it moves beyond mapping to actionable planning instruments—zoning overlays, buffers, thresholds, and phased management—supporting sustainable, culturally informed post-earthquake reconstruction. Full article
Show Figures

Figure 1

19 pages, 1813 KB  
Article
The Habitat Fragmentation and Suitability Evaluation of Mrs Hume’s Pheasant Syrmaticus humiae in Northwestern Guangxi, China
by Baodong Yuan, Ying Li and Zhicheng Yao
Biology 2025, 14(10), 1345; https://doi.org/10.3390/biology14101345 - 1 Oct 2025
Viewed by 539
Abstract
The habitat landscape pattern of Mrs Hume’s pheasant in Jinzhongshan, northwestern Guangxi, was studied using field survey data and the LANDSAT satellite images by the ArcGIS 10.8 and Fragstats 3.3 software. The results showed that the Jinzhongshan region covers 38,716.6 hm2, [...] Read more.
The habitat landscape pattern of Mrs Hume’s pheasant in Jinzhongshan, northwestern Guangxi, was studied using field survey data and the LANDSAT satellite images by the ArcGIS 10.8 and Fragstats 3.3 software. The results showed that the Jinzhongshan region covers 38,716.6 hm2, including 1708 patches and 11 landscape types. Although the area of farmland and village only occupies 10%, their number and density have led Jinzhongshan habitats to fragment. The degree of connection of suitable habitat was found to be relatively low, and seven landscape indices were below 0.5, which implied that the extent of habitat fragmentation in Jinzhongshan for Mrs Hume’s Pheasant is very high. The fragmentation index of Jinzhongshan Nature Reserve is 0.9887, landscape connectivity is 1.861, and AWS index is 425.3024. The broad-leaved forest, considered a matrix in the Jinzhongshan area, was the dominant landscape type controlling structure, function, and dynamic changes. The total suitable habitat of Mrs Hume’s pheasant (Syrmaticus humiae) was determined to be 29,552.3 hm2, accounting for 76.3% of the total study area; the suitable habitat of Mrs Hume’s pheasant in Jinzhongshan Nature Reserve was determined to be 16,990.1 hm2, accounting for 81.14% of the protected area. It is absolutely necessary and urgent to strengthen the management and protection of Mrs Hume’s pheasant’s habitat to control its fragmentation. Therefore, we have provided some useful advice, such as habitat restoration and corridor reconstruction, which are beneficial to the conservation of Mrs Hume’s pheasant in this sensitive region. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

22 pages, 17124 KB  
Review
Image Matching: Foundations, State of the Art, and Future Directions
by Ming Yang, Rui Wu, Yunxuan Yang, Liang Tao, Yifan Zhang, Yixin Xie and Gnana Prakash Reddy Donthi Reddy
J. Imaging 2025, 11(10), 329; https://doi.org/10.3390/jimaging11100329 - 24 Sep 2025
Viewed by 1506
Abstract
Image matching plays a critical role in a wide range of computer vision applications, including object recognition, 3D reconstruction, aiming-point and six-degree-of-freedom detection for aiming devices, and video surveillance. Over the past three decades, image-matching algorithms and techniques have evolved significantly, from handcrafted [...] Read more.
Image matching plays a critical role in a wide range of computer vision applications, including object recognition, 3D reconstruction, aiming-point and six-degree-of-freedom detection for aiming devices, and video surveillance. Over the past three decades, image-matching algorithms and techniques have evolved significantly, from handcrafted feature extraction algorithms to modern approaches powered by deep learning neural networks and attention mechanisms. This paper provides a comprehensive review of image-matching techniques, aiming to offer researchers valuable insights into the evolving landscape of this field. It traces the historical development of feature-based methods and examines the transition to neural network-based approaches that leverage large-scale data and learned representations. Additionally, this paper discusses the current state of the field, highlighting key algorithms, benchmarks, and real-world applications. Furthermore, this study introduces some recent contributions to this area and outlines promising directions for future research, including H-matrix optimization, LoFTR model speedup, and performance improvements. It also identifies persistent challenges such as robustness to viewpoint and illumination changes, scalability, and matching under extreme conditions. Finally, this paper summarizes future trends for research and development in this field. Full article
(This article belongs to the Special Issue Object Detection in Video Surveillance Systems)
Show Figures

Figure 1

Back to TopTop