Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = landing position error

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2626 KB  
Article
Land Use and Water Stress as Determinants of Ecosystem Resilience: A Panel Data Analysis of Biodiversity Loss Drivers in European Countries
by Irina Georgescu and Mioara Băncescu
Land 2025, 14(10), 1946; https://doi.org/10.3390/land14101946 - 25 Sep 2025
Abstract
This study evaluates the influence of land use and water stress on ecosystem resilience, using panel data for thirty-three European countries from 2007 to 2024, following the identification of a research gap in the literature on this topic. The dependent variable is the [...] Read more.
This study evaluates the influence of land use and water stress on ecosystem resilience, using panel data for thirty-three European countries from 2007 to 2024, following the identification of a research gap in the literature on this topic. The dependent variable is the bioclimatic ecosystem resilience index (BER), and the explanatory variables are Agricultural Land Share (ALS), Forest Land Share (FLS), and the Level of Water Stress (WS). The estimated models are a fixed-effects panel regression with Driscoll-Kraay standard errors, robust to autocorrelation, heteroscedasticity, and spatial dependence, and a kernel-based regularized least squares model, which offers a new, nonlinear, heterogeneous, and sensitive to local contexts perspective on ecosystem resilience. The results indicate a significant positive effect of FLS on ecosystem resilience, ALS has a mixed influence, while WS has a negative impact. Robustness checks using cluster-robust standard errors and alternative model specifications confirmed the stability and direction of the estimated coefficients. The conclusions support the promotion of forest conservation policies, sustainable water resource management, and ecosystem-friendly agriculture practices as main directions for enhancing the capacity of ecosystems to respond to human and climate pressures. Full article
(This article belongs to the Special Issue Conservation of Bio- and Geo-Diversity and Landscape Changes II)
Show Figures

Figure 1

24 pages, 349 KB  
Article
Economic Growth, FDI, Tourism, and Agricultural Productivity as Drivers of Environmental Degradation: Testing the EKC Hypothesis in ASEAN Countries
by Yuldoshboy Sobirov, Beruniy Artikov, Elbek Khodjaniyozov, Peter Marty and Olimjon Saidmamatov
Sustainability 2025, 17(18), 8394; https://doi.org/10.3390/su17188394 - 19 Sep 2025
Viewed by 771
Abstract
This study examines the long-run relationship between carbon dioxide (CO2) emissions and key macroeconomic and sectoral drivers in ten ASEAN economies from 1995 to 2023. Employing Driscoll–Kraay standard errors, Prais–Winsten regression, heteroskedastic panel-corrected standard errors, Fully Modified Ordinary Least Squares (FMOLS), [...] Read more.
This study examines the long-run relationship between carbon dioxide (CO2) emissions and key macroeconomic and sectoral drivers in ten ASEAN economies from 1995 to 2023. Employing Driscoll–Kraay standard errors, Prais–Winsten regression, heteroskedastic panel-corrected standard errors, Fully Modified Ordinary Least Squares (FMOLS), Dynamic Ordinary Least Squares (DOLS), and Canonical Cointegrating Regression (CCR) estimators, the analysis accounts for cross-sectional dependence, slope heterogeneity, and endogeneity. Results indicate that GDP exerts a more-than-unitary positive effect on emissions, with a negative GDP-squared term supporting the Environmental Kuznets Curve. Agriculture raises emissions through land-use change and high-emission cultivation practices, while tourism shows a negative association likely reflecting territorial accounting effects. Trade openness increases emissions, highlighting the carbon intensity of export structures, whereas foreign direct investment exerts no significant net effect. These results suggest that ASEAN economies must accelerate renewable energy adoption, promote climate-smart agriculture, embed enforceable environmental provisions in trade policy, and implement rigorous sustainability screening for FDI to achieve low-carbon growth trajectories. Full article
24 pages, 3514 KB  
Article
Research on LiDAR-Assisted Optimization Algorithm for Terrain-Aided Navigation of eVTOL
by Guangming Zhang, Jing Zhou, Zhonghang Duan and Weiwei Zhao
Sensors 2025, 25(18), 5672; https://doi.org/10.3390/s25185672 - 11 Sep 2025
Viewed by 268
Abstract
To address the high-precision navigation requirements of urban low-altitude electric vertical take-off and landing (eVTOL) aircraft in environments where global navigation satellite systems (GNSSs) are denied and under complex urban terrain conditions, a terrain-matching optimization algorithm based on light detection and ranging (LiDAR) [...] Read more.
To address the high-precision navigation requirements of urban low-altitude electric vertical take-off and landing (eVTOL) aircraft in environments where global navigation satellite systems (GNSSs) are denied and under complex urban terrain conditions, a terrain-matching optimization algorithm based on light detection and ranging (LiDAR) is proposed. Given the issues of GNSS signal susceptibility to occlusion and interference in urban low-altitude environments, as well as the error accumulation in inertial navigation systems (INSs), this algorithm leverages LiDAR point cloud data to assist in constructing a digital elevation model (DEM). A terrain-matching optimization algorithm is then designed, incorporating enhanced feature description for key regions and an adaptive random sample consensus (RANSAC)-based misalignment detection mechanism. This approach enables efficient and robust terrain feature matching and dynamic correction of INS positioning errors. The simulation results demonstrate that the proposed algorithm achieves a positioning accuracy better than 2 m in complex scenarios such as typical urban canyons, representing a significant improvement of 25.0% and 31.4% compared to the traditional SIFT-RANSAC and SURF-RANSAC methods, respectively. It also elevates the feature matching accuracy rate to 90.4%; meanwhile, at a 95% confidence level, the proposed method significantly increases the localization success rate to 96.8%, substantially enhancing the navigation and localization accuracy and robustness of eVTOLs in complex low-altitude environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

16 pages, 11231 KB  
Article
Aerial Vehicle Detection Using Ground-Based LiDAR
by John Kirschler and Jay Wilhelm
Aerospace 2025, 12(9), 756; https://doi.org/10.3390/aerospace12090756 - 22 Aug 2025
Viewed by 565
Abstract
Ground-based LiDAR sensing offers a promising approach for delivering short-range landing feedback to aerial vehicles operating near vertiports and in GNSS-degraded environments. This work introduces a detection system capable of classifying aerial vehicles and estimating their 3D positions with sub-meter accuracy. Using a [...] Read more.
Ground-based LiDAR sensing offers a promising approach for delivering short-range landing feedback to aerial vehicles operating near vertiports and in GNSS-degraded environments. This work introduces a detection system capable of classifying aerial vehicles and estimating their 3D positions with sub-meter accuracy. Using a simulated Gazebo environment, multiple LiDAR sensors and five vehicle classes, ranging from hobbyist drones to air taxis, were modeled to evaluate detection performance. RGB-encoded point clouds were processed using a modified YOLOv6 neural network with Slicing-Aided Hyper Inference (SAHI) to preserve high-resolution object features. Classification accuracy and position error were analyzed using mean Average Precision (mAP) and Mean Absolute Error (MAE) across varied sensor parameters, vehicle sizes, and distances. Within 40 m, the system consistently achieved over 95% classification accuracy and average position errors below 0.5 m. Results support the viability of high-density LiDAR as a complementary method for precision landing guidance in advanced air mobility applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 4123 KB  
Article
Urban Growth and River Course Dynamics: Disconnected Floodplain and Urban Flood Risk in Manohara Watershed, Nepal
by Shobha Shrestha, Prem Sagar Chapagain, Kedar Dahal, Nirisha Adhikari, Prajjwal Shrestha and Laxmi Manandhar
Water 2025, 17(16), 2391; https://doi.org/10.3390/w17162391 - 13 Aug 2025
Viewed by 675
Abstract
Human activities and river course change have a complex reciprocal interaction. The river channel is altered by human activity, and these alterations have an impact on the activities and settlements along the riverbank. Understanding the relationship between urbanization and changes in river morphology [...] Read more.
Human activities and river course change have a complex reciprocal interaction. The river channel is altered by human activity, and these alterations have an impact on the activities and settlements along the riverbank. Understanding the relationship between urbanization and changes in river morphology is crucial for effective river management, safeguarding the urban environment, and mitigating flood hazards. In this context, this study has been conducted to investigate the interrelationship between morphological dynamics, built-up growth, and urban flood risk along the Manohara River in Kathmandu Valley, Nepal. The Sinuosity Index was used to analyze variation in river courses and instability from 1996 to 2023. Built-up change analysis is carried out using supervised maximum likelihood classification method and rate of change is calculated for built-up area growth (2003–2023) and building construction between 2003 and 2021. Flood hazard risk manning was carried out using flood frequency estimation method integrating HEC-GeoRAS modeling. Linear regression and spatial overlay analysis was carried out to examine the interrelationship between river morphology, urban growth, and fold hazed risk. In recent years (2016–2023), the Manohara River has straightened, particularly after 2011. Before 2011, it had significant meandering with pronounced curves and bends, indicating a mature river system. However, the SI value of 1.45 in 2023 and 1.80 in 2003 indicates a significant straightening of high meandering over 20 years. A flood hazard modeling carried out within the active floodplain of the Manohara River shows that 26.4% of the area is under high flood risk and 21% is under moderate risk. Similarly, over 10 years from 2006 to 2016, the rate of built-up change was found to be 9.11, while it was 7.9 between 2011 and 2021. The calculated R2 value of 0.7918 at a significance level of 0.05 (with a p value of 0.0175, and a standard error value of 0.07877) indicates a strong positive relationship between decreasing sinuosity and increasing built-up, which demonstrates the effect of built-up expansion on river morphology, particularly the anthropogenic activities of encroachment and haphazard constructions, mining, dumping wastes, and squatter settlements along the active floodplain, causing instability on the river course and hence, lateral shift. The riverbank and active floodplain are not defined scientifically, which leads to the invasion of the river area. These activities, together with land use alteration in the floodplain, show an increased risk of flood hazards and other natural calamities. Therefore, sustainable protection measures must be prioritized in the active floodplain and flood risk areas, taking into account upstream–downstream linkages and chain effects caused by interaction between natural and adverse anthropogenic activities. Full article
Show Figures

Figure 1

16 pages, 2576 KB  
Article
Modeling and Spatiotemporal Analysis of Actual Evapotranspiration in a Desert Steppe Based on SEBS
by Yanlin Feng, Lixia Wang, Chunwei Liu, Baozhong Zhang, Jun Wang, Pei Zhang and Ranghui Wang
Hydrology 2025, 12(8), 205; https://doi.org/10.3390/hydrology12080205 - 6 Aug 2025
Viewed by 543
Abstract
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based [...] Read more.
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based validation that significantly enhances spatiotemporal ET accuracy in the vulnerable desert steppe ecosystems. The study utilized meteorological data from several national stations and Landsat-8 imagery to process monthly remote sensing images in 2019. The Surface Energy Balance System (SEBS) model, chosen for its ability to estimate ET over large areas, was applied to derive modeled daily ET values, which were validated by a large-weighted lysimeter. It was shown that ET varied seasonally, peaking in July at 6.40 mm/day, and reaching a minimum value in winter with 1.83 mm/day in December. ET was significantly higher in southern regions compared to central and northern areas. SEBS-derived ET showed strong agreement with lysimeter measurements, with a mean relative error of 4.30%, which also consistently outperformed MOD16A2 ET products in accuracy. This spatial heterogeneity was driven by greater vegetation coverage and enhanced precipitation in the southeast. The steppe ET showed a strong positive correlation with surface temperatures and vegetation density. Moreover, the precipitation gradients and land use were primary controllers of spatial ET patterns. The process-based SEBS frameworks demonstrate dual functionality as resource-optimized computational platforms while enabling multi-scale quantification of ET spatiotemporal heterogeneity; it was therefore a reliable tool for ecohydrological assessments in an arid steppe, providing critical insights for water resource management and drought monitoring. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

18 pages, 3315 KB  
Article
Real-Time Geo-Localization for Land Vehicles Using LIV-SLAM and Referenced Satellite Imagery
by Yating Yao, Jing Dong, Songlai Han, Haiqiao Liu, Quanfu Hu and Zhikang Chen
Appl. Sci. 2025, 15(15), 8257; https://doi.org/10.3390/app15158257 - 24 Jul 2025
Viewed by 492
Abstract
Existing Simultaneous Localization and Mapping (SLAM) algorithms provide precise local pose estimation and real-time scene reconstruction, widely applied in autonomous navigation for land vehicles. However, the odometry of SLAM algorithms exhibits localization drift and error divergence over long-distance operations due to the lack [...] Read more.
Existing Simultaneous Localization and Mapping (SLAM) algorithms provide precise local pose estimation and real-time scene reconstruction, widely applied in autonomous navigation for land vehicles. However, the odometry of SLAM algorithms exhibits localization drift and error divergence over long-distance operations due to the lack of inherent global constraints. In this paper, we propose a real-time geo-localization method for land vehicles, which only relies on a LiDAR-inertial-visual SLAM (LIV-SLAM) and a referenced image. The proposed method enables long-distance navigation without requiring GPS or loop closure, while eliminating accumulated localization errors. To achieve this, the local map constructed by SLAM is real-timely projected onto a downward-view image, and a highly efficient cross modal matching algorithm is proposed to estimate the global position by aligning the projected local image to a geo-referenced satellite image. The cross-modal algorithm leverages dense texture orientation features, ensuring robustness against cross-modal distortion and local scene changes, and supports efficient correlation in the frequency domain for real-time performance. We also propose a novel adaptive Kalman filter (AKF) to integrate the global position provided by the cross-modal matching and the pose estimated by LIV-SLAM. The proposed AKF is designed to effectively handle observation delays and asynchronous updates while simultaneously rejecting the impact of erroneous matches through an Observation-Aware Gain Scaling (OAGS) mechanism. We verify the proposed algorithm through R3LIVE and NCLT datasets, demonstrating superior computational efficiency, reliability, and accuracy compared to existing methods. Full article
(This article belongs to the Special Issue Navigation and Positioning Based on Multi-Sensor Fusion Technology)
Show Figures

Figure 1

25 pages, 4470 KB  
Article
A Multidimensional Parameter Dynamic Evolution-Based Airdrop Target Prediction Method Driven by Multiple Models
by Xuesong Wang, Jiapeng Yin, Jianbing Li and Yongzhen Li
Remote Sens. 2025, 17(14), 2476; https://doi.org/10.3390/rs17142476 - 16 Jul 2025
Viewed by 557
Abstract
With the wide application of airdrop technology in rescue activities in civil and aerospace fields, the importance of accurate airdrop is increasing. This work comprehensively analyzes the interactive mechanisms among multiple models affecting airdrops, including wind field distribution, drag force effect, and the [...] Read more.
With the wide application of airdrop technology in rescue activities in civil and aerospace fields, the importance of accurate airdrop is increasing. This work comprehensively analyzes the interactive mechanisms among multiple models affecting airdrops, including wind field distribution, drag force effect, and the parachute opening process. By integrating key parameters across various dimensions of these models, a multidimensional parameter dynamic evolution (MPDE) target prediction method for aerial delivery parachutes in radar-detected wind fields is proposed, and the Runge–Kutta method is applied to dynamically solve for the final landing point of the target. In order to verify the performance of the method, this work carries out field airdrop experiments based on the radar-measured meteorological data. To evaluate the impact of model input errors on prediction methods, this work analyzes the influence mechanism of the wind field detection error on the airdrop prediction method via the Relative Gain Array (RGA) and verifies the analytical results using the numerical simulation method. The experimental results indicate that the optimized MPDE method exhibits higher accuracy than the widely used linear airdrop target prediction method, with the accuracy improved by 52.03%. Additionally, under wind field detection errors, the linear prediction method demonstrates stronger robustness. The airdrop error shows a trigonometric relationship with the angle between the synthetic wind direction and the heading, and the phase of the function will shift according to the difference in errors. The sensitivity of the MPDE method to wind field errors is positively correlated with the size of its object parachute area. Full article
Show Figures

Figure 1

22 pages, 3682 KB  
Article
Prediction of Urban Construction Land Carbon Effects (UCLCE) Using BP Neural Network Model: A Case Study of Changxing, Zhejiang Province, China
by Qinghua Liao, Xiaoping Zhang, Zixuan Cui and Xunxi Yin
Buildings 2025, 15(13), 2312; https://doi.org/10.3390/buildings15132312 - 1 Jul 2025
Cited by 1 | Viewed by 487
Abstract
Against the backdrop of the intensifying global climate crisis, urban construction land (UCL), as a major source of carbon emissions, faces the severe challenge of balancing emissions reduction and development in its low-carbon transformation. This study is dedicated to filling the theoretical and [...] Read more.
Against the backdrop of the intensifying global climate crisis, urban construction land (UCL), as a major source of carbon emissions, faces the severe challenge of balancing emissions reduction and development in its low-carbon transformation. This study is dedicated to filling the theoretical and methodological gap in the refined assessment of urban construction land carbon effects (UCLCE) spatial heterogeneity among regions, and proposes and validates an innovative block-scale prediction framework. To achieve this goal, this study takes the central urban area of Changxing, Zhejiang Province, as the study area and establishes a BP neural network model for predicting UCLCE based on multi-source data such as building energy consumption and built environment elements (BEF). The results demonstrate that the BP neural network model effectively predicts the different types of UCLCE, with an average error rate of 30.10%. (1) The total effect and intensity effect exhibit different trends in the study area, and a carbon effect table for different types of UCL is established. (2) The spatial distribution characteristics of UCLCE reveal a distinct reverse-L pattern (“┙”-shaped layout) with positive spatial correlation (Moran’s I = 0.11, p < 0.001). (3) The model’s core practical value lies in enabling forward-looking assessment of carbon effects in urban planning schemes and precise quantification of emissions reduction benefits. Optimization trials on representative blocks achieve up to 25.45% carbon reduction. This study provides theoretical foundations for understanding UCLCE spatial heterogeneity while delivering scientifically grounded tools for diagnosing built environment issues and advancing low-carbon optimization in urban renewal contexts. These contributions carry significant theoretical and practical implications. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 5555 KB  
Article
A Signal Processing-Guided Deep Learning Framework for Wind Shear Prediction on Airport Runways
by Afaq Khattak, Pak-wai Chan, Feng Chen, Hashem Alyami and Masoud Alajmi
Atmosphere 2025, 16(7), 802; https://doi.org/10.3390/atmos16070802 - 1 Jul 2025
Viewed by 756
Abstract
Wind shear at the Hong Kong International Airport (HKIA) poses a significant safety risk due to terrain-induced airflow disruptions near the runways. Accurate assessment is essential for safeguarding aircraft during take-off and landing, as abrupt changes in wind speed or direction can compromise [...] Read more.
Wind shear at the Hong Kong International Airport (HKIA) poses a significant safety risk due to terrain-induced airflow disruptions near the runways. Accurate assessment is essential for safeguarding aircraft during take-off and landing, as abrupt changes in wind speed or direction can compromise flight stability. This study introduces a hybrid framework for short-term wind shear prediction based on data collected from Doppler LiDAR systems positioned near the central and south runways of the HKIA. These systems provide high-resolution measurements of wind shear magnitude along critical flight paths. To predict wind shear more effectively, the proposed framework integrates a signal processing technique with a deep learning strategy. It begins with optimized variational mode decomposition (OVMD), which decomposes the wind shear time series into intrinsic mode functions (IMFs), each capturing distinct temporal characteristics. These IMFs are then modeled using bidirectional gated recurrent units (BiGRU), with hyperparameters optimized via the Tree-structured Parzen Estimator (TPE). To further enhance prediction accuracy, residual errors are corrected using Extreme Gradient Boosting (XGBoost), which captures discrepancies between the reconstructed signal and actual observations. The resulting OVMD–BiGRU–XGBoost framework exhibits strong predictive performance on testing data, achieving R2 values of 0.729 and 0.926, RMSE values of 0.931 and 0.709, and MAE values of 0.624 and 0.521 for the central and south runways, respectively. Compared with GRUs, LSTM, BiLSTM, and ResNet-based baselines, the proposed framework achieves higher accuracy and a more effective representation of multi-scale temporal dynamics. It contributes to improving short-term wind shear prediction and supports operational planning and safety management in airport environments. Full article
(This article belongs to the Special Issue Aviation Meteorology: Developments and Latest Achievements)
Show Figures

Figure 1

16 pages, 3382 KB  
Article
An Evaluation of Static Affordable Smartphone Positioning Performance Leveraging GPS/Galileo Measurements with Instantaneous CNES and Final IGS Products
by Mohamed Abdelazeem, Hussain A. Kamal, Amgad Abazeed and Amr M. Wahaballa
Geomatics 2025, 5(3), 28; https://doi.org/10.3390/geomatics5030028 - 27 Jun 2025
Viewed by 646
Abstract
This research examines the performance of the affordable Xiaomi 11T smartphone in static positioning mode. Static Global Navigation Satellite System (GNSS) measurements are acquired over a two-hour period with a known reference point, spanning three consecutive days. The acquired data are processed, employing [...] Read more.
This research examines the performance of the affordable Xiaomi 11T smartphone in static positioning mode. Static Global Navigation Satellite System (GNSS) measurements are acquired over a two-hour period with a known reference point, spanning three consecutive days. The acquired data are processed, employing both real-time and post-processing Precise Point Positioning (PPP) solutions using GPS-only, Galileo-only, and the combined GPS/Galileo datasets. To correct the satellite and clock errors, the instantaneous Centre National d’Études Spatiales (CNES), the final Le Groupe de Recherche de Géodésie Spatiale (GRG), GeoForschungsZentrum (GFZ), and Wuhan University (WUM) products were applied. The results demonstrate that sub-30 cm positioning accuracy is achieved in the horizontal direction using real-time and final products. Additionally, sub-50 cm positioning accuracy is attained in the vertical direction for the real-time and post-processed solutions. Furthermore, the real-time products achieved three-dimensional (3D) position accuracies of 40 cm, 29 cm, and 20 cm using GPS-only, Galileo-only, and the combined GPS/Galileo observations, respectively. The final products achieved 3D position accuracies of 24 cm, 26 cm, and 28 cm using GPS-only, Galileo-only, and the combined GPS/Galileo measurements, respectively. The attained positioning accuracy can be used in some land use and urban planning applications. Full article
Show Figures

Figure 1

16 pages, 1058 KB  
Article
Multi-Scale Context Enhancement Network with Local–Global Synergy Modeling Strategy for Semantic Segmentation on Remote Sensing Images
by Qibing Ma, Hongning Liu, Yifan Jin and Xinyue Liu
Electronics 2025, 14(13), 2526; https://doi.org/10.3390/electronics14132526 - 21 Jun 2025
Cited by 1 | Viewed by 474
Abstract
Semantic segmentation of remote sensing images is a fundamental task in geospatial analysis and Earth observation research, and has a wide range of applications in urban planning, land cover classification, and ecological monitoring. In complex geographic scenes, low target-background discriminability in overhead views [...] Read more.
Semantic segmentation of remote sensing images is a fundamental task in geospatial analysis and Earth observation research, and has a wide range of applications in urban planning, land cover classification, and ecological monitoring. In complex geographic scenes, low target-background discriminability in overhead views (e.g., indistinct boundaries, ambiguous textures, and low contrast) significantly complicates local–global information modeling and results in blurred boundaries and classification errors in model predictions. To address this issue, in this paper, we proposed a novel Multi-Scale Local–Global Mamba Feature Pyramid Network (MLMFPN) through designing a local–global information synergy modeling strategy, and guided and enhanced the cross-scale contextual information interaction in the feature fusion process to obtain quality semantic features to be used as cues for precise semantic reasoning. The proposed MLMFPN comprises two core components: Local–Global Align Mamba Fusion (LGAMF) and Context-Aware Cross-attention Interaction Module (CCIM). Specifically, LGAMF designs a local-enhanced global information modeling through asymmetric convolution for synergistic modeling of the receptive fields in vertical and horizontal directions, and further introduces the Vision Mamba structure to facilitate local–global information fusion. CCIM introduces positional encoding and cross-attention mechanisms to enrich the global-spatial semantics representation during multi-scale context information interaction, thereby achieving refined segmentation. The proposed methods are evaluated on the ISPRS Potsdam and Vaihingen datasets and the outperformance in the results verifies the effectiveness of the proposed method. Full article
Show Figures

Figure 1

35 pages, 4434 KB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 843
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

26 pages, 3807 KB  
Article
Evaluation of IMERG Precipitation Product Downscaling Using Nine Machine Learning Algorithms in the Qinghai Lake Basin
by Ke Lei, Lele Zhang and Liming Gao
Water 2025, 17(12), 1776; https://doi.org/10.3390/w17121776 - 13 Jun 2025
Viewed by 845
Abstract
High-quality precipitation data are vital for hydrological research. In regions with sparse observation stations, reliable gridded data cannot be obtained through interpolation, while the coarse resolution of satellite products fails to meet the demands of small watershed studies. Downscaling satellite-based precipitation products offers [...] Read more.
High-quality precipitation data are vital for hydrological research. In regions with sparse observation stations, reliable gridded data cannot be obtained through interpolation, while the coarse resolution of satellite products fails to meet the demands of small watershed studies. Downscaling satellite-based precipitation products offers an effective solution for generating high-resolution data in such areas. Among these techniques, machine learning plays a pivotal role, with performance varying according to surface conditions and algorithmic mechanisms. Using the Qinghai Lake Basin as a case study and rain gauge observations as reference data, this research conducted a systematic comparative evaluation of nine machine learning algorithms (ANN, CLSTM, GAN, KNN, MSRLapN, RF, SVM, Transformer, and XGBoost) for downscaling IMERG precipitation products from 0.1° to 0.01° resolution. The primary objective was to identify the optimal downscaling method for the Qinghai Lake Basin by assessing spatial accuracy, seasonal performance, and residual sensitivity. Seven metrics were employed for assessment: correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), standard deviation ratio (Sigma Ratio), Kling-Gupta Efficiency (KGE), and bias. On the annual scale, KNN delivered the best overall results (KGE = 0.70, RMSE = 17.09 mm, Bias = −3.31 mm), followed by Transformer (KGE = 0.69, RMSE = 17.20 mm, Bias = −3.24 mm). During the cold season, KNN and ANN both performed well (KGE = 0.63; RMSE = 5.97 mm and 6.09 mm; Bias = −1.76 mm and −1.75 mm), with SVM ranking next (KGE = 0.63, RMSE = 6.11 mm, Bias = −1.63 mm). In the warm season, Transformer yielded the best results (KGE = 0.74, RMSE = 23.35 mm, Bias = −1.03 mm), followed closely by ANN and KNN (KGE = 0.74; RMSE = 23.38 mm and 23.57 mm; Bias = −1.08 mm and −1.03 mm, respectively). GAN consistently underperformed across all temporal scales, with annual, cold-season, and warm-season KGE values of 0.61, 0.43, and 0.68, respectively—worse than the original 0.1° IMERG product. Considering the ability to represent spatial precipitation gradients, KNN emerged as the most suitable method for IMERG downscaling in the Qinghai Lake Basin. Residual analysis revealed error concentrations along the lakeshore, and model performance declined when residuals exceeded specific thresholds—highlighting the need to account for model-specific sensitivity during correction. SHAP analysis based on ANN, KNN, SVM, and Transformer identified NDVI (0.218), longitude (0.214), and latitude (0.208) as the three most influential predictors. While longitude and latitude affect vapor transport by representing land–sea positioning, NDVI is heavily influenced by anthropogenic activities and sandy surfaces in lakeshore regions, thus limiting prediction accuracy in these areas. This work delivers a high-resolution (0.01°) precipitation dataset for the Qinghai Lake Basin and provides a practical basis for selecting suitable downscaling methods in similar environments. Full article
Show Figures

Figure 1

18 pages, 4518 KB  
Article
Design of a Land Area Measuring Instrument Based on an STM32 and a BeiDou Positioning Chip
by Xinju Wu, Bo Ni and Guohuan Hua
Electronics 2025, 14(12), 2394; https://doi.org/10.3390/electronics14122394 - 11 Jun 2025
Viewed by 576
Abstract
This paper presents a land area measuring instrument based on an STM32 microcontroller (STMicroelectronics, Paris, France) and a BeiDou positioning chip (Zhongke Microelectronics, Hangzhou, China). The system employs BeiDou navigation as the core positioning, leveraging its unique three-track satellite cooperative networking and BDSBAS [...] Read more.
This paper presents a land area measuring instrument based on an STM32 microcontroller (STMicroelectronics, Paris, France) and a BeiDou positioning chip (Zhongke Microelectronics, Hangzhou, China). The system employs BeiDou navigation as the core positioning, leveraging its unique three-track satellite cooperative networking and BDSBAS satellite-based enhancement technology as the physical layer guarantee mechanism to maintain high-precision positioning in the weak signal area of the Asia–Pacific region. At the same time, this design integrates the FreeRTOS real-time operating system to implement a dynamic memory management strategy. By adopting the linear incremental memory allocation mechanism coupled with the emergency Kalman prediction algorithm, the software layer establishes a memory buffering and fault-tolerant processing framework. Test results demonstrate a relative error below 1% in open terrains, while errors remain below 2.72% under weak signal conditions and in complex terrain environments. Full article
Show Figures

Figure 1

Back to TopTop