A Multidimensional Parameter Dynamic Evolution-Based Airdrop Target Prediction Method Driven by Multiple Models
Abstract
1. Introduction
2. Linear Airdrop Prediction Methods
2.1. Introduction to the Methodological Model
2.2. Analysis of Methodological Models
3. Multidimensional Parameter Dynamic Evolution Prediction Method
3.1. DBS Radar Wind Field Inversion Method
3.2. Analysis of Drag Force Model of Object Parachute System
3.3. Parachute Opening Model Analysis
3.4. Parachute System Motion Modeling Analysis
3.5. Runge–Kutta Method
4. The Impact of Model Input Errors on Airdrop Prediction Methods
4.1. RGA Theory
4.1.1. RGA Analysis of Linear Model
4.1.2. RGA Analysis of Multidimensional Parameter Air Drop Prediction
4.1.3. Conclusion of the RGA Analysis
4.2. Error Analysis Simulation Verification
4.2.1. Validation of Wind Field Error Impact Mechanism
4.2.2. Simulation Validation of Model Performance Under Wind Field Detection Error
5. Method Model Performance Validation
5.1. Experimental Procedure
5.2. Analysis of Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, C.X.; Yang, H. Neural Network-based Simulation and Prediction of Precise Airdrop Trajectory Planning. Aerosp. Sci. Technol. 2022, 120, 107302. [Google Scholar] [CrossRef]
- Beijing University of Aeronautics and Astronautics. An Autonomous Homing Control Method for Precision Airdrop System Based on Model Predictive Control. Patent No.: CN202311177238.7, 20 October 2023. [Google Scholar]
- Nanfang College of Sun Yat-sen University. A Wireless Monitoring Node Delivery System for Environmental Events. Patent No.: CN202020471312.1, 8 January 2021. [Google Scholar]
- Cacan, M.R.; Costello, M.; Ward, M.; Scheuermann, E.; Shurtliff, M. Human-in-the-Loop Control of Guided Airdrop Systems. Aerospace Sci. Technol. 2019, 84, 1141–1149. [Google Scholar] [CrossRef]
- Li, G.; Cao, Y.; Wang, M. Modeling and Analysis of a Generic Internal Cargo Airdrop System for a Tandem Helicopter. Appl. Sci. 2021, 11, 5109. [Google Scholar] [CrossRef]
- Xu, R.; Chen, C.; Lu, S.; Li, Z. Autonomous Recovery from Spacecraft Plan Failures by Regulatory Repair While Retaining Operability. Aerospace 2022, 9, 40. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.T. Precision Airdrop Systems in Europe and America. Ordnance Ind. Autom. 2007, 26, 7–8. [Google Scholar] [CrossRef]
- Sun, Q.L.; Yang, J.S.; Sun, H.; Chen, Z. A Review of Key Technologies for the Autonomous Homing of Parafoil Systems. J. Natl. Univ. Def. Technol. 2024, 46, 1–15. [Google Scholar]
- Long, J. Design of Precision Airdrop Control Device for UAV Based on STM32. Electron. Technol. Softw. Eng. 2019, 2, 83. [Google Scholar]
- Wang, S.N.; Chen, F. Research on Stable Control of Precise Bomb—Throwing for Individual—Soldier UAVs in Complex Terrain. J. Ordnance Equip. Eng. 2020, 41, 25–30. [Google Scholar]
- Liu, Z.C. Dynamic Modeling and Homing Research of Small Ram-Air Parachute; National University of Defense Technology: Hunan, China, 2013. [Google Scholar] [CrossRef]
- Cao, Y.; Nie, W.; Lian, X. Dynamic Modeling of a Transport Helicopter for Internal Cargo Airdrop. Int. J. Aerosp. Eng. 2024, 2024, 9183728. [Google Scholar] [CrossRef]
- Yang, M.S. Flight Dynamics Modeling and Simulation for Transport Airdrop. Master’s Thesis, Beijing University of Aeronautics and Astronautics, Beijing, China, 2010. [Google Scholar]
- Wang, Y.; Wang, G.; Sun, Y.; Gu, L.; Zhang, J. Airdrop dynamics modeling and simulation based on reduced multibody system transfer matrix method. Aerosp. Sci. Technol. 2025, 158, 109914. [Google Scholar] [CrossRef]
- Ward, M.; Cacan, M.; Scheuermann, E.; Costello, M. Use of Ground—Based Wind Measurements for Improved Guided Airdrop Accuracy; American Institute of Aeronautics and Astronautics (AIAA): Daytona Beach, FL, USA, 2015; pp. 845–862. [Google Scholar]
- Xu, X.; Qi, M.; Liu, S.; Sun, L. Research on the Airdrop Trajectory of Ram-Type Rapid Airdrop Airbag. Packag. Eng. 2015, 36, 35–38. [Google Scholar]
- Wang, Y.F.; Xue, Y.C.; Li, Q. Comparative Analysis of Wind Measurement by Balloon Trajectory Method and Wind Profiler Radar. Meteorol. Hydrol. Mar. Instrum. 2007, 3, 30–34. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Yang, J.; Meng, J. Comparison of Wind Field Data Measured by Satellite Scatterometers and Sea Surface Platforms. J. Mar. Sci. 2013, 31, 45–51. [Google Scholar]
- Yin, X.B.; Wang, Z.Z.; Liu, J.Y.; Jiang, J.S. A New Scheme for Eliminating the Remote Sensing Ambiguity of Co-/Counter-Wind Directions in Fully Polarimetric Microwave Radiometers—Algorithm Research. J. Remote Sens. 2009, 13, 42–48. [Google Scholar]
- Ma, Y.; Faizal, M.; Ishak, M.R.; Rahim, S.A.; Mustapha, M. Structural Fault Diagnosis of UAV Based on Convolutional Neural Network and Data Processing Technology. Nondestruct. Test. Eval. 2024, 39, 426–445. [Google Scholar] [CrossRef]
- Abari, C.F.; Chu, X.; Hardesty, R.M.; Mann, J. A Reconfigurable All-Fiber Polarization-Diversity Coherent Doppler Lidar: Principles and Numerical Simulations. Appl. Opt. 2015, 54, 8999–9009. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.Z. Simulation on Flight Dynamics and Control of Parafoil Airdrop Systems; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2017. [Google Scholar]
- Wang, J.Z.; Chen, H.L. Research on Parachute Airdrop Based on Runge—Kutta Algorithm. Mod. Electron. Technol. 2010, 33, 124–126, 130. [Google Scholar]
- Ma, M.; Yang, R.; Rao, W.; Huang, Z. Research on the Optimization of the Starting Point Control for the Towed Airdrop Planning of Transport Aircraft. Comput. Simul. 2015, 32, 126–130. [Google Scholar]
- Li, W.; Huang, Z.; Zhou, Q.; Hao, H. Modeling and Simulation of Fixed—Point Delivery of Military Equipment under Complex Conditions. Ordnance Ind. Autom. 2011, 30, 41–44. [Google Scholar]
- Wei, L.; Zhang, D.; Zhang, R.; Zheng, S.; Lai, Y.; Fu, Y.; Hu, W.; Lv, Y. Research and Analysis on the Distribution Characteristics of the Atmospheric Wind Field in Jiuquan Area. Intensity Environ. 2023, 50, 57–63. [Google Scholar] [CrossRef]
- Tang, J.H. Simulation Calculation of the Dynamics of Vehicle—Mounted Gun Airdrop System; Nanjing University of Science and Technology: Nanjing, China, 2016. [Google Scholar] [CrossRef]
- Jing, Z.W.; Hou, Z.T.; Guo, Z.D. Flight Loads Design Technique for Flexible Aircraft Airdrop. Acta Aeronaut. Astronaut. Sin. 2014, 3511, 3037–3045. [Google Scholar]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 4th ed.; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Da, D.A.; Yang, Y.T.; Tu, J.H. Research on the Characteristics of the Planetary and Interplanetary Atmospheric Environment in the Solar System. J. Astronaut. 2006, 27, 1306–1313. [Google Scholar] [CrossRef]
- Wang, G.; Tan, K.; Cao, C. Sedimentation Law and Drag Coefficient Model of Cuttings Particles with Different Shapes. Drill. Fluid Complet. Fluid 2022, 39, 707–713. [Google Scholar]
- Wang, C.L. Calculation Model and Analysis of Parachute Deployment Dynamic Load in Rocket Sled Test. J. Syst. Simul. 2018, 30, 4574–4579. [Google Scholar]
- Chen, C.; Guo, Q.L. A Numerical Model of Parachute Inflation and Deployment Based on the Arbitrary Lagrangian–Eulerian Method. Sci. Technol. Eng. 2021, 21, 801–807. [Google Scholar]
- Liu, X. Simulation Research on the Deployment Process of Parafoil Based on Fluid-Structure Interaction Method; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2019. [Google Scholar]
- Knacke, T.W. Parachute Recovery Systems Design Manual; Para Publishing: China Lake, CA, USA, 1992. [Google Scholar]
- Guo, P. Research on the Deployment Process of Large—Scale Parachutes; National University of Defense Technology: Changsha, China, 2012. [Google Scholar]
- Gao, X.G. Introduction to Aviation Military Aircraft; Northwestern Polytechnical University Press: Xi’an, China, 2002. [Google Scholar]
- Zhang, P.X.; Cao, Y.J.; Wang, H.F.; Cheng, S.J. Application of Relative Gain Array Method in Interaction Analysis of Multivariable Controllers for Flexible AC Transmission Systems. Proc. CSEE 2004, 24, 13–17. [Google Scholar] [CrossRef]
- Zhao, W.K.; Shan, Y.L.; Zhao, S.J. Research Progress of Low-Level Wind Shear Detection by Laser Radar. Meteorol. Hydrol. Mar. Instrum. 2020, 37, 97–100. [Google Scholar]
- Xueyan, X.; Buxi, L. Research on the Influence of Different Dependent Variable Selections on the Coefficient of Determination R2. J. Taiyuan Univ. Sci. Technol. 2007, 28, 3–8. [Google Scholar]
- Sui, R.; Wang, J.; Sun, G.; Xu, Z.; Feng, D. A Dual-Polarimetric High Range Resolution Profile Modulation Method Based on Time-Modulated APCM. IEEE Trans. Antennas Propag. 2025, 17, 1007–1017. [Google Scholar] [CrossRef]
- Wang, J.; Quan, S.; Xing, S.; Li, Y.; Wu, H.; Meng, W. PSO—Based fine polarimetric decomposition for ship scattering characterization. ISPRS J. Photogramm. Remote Sens. 2025, 220, 18–31. [Google Scholar] [CrossRef]
Height(m) | 1000 | 900 | 800 | 700 | 600 | 500 | 400 | 300 | 200 | 100 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Data | Day1 | Wind speed (m/s) | \ | \ | \ | \ | 8.6 | 8.7 | 6.6 | 8.2 | 4.2 | 6 |
Wind direction (°) | \ | \ | \ | \ | 294 | 295 | 295 | 297 | 299 | 281 | ||
Day2 | Wind speed (m/s) | \ | \ | \ | 2.5 | 2.6 | 1.6 | 10.2 | 15.1 | 10.7 | 6.2 | |
Wind direction (°) | \ | \ | \ | 193 | 139 | 141 | 133 | 129 | 129 | 129 |
Group | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Day1 Straight-line Improvement | 87.84% | 8.50% | 75.39% | 49.41% | 48.07% | 11.02% |
Day2 Straight-line Improvement | 88.11% | 75.14% | 45.54% | 56.62% | 66.68% | 70.97% |
Day1 Left–right Improvement | 7.928 | 9.071 | 4.125 | 2.161 | 3.583 | 0.028 |
Day2 Left–right Improvement | 7.9 | 32.889 | 1.963 | 2.253 | 4.692 | 5.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yin, J.; Li, J.; Li, Y. A Multidimensional Parameter Dynamic Evolution-Based Airdrop Target Prediction Method Driven by Multiple Models. Remote Sens. 2025, 17, 2476. https://doi.org/10.3390/rs17142476
Wang X, Yin J, Li J, Li Y. A Multidimensional Parameter Dynamic Evolution-Based Airdrop Target Prediction Method Driven by Multiple Models. Remote Sensing. 2025; 17(14):2476. https://doi.org/10.3390/rs17142476
Chicago/Turabian StyleWang, Xuesong, Jiapeng Yin, Jianbing Li, and Yongzhen Li. 2025. "A Multidimensional Parameter Dynamic Evolution-Based Airdrop Target Prediction Method Driven by Multiple Models" Remote Sensing 17, no. 14: 2476. https://doi.org/10.3390/rs17142476
APA StyleWang, X., Yin, J., Li, J., & Li, Y. (2025). A Multidimensional Parameter Dynamic Evolution-Based Airdrop Target Prediction Method Driven by Multiple Models. Remote Sensing, 17(14), 2476. https://doi.org/10.3390/rs17142476