Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,328)

Search Parameters:
Keywords = land use/cover prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9605 KiB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 (registering DOI) - 28 Jul 2025
Viewed by 310
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

27 pages, 42290 KiB  
Article
Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
by Rui Li, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding and Xinyue Zhang
Remote Sens. 2025, 17(15), 2608; https://doi.org/10.3390/rs17152608 - 27 Jul 2025
Viewed by 292
Abstract
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes [...] Read more.
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes in land cover and their effects on carbon stocks from 2000 to 2035. A carbon stocks assessment framework was developed using a cellular automaton-based artificial neural network model (CA-ANN), the InVEST model, and the geographical detector model to predict future land cover changes and identify the primary drivers of variations in carbon stocks. The results indicate that (1) from 2000 to 2020, impervious surfaces expanded significantly, increasing by 199.73 km2. Compared to 2020, impervious surfaces are projected to increase by 1.06 km2, 13.54 km2, and 34.97 km2 in 2025, 2030, and 2035, respectively, leading to further reductions in grassland and forest areas. (2) Over time, carbon stocks in Guiyang exhibited a general decreasing trend; spatially, carbon stocks were higher in the western and northern regions and lower in the central and southern regions. (3) The level of greenness, measured by the normalized vegetation index (NDVI), significantly influenced the spatial variation of carbon stocks in Guiyang. Changes in carbon stocks resulted from the combined effects of multiple factors, with the annual average temperature and NDVI being the most influential. These findings provide a scientific basis for advancing low-carbon development and constructing an ecological civilization in Guiyang. Full article
(This article belongs to the Special Issue Smart Monitoring of Urban Environment Using Remote Sensing)
Show Figures

Figure 1

23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 326
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

26 pages, 11237 KiB  
Article
Reclassification Scheme for Image Analysis in GRASS GIS Using Gradient Boosting Algorithm: A Case of Djibouti, East Africa
by Polina Lemenkova
J. Imaging 2025, 11(8), 249; https://doi.org/10.3390/jimaging11080249 - 23 Jul 2025
Viewed by 423
Abstract
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping [...] Read more.
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping of environmental dynamics enables us to define factors that trigger these processes and are crucial for our understanding of Earth system processes. In this study, a reclassification scheme of image analysis was developed for mapping the adjusted categorisation of land cover types using multispectral remote sensing datasets and Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) software. The data included four Landsat 8–9 satellite images on 2015, 2019, 2021 and 2023. The sequence of time series was used to determine land cover dynamics. The classification scheme consisting of 17 initial land cover classes was employed by logical workflow to extract 10 key land cover types of the coastal areas of Bab-el-Mandeb Strait, southern Red Sea. Special attention is placed to identify changes in the land categories regarding the thermal saline lake, Lake Assal, with fluctuating salinity and water levels. The methodology included the use of machine learning (ML) image analysis GRASS GIS modules ‘r.reclass’ for the reclassification of a raster map based on category values. Other modules included ‘r.random’, ‘r.learn.train’ and ‘r.learn.predict’ for gradient boosting ML classifier and ‘i.cluster’ and ‘i.maxlik’ for clustering and maximum-likelihood discriminant analysis. To reveal changes in the land cover categories around the Lake of Assal, this study uses ML and reclassification methods for image analysis. Auxiliary modules included ‘i.group’, ‘r.import’ and other GRASS GIS scripting techniques applied to Landsat image processing and for the identification of land cover variables. The results of image processing demonstrated annual fluctuations in the landscapes around the saline lake and changes in semi-arid and desert land cover types over Djibouti. The increase in the extent of semi-desert areas and the decrease in natural vegetation proved the processes of desertification of the arid environment in Djibouti caused by climate effects. The developed land cover maps provided information for assessing spatial–temporal changes in Djibouti. The proposed ML-based methodology using GRASS GIS can be employed for integrating techniques of image analysis for land management in other arid regions of Africa. Full article
(This article belongs to the Special Issue Self-Supervised Learning for Image Processing and Analysis)
Show Figures

Figure 1

18 pages, 7515 KiB  
Article
Ecological Stability over the Period: Land-Use Land-Cover Change and Prediction for 2030
by Mária Tárníková and Zlatica Muchová
Land 2025, 14(7), 1503; https://doi.org/10.3390/land14071503 - 21 Jul 2025
Viewed by 261
Abstract
This study aimed to investigate land-use and land-cover change and the associated change in the ecological stability of the model area Dobrá–Opatová (district of Trenčín, Slovakia), where increasing landscape transformation has raised concerns about declining ecological resilience. Despite the importance of sustainable land [...] Read more.
This study aimed to investigate land-use and land-cover change and the associated change in the ecological stability of the model area Dobrá–Opatová (district of Trenčín, Slovakia), where increasing landscape transformation has raised concerns about declining ecological resilience. Despite the importance of sustainable land management, few studies in this region have addressed long-term landscape dynamics in relation to ecological stability. This research fills that gap by evaluating historical and recent LULC changes and their ecological consequences. Four time horizons were analysed: 1850, 1949, 2009, and 2024. Although the selected time periods are irregular, they reflect key milestones in the region’s land development, such as pre-industrial land use, post-war collectivisation, and recent land consolidation. These activities significantly altered the structure of the landscape. To assess future trends, we used the MOLUSCE plug-in in QGIS to simulate ecological stability for the future. The greatest structural landscape changes occurred between 1850 and 1949. Significant transformation in agricultural areas was observed between 1949 and 2009, when collectivisation reshaped small plots into large block structures and major water management projects were implemented. The 2009–2024 period was marked by land consolidation, mainly resulting in the construction of gravel roads. These structural changes have contributed to a continuous decrease in ecological stability, calculated using the coefficient of ecological stability derived from LULC categories. To explore future trends, we simulated ecological stability for the year 2030 and the simulation confirmed a continued decline in ecological stability, highlighting the need for sustainable land-use planning in the area. Full article
Show Figures

Figure 1

24 pages, 5725 KiB  
Article
Modeling of Hydrological Processes in a Coal Mining Subsidence Area with High Groundwater Levels Based on Scenario Simulations
by Shiyuan Zhou, Hao Chen, Qinghe Hou, Haodong Liu and Pingjia Luo
Hydrology 2025, 12(7), 193; https://doi.org/10.3390/hydrology12070193 - 19 Jul 2025
Viewed by 316
Abstract
The Eastern Huang–Huai region of China is a representative mining area with a high groundwater level. High-intensity underground mining activities have not only induced land cover and land use changes (LUCC) but also significantly changed the watershed hydrological behavior. This study integrated the [...] Read more.
The Eastern Huang–Huai region of China is a representative mining area with a high groundwater level. High-intensity underground mining activities have not only induced land cover and land use changes (LUCC) but also significantly changed the watershed hydrological behavior. This study integrated the land use prediction model PLUS and the hydrological simulation model MIKE 21. Taking the Bahe River Watershed in Huaibei City, China, as an example, it simulated the hydrological response trends of the watershed in 2037 under different land use scenarios. The results demonstrate the following: (1) The land use predictions for each scenario exhibit significant variation. In the maximum subsidence scenario, the expansion of water areas is most pronounced. In the planning scenario, the increase in construction land is notable. Across all scenarios, the area of cultivated land decreases. (2) In the maximum subsidence scenario, the area of high-intensity waterlogging is the greatest, accounting for 31.35% of the total area of the watershed; in the planning scenario, the proportion of high-intensity waterlogged is the least, at 19.10%. (3) In the maximum subsidence scenario, owing to the water storage effect of the subsidence depression, the flood peak is conspicuously delayed and attains the maximum value of 192.3 m3/s. In the planning scenario, the land reclamation rate and ecological restoration rate of subsidence area are the highest, while the regional water storage capacity is the lowest. As a result, the total cumulative runoff is the greatest, and the peak flood value is reduced. The influence of different degrees of subsidence on the watershed hydrological behavior varies, and the coal mining subsidence area has the potential to regulate and store runoff and perform hydrological regulation. The results reveal the mechanism through which different land use scenarios influence hydrological processes, which provides a scientific basis for the territorial space planning and sustainable development of coal mining subsidence areas. Full article
Show Figures

Figure 1

19 pages, 4141 KiB  
Article
Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models
by ByeongJun Jung, JuYeong Youn and SangWook Kim
Land 2025, 14(7), 1480; https://doi.org/10.3390/land14071480 - 17 Jul 2025
Viewed by 344
Abstract
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, [...] Read more.
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, it is difficult to collect, so research related to its distribution and restoration is relatively understudied. Therefore, this study predicted the potential habitats of Luciola unmunsana across South Korea using the single model Maximum Entropy (MaxEnt) and a multi-model ensemble model to prepare basic data necessary for a conservation and habitat restoration plan for the species. A total of 39 points of occurrence were built based on public data and prior research from the Jeonbuk Green Environment Support Center (JGESC), the Global Biodiversity Information Facility (GBIF), and the National Institute of Biological Resources (NIBR). Among the input variables, climate variables were based on the shared socioeconomic pathway (SSP) scenario-based ecological climate index, while nonclimate variables were based on topography, land cover maps, and the Enhanced Vegetation Index (EVI). The main findings of this study are summarized below. First, in predicting Luciola unmunsana potential habitats, the EVI, water network analysis, land cover, and annual precipitation (Bio12) were identified as good predictors in both models. Accordingly, areas with high vegetation activity in their forests, adjacent to water resources, and stable humidity were predicted as potential habitats. Second, by overlaying the predicted potential habitats and highly significant variables, we found that areas with high vegetation vigor within their forests, proximity to water systems, and relatively high annual precipitation, which can maintain stable humidity, are potential habitats for Luciola unmunsana. Third, literature surveys used to predict potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollabuk-do, Mudeungsan Mountain, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the occurrence of Luciola unmunsana. This study is significant in that it is the first to develop a regional SDM for Luciola unmunsana, whose population is declining due to urbanization. In addition, by applying various environmental variables that reflect ecological characteristics, it contributes to more accurate predictions of the potential habitats of this species. The predicted results can be used as basic data for the future conservation of Luciola unmunsana and the establishment of habitat restoration strategies. Full article
Show Figures

Figure 1

25 pages, 7406 KiB  
Article
Landslide Susceptibility Level Mapping in Kozhikode, Kerala, Using Machine Learning-Based Random Forest, Remote Sensing, and GIS Techniques
by Pradeep Kumar Badapalli, Anusha Boya Nakkala, Raghu Babu Kottala, Sakram Gugulothu, Fahdah Falah Ben Hasher, Varun Narayan Mishra and Mohamed Zhran
Land 2025, 14(7), 1453; https://doi.org/10.3390/land14071453 - 12 Jul 2025
Viewed by 1063
Abstract
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random [...] Read more.
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random Forest (RF) model integrated with Geographic Information Systems (GIS). A total of 231 historical landslide locations obtained from the Bhukosh portal were used as reference data. Eight predictive factors—Stream Order, Drainage Density, Slope, Aspect, Geology, Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Moisture Stress Index (MSI)—were derived from remote sensing and ancillary datasets, preprocessed, and reclassified for model input. The RF model was trained and validated using a 50:50 split of landslide and non-landslide points, with variable importance values derived to weight each predictive factor of the raster layer in ArcGIS. The resulting Landslide Susceptibility Index (LSI) was reclassified into five susceptibility zones: Very Low, Low, Moderate, High, and Very High. Results indicate that approximately 17.82% of the study area falls under high to very high susceptibility, predominantly in the steep, weathered, and high rainfall zones of the Western Ghats. Validation using Area Under the Curve–Receiver Operating Characteristic (AUC-ROC) analysis yielded an accuracy of 0.890, demonstrating excellent model performance. The output LSM provides valuable spatial insights for planners, disaster managers, and policymakers, enabling targeted mitigation strategies and sustainable land-use planning in landslide-prone regions. Full article
Show Figures

Figure 1

26 pages, 6768 KiB  
Article
Historical Land Cover Dynamics and Projected Changes in the High Andean Zone of the Locumba Basin: A Predictive Approach Using Remote Sensing and Artificial Neural Network—Cellular Automata Model
by German Huayna, Victor Pocco, Edwin Pino-Vargas, Pablo Franco-León, Jorge Espinoza-Molina, Fredy Cabrera-Olivera, Bertha Vera-Barrios, Karina Acosta-Caipa, Lía Ramos-Fernández and Eusebio Ingol-Blanco
Land 2025, 14(7), 1442; https://doi.org/10.3390/land14071442 - 10 Jul 2025
Viewed by 283
Abstract
The conservation and monitoring of land cover represent crucial elements for sustainable regional development, especially in fragile high Andean ecosystems. This study evaluates the spatiotemporal changes in land use and land cover (LULC) in the Locumba basin over the period of 1984–2023. A [...] Read more.
The conservation and monitoring of land cover represent crucial elements for sustainable regional development, especially in fragile high Andean ecosystems. This study evaluates the spatiotemporal changes in land use and land cover (LULC) in the Locumba basin over the period of 1984–2023. A hybrid modeling approach combining artificial neural networks (ANN) and cellular automata (CA) was employed to project future changes for 2033, 2043, and 2053. The results reveal a significant reduction in glaciers and lagoons throughout the Locumba basin, with notable declines from 1984 to 2023, while vegetated areas, particularly grasslands and wetlands, experienced substantial expansion. Specifically, grasslands increased by 273.7% relative to their initial coverage, growing from 57.87 km2 in 1984 to over 220.31 km2 in 2023, with projections indicating continued growth to over 331.62 km2 by 2053. This multitemporal analysis provides crucial information for anticipating future land dynamics and underscores the urgent need for strategic conservation planning to mitigate the continued loss of strategic ecosystems in the high Andean region of Tacna. Full article
Show Figures

Figure 1

21 pages, 4829 KiB  
Article
Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms
by Qi Su, Xiangchen Meng, Lin Sun and Zhongqiang Guo
Remote Sens. 2025, 17(14), 2350; https://doi.org/10.3390/rs17142350 - 9 Jul 2025
Viewed by 365
Abstract
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 [...] Read more.
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 m, leveraging auxiliary variables including vegetation indices, terrain parameters, and land surface reflectance. By establishing non-linear relationships between LST and predictive variables through eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, the proposed framework was rigorously validated using in situ measurements across China’s Heihe River Basin. Comparative analyses demonstrated that integrating multiple vegetation indices (e.g., NDVI, SAVI) with terrain factors yielded superior accuracy compared to factors utilizing land surface reflectance or excessive variable combinations. While slope and aspect parameters marginally improved accuracy in mountainous regions, including them degraded performance in flat terrain. Notably, land surface reflectance proved to be ineffective in snow/ice-covered areas, highlighting the need for specialized treatment in cryospheric environments. This work provides a reference for LST downscaling, with significant implications for environmental monitoring and urban heat island investigations. Full article
Show Figures

Graphical abstract

21 pages, 3022 KiB  
Article
Machine Learning Prediction of Urban Heat Island Severity in the Midwestern United States
by Ali Mansouri and Abdolmajid Erfani
Sustainability 2025, 17(13), 6193; https://doi.org/10.3390/su17136193 - 6 Jul 2025
Viewed by 771
Abstract
Rapid population growth and urbanization have greatly impacted the environment, causing a sharp rise in city temperatures—a phenomenon known as the Urban Heat Island (UHI) effect. While previous research has extensively examined the influence of land use characteristics on urban heat islands, their [...] Read more.
Rapid population growth and urbanization have greatly impacted the environment, causing a sharp rise in city temperatures—a phenomenon known as the Urban Heat Island (UHI) effect. While previous research has extensively examined the influence of land use characteristics on urban heat islands, their impact on community demographics and UHI severity remains unexplored. Moreover, most previous studies have focused on specific locations, resulting in relatively homogeneous environmental data and limiting understanding of variations across different areas. To address this gap, this paper develops ensemble learning models to predict UHI severity based on demographic, meteorological, and land use/land cover factors in Midwestern United States. Analyzing over 11,000 data points from urban census tracts across more than 12 states in the Midwestern United States, this study developed Random Forest and XGBoost classifiers achieving weighted F1-scores up to 0.76 and excellent discriminatory power (ROC-AUC > 0.90). Feature importance analysis, supported by a detailed SHAP (SHapley Additive exPlanations) interpretation, revealed that the difference in vegetation between urban and rural areas (DelNDVI_summer) and imperviousness were the most critical predictors of UHI severity. This work provides a robust, large-scale predictive tool that helps urban planners and policymakers identify key UHI drivers and develop targeted mitigation strategies. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

36 pages, 5039 KiB  
Article
Flood Risk Forecasting: An Innovative Approach with Machine Learning and Markov Chains Using LIDAR Data
by Luigi Bibbò, Giuliana Bilotta, Giuseppe M. Meduri, Emanuela Genovese and Vincenzo Barrile
Appl. Sci. 2025, 15(13), 7563; https://doi.org/10.3390/app15137563 - 5 Jul 2025
Viewed by 450
Abstract
In recent years, the world has seen a significant increase in extreme weather events, such as floods, hurricanes, and storms, which have caused extensive damage to infrastructure and communities. These events result from natural phenomena and human-induced factors, including climate change and natural [...] Read more.
In recent years, the world has seen a significant increase in extreme weather events, such as floods, hurricanes, and storms, which have caused extensive damage to infrastructure and communities. These events result from natural phenomena and human-induced factors, including climate change and natural climate variations. For instance, the floods in Europe in 2024 and the hurricanes in the United States have highlighted the vulnerability of urban and rural areas. These extreme events are often unpredictable and pose considerable challenges for spatial planning and risk management. This study explores an innovative approach that employs machine learning and Markov chains to enhance spatial planning and predict flood risk areas. By utilizing data such as weather records, land use and land cover (LULC) information, topographic LIDAR data, and advanced predictive models, the study aims to identify the most vulnerable areas and provide recommendations for risk mitigation. The results indicate that integrating these technologies can improve forecasting accuracy, thereby supporting more informed decisions in land management. Given the effects of climate change and the increasing frequency of extreme events, adopting advanced forecasting and planning tools is crucial for protecting communities and reducing economic and social damage. This method was applied to the Calopinace area, also known as the Calopinace River or Fiumara della Cartiera, which crosses Reggio Calabria and is notorious for its historical floods. It can serve as part of an early warning system, enabling alerts to be issued throughout the monitored area. Furthermore, it can be integrated into existing emergency protocols, thereby enhancing the effectiveness of disaster response. Future research could investigate incorporating additional data and AI techniques to improve accuracy. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

29 pages, 24963 KiB  
Article
Monitoring and Future Prediction of Land Use Land Cover Dynamics in Northern Bangladesh Using Remote Sensing and CA-ANN Model
by Dipannita Das, Foyez Ahmed Prodhan, Muhammad Ziaul Hoque, Md. Enamul Haque and Md. Humayun Kabir
Earth 2025, 6(3), 73; https://doi.org/10.3390/earth6030073 - 4 Jul 2025
Viewed by 1044
Abstract
Land use and land cover (LULC) in Northern Bangladesh have undergone substantial transformations due to both anthropogenic and natural drivers. This study examines historical LULC changes (1990–2022) and projects future trends for 2030 and 2054 using remote sensing and the Cellular Automata-Artificial Neural [...] Read more.
Land use and land cover (LULC) in Northern Bangladesh have undergone substantial transformations due to both anthropogenic and natural drivers. This study examines historical LULC changes (1990–2022) and projects future trends for 2030 and 2054 using remote sensing and the Cellular Automata-Artificial Neural Network (CA-ANN) model. Multi-temporal Landsat imagery was classified with 80.75–86.23% accuracy (Kappa: 0.75–0.81). Model validation comparing simulated and actual 2014 data yielded 79.98% accuracy, indicating a reasonably good performance given the region’s rapidly evolving and heterogeneous landscape. The results reveal a significant decline in waterbodies, which is projected to shrink by 34.4% by 2054, alongside a 1.21% reduction in cropland raising serious environmental and food security concerns. Vegetation, after an initial massive decrease (1990–2014), increased (2014–2022) due to different forms of agroforestry practices and is expected to increase by 4.64% by 2054. While the model demonstrated fair predictive power, its moderate accuracy highlights challenges in forecasting LULC in areas characterized by informal urbanization, seasonal land shifts, and riverbank erosion. These dynamics limit prediction reliability and reflect the region’s ecological vulnerability. The findings call for urgent policy action particularly afforestation, water resource management, and integrated land use planning to ensure environmental sustainability and resilience in this climate-sensitive area. Full article
Show Figures

Figure 1

28 pages, 10534 KiB  
Article
Assessing Land Degradation Through Remote Sensing and Geospatial Techniques for Sustainable Development Under the Mediterranean Conditions
by Elsherbiny A. Ali, Ahmed S. Elnagar, Nazih Y. Rebouh and Mohamed E. Fadl
Sustainability 2025, 17(13), 6087; https://doi.org/10.3390/su17136087 - 3 Jul 2025
Viewed by 671
Abstract
This study provides a comprehensive assessment of land degradation (LD) in Damietta Governorate, Egypt, by integrating multiple indices, including the Geology Index (GI), Topographic Quality Index (TQI), Physical Quality Index (PQI), Chemical Quality Index (CQI), Wind Erosion Quality Index (WEQI), and Vegetation Quality [...] Read more.
This study provides a comprehensive assessment of land degradation (LD) in Damietta Governorate, Egypt, by integrating multiple indices, including the Geology Index (GI), Topographic Quality Index (TQI), Physical Quality Index (PQI), Chemical Quality Index (CQI), Wind Erosion Quality Index (WEQI), and Vegetation Quality Index (VQI). The study findings reveal the following: (1) Soil quality shows moderate suitability for agricultural and developmental activities and can support productive land use with proper management (68.14% physical quality, 51.54% chemical quality), with 14.03–37.75% high-quality areas supporting intensive farming and 10.71–17.83% degraded soils requiring intervention; (2) nearly 31.83% of the area faces high degradation risk, particularly from wind erosion (27.41% high-risk areas), emphasizing the need for erosion control measures; and (3) vegetation analysis shows that 51.5% of land has inadequate cover (low/very low quality), highlighting restoration needs. The LD mapping reveals that 32.70% of the area is at low risk, 35.48% at moderate risk, and 31.83% at high to very high risk, underscoring the need for urgent restoration and sustainable land management practices. The study validates the effectiveness of ordinary kriging (OK) models in predicting soil properties, with tailored variogram models (Exponential, Spherical, and Gaussian) enhancing prediction accuracy. Overall, this study identifies statistically significant factors influencing LD in the study area, providing a data-driven foundation for sustainable land management, agricultural development, and environmental conservation. Full article
(This article belongs to the Special Issue Natural Resource Economics and Environment Sustainable Development)
Show Figures

Figure 1

15 pages, 17572 KiB  
Article
High-Resolution Mapping and Biomass Estimation of Suaeda salsa in Coastal Wetlands Using UAV Visible-Light Imagery and Hue Angle Inversion
by Lin Wang, Xiang Wang, Xiu Su, Shiyong Wen, Xinxin Wang, Qinghui Meng and Lingling Jiang
Appl. Sci. 2025, 15(13), 7423; https://doi.org/10.3390/app15137423 - 2 Jul 2025
Viewed by 219
Abstract
Unmanned Aerial Vehicles (UAVs) have become powerful tools for high-resolution, quantitative remote sensing in ecological and environmental studies. In this study, we present a novel approach to accurately mapping and estimating the biomass of Suaeda salsa using UAV-based visible-light imagery combined with hue [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become powerful tools for high-resolution, quantitative remote sensing in ecological and environmental studies. In this study, we present a novel approach to accurately mapping and estimating the biomass of Suaeda salsa using UAV-based visible-light imagery combined with hue angle inversion modeling. By integrating diffuse reflectance standard plates into the flight protocol, we converted RGB pixel values into reflectance and derived hue angle metrics with enhanced radiometric accuracy. A hue angle cutoff threshold of 249.01° was identified as the optimal cutoff to distinguish Suaeda salsa from the surrounding land cover types with high confidence. To estimate biomass, we developed an exponential inversion model based on hue angle data calibrated through extensive field measurements. The resulting model—Biomass = 3.57639 × 10−15 × e0.12201×α—achieved exceptional performance (R2 = 0.99696; MAPE = 3.616%; RMSE = 0.02183 kg/m2), indicating strong predictive accuracy and robustness. This study highlights a cost-effective, non-destructive, and scalable method for the real-time monitoring of coastal vegetation, offering a significant advancement in remote sensing applications for wetland ecosystem management. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

Back to TopTop