Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (974)

Search Parameters:
Keywords = land cover degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 19737 KiB  
Article
Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China
by Jiayue Xu, Le Xuan, Cong Li, Tianji Wu, Yajing Wang, Yutong Wang, Xuhui Wang and Yong Wang
Land 2025, 14(8), 1581; https://doi.org/10.3390/land14081581 - 2 Aug 2025
Viewed by 334
Abstract
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects [...] Read more.
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects of landscape and architectural features on land surface temperature (LST) through boosted regression tree (BRT) modeling and Spearman correlation analysis. The key findings are as follows: (1) LST exhibits significant seasonal variation, with the strongest urban heat island effect occurring in summer, particularly within industry, business, and public service zones; residence zones experience the greatest temperature fluctuations, with a seasonal difference of 24.71 °C between spring and summer and a peak temperature of 50.18 °C in summer. (2) Fractional vegetation cover (FVC) consistently demonstrates the most pronounced cooling effect across all zones and seasons. Landscape indicators generally dominate the regulation of LST, with their relative contribution exceeding 45% in green land zones. (3) Population density (PD) exerts a significant, seasonally dependent dual effect on LST, where strategic population distribution can effectively mitigate extreme heat events. (4) Mean building height (MBH) plays a vital role in temperature regulation, showing a marked cooling influence particularly in residence and business zones. Both the perimeter-to-area ratio (LSI) and frontal area index (FAI) exhibit distinct seasonal variations in their impacts on LST. (5) This study establishes specific indicator thresholds to optimize thermal comfort across five functional zones; for instance, FVC should exceed 13% in spring and 31.6% in summer in residence zones to enhance comfort, while maintaining MBH above 24 m further aids temperature regulation. These findings offer a scientific foundation for mitigating urban heat waves and advancing sustainable urban development. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China
by Yu Guo, Xinwei Wang, Hongying Cao, Qin Peng, Yunshe Dong, Yunchun Qi, Jian Liu, Ning Lv, Feihu Yin, Xiujin Yuan and Mei Zeng
Remote Sens. 2025, 17(15), 2634; https://doi.org/10.3390/rs17152634 - 29 Jul 2025
Viewed by 165
Abstract
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation [...] Read more.
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation dynamics in arid Northwestern China during 2000 to 2020, using the annual peak fractional vegetation cover (FVC) as the primary indicator. The Sen’s slope estimator with the Mann–Kendall test and the coefficient of variation were employed to assess the spatiotemporal variations in FVC, while the Pearson correlation, geographic detector model and random forest model were applied to identify the dominant driving factors for FVC. The results indicated that (1) overall vegetation cover was low (averaged peak FVC = 0.191), showing a spatial pattern of higher values in the northwest and lower values in the southeast; high FVC values were primarily observed in mountainous areas and river corridors; (2) the annual peak FVC increased significantly at a rate of 0.0508 yr−1, with 33.72% of the region showing significant improvements and 5.49% degradation; (3) the spatial pattern of FVC was shaped by the distribution of land use types (59.46%), while the temporal dynamics of FVC were driven by land use changes (16.37%) and the land use intensity (37.56%); (4) both the spatial pattern and the temporal dynamics were limited by the environmental conditions. These findings highlight the critical role of anthropogenic activities in shaping the spatiotemporal variations in FVC, particularly emphasizing the distinct contributions of changes in land use types and land use intensity. This study could provide a scientific basis for sustainable land management and restoration strategies in arid regions facing global changes. Full article
Show Figures

Figure 1

21 pages, 11816 KiB  
Article
The Dual Effects of Climate Change and Human Activities on the Spatiotemporal Vegetation Dynamics in the Inner Mongolia Plateau from 1982 to 2022
by Guangxue Guo, Xiang Zou and Yuting Zhang
Land 2025, 14(8), 1559; https://doi.org/10.3390/land14081559 - 29 Jul 2025
Viewed by 190
Abstract
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This [...] Read more.
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This study employs Sen’s slope estimation, BFAST analysis, residual trend method and Geodetector to analyze the spatial patterns of Normalized Difference Vegetation Index (NDVI) variability and distinguish between climatic and anthropogenic influences. Key findings include the following: (1) From 1982 to 2022, vegetation cover across the IMP exhibited a significant greening trend. Zonal analysis showed that this spatial heterogeneity was strongly regulated by regional hydrothermal conditions, with varied responses across land cover types and pronounced recovery observed in high-altitude areas. (2) In the western arid regions, vegetation trends were unstable, often marked by interruptions and reversals, contrasting with the sustained greening observed in the eastern zones. (3) Vegetation growth was primarily temperature-driven in the eastern forested areas, precipitation-driven in the central grasslands, and severely limited in the western deserts due to warming-induced drought. (4) Human activities exerted dual effects: significant positive residual trends were observed in the Hetao Plain and southern Horqin Sandy Land, while widespread negative residuals emerged across the southern deserts and central grasslands. (5) Vegetation change was driven by climate and human factors, with recovery mainly due to climate improvement and degradation linked to their combined impact. These findings highlight the interactive mechanisms of climate change and human disturbance in regulating terrestrial vegetation dynamics, offering insights for sustainable development and ecosystem education in climate-sensitive systems. Full article
Show Figures

Figure 1

25 pages, 5547 KiB  
Article
Urban Expansion and Landscape Transformation in Năvodari, Romania: An Integrated Geospatial and Socio-Economic Perspective
by Cristina-Elena Mihalache and Monica Dumitrașcu
Land 2025, 14(7), 1496; https://doi.org/10.3390/land14071496 - 19 Jul 2025
Viewed by 452
Abstract
Urban growth often surpasses the actual needs of the population, leading to inefficient land use and long-term environmental challenges. This study provides an integrated perspective on urban landscape transformation by linking socio-demographic dynamics with ecological consequences, notably vegetation loss and increased impervious surfaces. [...] Read more.
Urban growth often surpasses the actual needs of the population, leading to inefficient land use and long-term environmental challenges. This study provides an integrated perspective on urban landscape transformation by linking socio-demographic dynamics with ecological consequences, notably vegetation loss and increased impervious surfaces. The study area is Năvodari Administrative-Territorial Unit (ATU), a coastal tourist city located along the Black Sea in Romania. By integrating geospatial datasets such as Urban Atlas and Corine Land Cover with population- and construction-related statistics, the analysis reveals a disproportionate increase in urbanized land compared to population growth. Time-series analyses based on the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) from 1990 to 2022 highlight significant ecological degradation, including vegetation loss and increased built-up density. The findings suggest that real estate investment and tourism-driven development play a more substantial role than demographic dynamics in shaping land use change. Understanding urban expansion as a coupled social–ecological process is essential for promoting sustainable planning and enhancing environmental resilience. While this study is focused on the coastal city of Năvodari, its insights are relevant to a broader international context, particularly for rapidly developing tourist destinations facing similar urban and ecological pressures. The findings support efforts toward more inclusive, balanced, and environmentally responsible urban development, aligning with the core principles of Sustainable Development Goal 11, particularly Target 11.3, which emphasizes sustainable urbanization and efficient land use. Full article
Show Figures

Figure 1

15 pages, 4146 KiB  
Article
Monitoring Forest Cover Trends in Nepal: Insights from 2000–2020
by Aditya Eaturu
Sustainability 2025, 17(14), 6511; https://doi.org/10.3390/su17146511 - 16 Jul 2025
Viewed by 544
Abstract
This study investigates the spatial relationship between population distribution and tree cover loss in Nepal from 2000 to 2020, using satellite-based forest cover and population data along with statistical and geospatial analysis. Two statistical methods—linear regression (LR) and Geographically Weighted Regression (GWR)—were used [...] Read more.
This study investigates the spatial relationship between population distribution and tree cover loss in Nepal from 2000 to 2020, using satellite-based forest cover and population data along with statistical and geospatial analysis. Two statistical methods—linear regression (LR) and Geographically Weighted Regression (GWR)—were used to assess the influence of population on forest cover change. The correlation between total population and forest loss at the national level suggested little to no direct impact of population growth on forest loss. However, sub-national analysis revealed localized forest degradation, highlighting the importance of spatial and regional assessments to uncover land cover changes masked by national trends. While LR showed a weak national-level correlation, GWR revealed substantial spatial variation, with the coefficient of determination values increasing from 0.21 in 2000 to 0.59 in 2020. In some regions, local R2 exceeded 0.75 during 2015 and 2020, highlighting emerging hotspot clusters where population pressure is strongly linked to deforestation, especially along major infrastructure corridors. Using very high-resolution spatial data enabled pixel-level analysis, capturing fine-scale deforestation patterns, and confirming hotspot accuracy. Overall, the findings emphasize the value of spatially explicit models like GWR for understanding human–environment interactions guiding targeted land use planning to balance development with environmental sustainability in Nepal. Full article
Show Figures

Figure 1

19 pages, 9752 KiB  
Article
Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains
by Imon Abedin, Tanoy Mukherjee, Shantanu Kundu, Sanjib Baruah, Pralip Kumar Narzary, Joynal Abedin and Hilloljyoti Singha
Earth 2025, 6(3), 78; https://doi.org/10.3390/earth6030078 - 12 Jul 2025
Viewed by 314
Abstract
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from [...] Read more.
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from its designation as a national park in 2000 through 2024. The satellite imagery was used to classify LULC types and track landscape changes over time. In 2000, grasslands were the dominant land cover (28.78%), followed by semi-evergreen forests (25.58%). By 2013, shrubland became the most prominent class (81.31 km2), and degraded forest expanded to 75.56 km2. During this period, substantial areas of grassland (29.94 km2), degraded forest (10.87 km2), semi-evergreen forest (12.33 km2), and bareland (10.50 km2) were converted to shrubland. In 2024, degraded forest further increased, covering 80.52 km2 (23.47%). This change resulted since numerous areas of shrubland (11.46 km2) and semi-evergreen forest (27.48 km2) were converted into degraded forest. Furthermore, significant shifts were observed in grassland, shrubland, and degraded forest, indicating a substantial and consistent decline in grassland. These changes are largely attributed to recurring Brahmaputra River floods and increasing anthropogenic pressures. This study recommends a targeted Grassland Recovery Project, control of invasive species, improved surveillance, increased staffing, and the relocation of forest villages to reduce human impact and support community-based conservation efforts. Hence, protecting the landscape through informed LULC-based management can help maintain critical habitat patches, mitigate anthropogenic degradation, and enhance the survival prospects of native floral and faunal assemblages in DSNP. Full article
Show Figures

Figure 1

24 pages, 3171 KiB  
Article
Hydroclimatic Trends and Land Use Changes in the Continental Part of the Gambia River Basin: Implications for Water Resources
by Matty Kah, Cheikh Faye, Mamadou Lamine Mbaye, Nicaise Yalo and Lischeid Gunnar
Water 2025, 17(14), 2075; https://doi.org/10.3390/w17142075 - 11 Jul 2025
Viewed by 388
Abstract
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes [...] Read more.
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes (1988, 2002, and 2022) within the Continental Reach of the Gambia River Basin (CGRB). Trend analyses of the Standardized Precipitation-Evapotranspiration Index (SPEI) at 12-month and 24-month scales, along with river discharge at the Simenti station, reveal a shift from dry conditions to wetter phases post-2008, marked by significant increases in rainfall and discharge variability. LULC analysis revealed significant transformations in the basin. LULC analysis highlights significant transformations within the basin. Forest and savanna areas decreased by 20.57 and 4.48%, respectively, between 1988 and 2002, largely due to human activities such as agricultural expansion and deforestation for charcoal production. Post-2002, forest cover recovered from 32.36 to 36.27%, coinciding with the wetter conditions after 2008, suggesting that climatic shifts promoted vegetation regrowth. Spatial analysis further highlights an increase in bowe and steppe areas, especially in the north, indicating land degradation linked to human land use practices. Bowe areas, marked by impermeable laterite outcrops, and steppe areas with sparse herbaceous cover result from overgrazing and soil degradation, exacerbated by the region’s drier phases. A notable decrease in burned areas from 2.03 to 0.23% suggests improvements in fire management practices, reducing fire frequency, which is also supported by wetter conditions post-2008. Agricultural land and bare soils expanded by 14%, from 2.77 to 3.07%, primarily in the northern and central regions, likely driven by both population pressures and climatic shifts. Correlations between precipitation and land cover changes indicate that wetter conditions facilitated forest regrowth, while drier conditions exacerbated land degradation, with human activities such as deforestation and agricultural expansion potentially amplifying the impact of climatic shifts. These results demonstrate that while climatic shifts played a role in driving vegetation recovery, human activities were key in shaping land use patterns, impacting both precipitation and stream discharge, particularly due to agricultural practices and land degradation. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

21 pages, 4829 KiB  
Article
Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms
by Qi Su, Xiangchen Meng, Lin Sun and Zhongqiang Guo
Remote Sens. 2025, 17(14), 2350; https://doi.org/10.3390/rs17142350 - 9 Jul 2025
Viewed by 400
Abstract
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 [...] Read more.
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 m, leveraging auxiliary variables including vegetation indices, terrain parameters, and land surface reflectance. By establishing non-linear relationships between LST and predictive variables through eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, the proposed framework was rigorously validated using in situ measurements across China’s Heihe River Basin. Comparative analyses demonstrated that integrating multiple vegetation indices (e.g., NDVI, SAVI) with terrain factors yielded superior accuracy compared to factors utilizing land surface reflectance or excessive variable combinations. While slope and aspect parameters marginally improved accuracy in mountainous regions, including them degraded performance in flat terrain. Notably, land surface reflectance proved to be ineffective in snow/ice-covered areas, highlighting the need for specialized treatment in cryospheric environments. This work provides a reference for LST downscaling, with significant implications for environmental monitoring and urban heat island investigations. Full article
Show Figures

Graphical abstract

28 pages, 13059 KiB  
Article
Transformation of Arable Lands in Russia over Last Half Century—Analysis Based on Detailed Mapping and Retrospective Monitoring of Soil–Land Cover and Decipherment of Big Remote Sensing Data
by Dmitry I. Rukhovich, Polina V. Koroleva, Dmitry A. Shapovalov, Mikhail A. Komissarov and Tung Gia Pham
Sustainability 2025, 17(13), 6203; https://doi.org/10.3390/su17136203 - 7 Jul 2025
Viewed by 546
Abstract
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in [...] Read more.
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in sown areas by 38% (from 119.7 to 74.7 million ha) and a synchronous drop in gross harvests of grain and leguminous crops by 48% (from 117 to 61 million tons). The situation stabilized in 2020, with a sowing area of 80.2 million ha and gross harvests of grain and leguminous crops of 120–150 million tons. This process was not formalized legally, and the official (legal) area of arable land decreased by only 8% from 132.8 to 122.3 million ha. Legal conflict arose for 35 million ha for unused arable land, for which there was no classification of its condition categories and no monitoring of the withdrawal time of the arable land from actual agricultural use. The aim of this study was to resolve the challenges in the method of retrospective monitoring of soil–land cover, which allowed for the achievement of the aims of the investigation—to elucidate the history of land use on arable lands from 1985 to 2025 with a time step of 5 years and to obtain a detailed classification of the arable lands’ abandonment degrees. It was also established that on most of the abandoned arable land, carbon sequestration occurs in the form of secondary forests. In the course of this work, it was shown that the reasons for the formation of an array of abandoned arable land and the stabilization of agricultural production turned out to be interrelated. The abandonment of arable land occurred proportionally to changes in the soil’s natural fertility and the degree of land degradation. Economically unprofitable lands spontaneously (without centralized planning) left the sowing zone. The efficiency of land use on the remaining lands has increased and has allowed for the mass application of modern farming systems (smart, precise, landscape-adaptive, differentiated, no-till, strip-till, etc.), which has further increased the profitability of crop production. The prospect of using abandoned lands as a carbon sequestration zone in areas of forest overgrowth has arisen. Full article
Show Figures

Figure 1

50 pages, 45416 KiB  
Article
Uncovering Anthropogenic Changes in Small- and Medium-Sized River Basins of the Southwestern Caspian Sea Watershed: Global Information System and Remote Sensing Analysis Using Satellite Imagery and Geodatabases
by Vladimir Tabunshchik, Aleksandra Nikiforova, Nastasia Lineva, Roman Gorbunov, Tatiana Gorbunova, Ibragim Kerimov, Abouzar Nasiri and Cam Nhung Pham
Water 2025, 17(13), 2031; https://doi.org/10.3390/w17132031 - 6 Jul 2025
Viewed by 716
Abstract
This study investigates the anthropogenic transformation of small- and medium-sized river basins within the Caspian Sea catchment. The basins of seven rivers—Sunzha, Sulak, Ulluchay, Karachay, Atachay, Haraz, and Gorgan—were selected as key study areas. For both the broader Caspian region, particularly its southwestern [...] Read more.
This study investigates the anthropogenic transformation of small- and medium-sized river basins within the Caspian Sea catchment. The basins of seven rivers—Sunzha, Sulak, Ulluchay, Karachay, Atachay, Haraz, and Gorgan—were selected as key study areas. For both the broader Caspian region, particularly its southwestern sector, and the selected study sites, trends in land cover types were analyzed, natural resource use practices were assessed, and population density dynamics were examined. Furthermore, a range of indices were calculated to quantify the degree of anthropogenic transformation, including the coefficient of anthropogenic transformation, the land degradation index, the urbanity index, the degree of anthropogenic transformation, coefficients of absolute and relative tension of the ecological and economic balance, and the natural protection coefficient. The study was conducted using geoinformation research methods and sets of geodata databases—the global LandScan population density database, the GHS Population Grid database, the ESRI land cover type dynamics database, and OpenStreetMap (OSM) data. The analysis was performed using the geoinformation programs QGIS and ArcGIS, and a large amount of literary and statistical data was additionally analyzed. It is shown that within the studied region, there has been a decrease in the number and density of the population, as a result of which the territories of river basins are experiencing an increasing anthropogenic impact, the woody type of land cover is decreasing, and the agricultural type is increasing. The most anthropogenically transformed river basins are Karachay, Haraz, and Gorgan. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GISs in River Basin Ecosystems)
Show Figures

Figure 1

28 pages, 10534 KiB  
Article
Assessing Land Degradation Through Remote Sensing and Geospatial Techniques for Sustainable Development Under the Mediterranean Conditions
by Elsherbiny A. Ali, Ahmed S. Elnagar, Nazih Y. Rebouh and Mohamed E. Fadl
Sustainability 2025, 17(13), 6087; https://doi.org/10.3390/su17136087 - 3 Jul 2025
Viewed by 727
Abstract
This study provides a comprehensive assessment of land degradation (LD) in Damietta Governorate, Egypt, by integrating multiple indices, including the Geology Index (GI), Topographic Quality Index (TQI), Physical Quality Index (PQI), Chemical Quality Index (CQI), Wind Erosion Quality Index (WEQI), and Vegetation Quality [...] Read more.
This study provides a comprehensive assessment of land degradation (LD) in Damietta Governorate, Egypt, by integrating multiple indices, including the Geology Index (GI), Topographic Quality Index (TQI), Physical Quality Index (PQI), Chemical Quality Index (CQI), Wind Erosion Quality Index (WEQI), and Vegetation Quality Index (VQI). The study findings reveal the following: (1) Soil quality shows moderate suitability for agricultural and developmental activities and can support productive land use with proper management (68.14% physical quality, 51.54% chemical quality), with 14.03–37.75% high-quality areas supporting intensive farming and 10.71–17.83% degraded soils requiring intervention; (2) nearly 31.83% of the area faces high degradation risk, particularly from wind erosion (27.41% high-risk areas), emphasizing the need for erosion control measures; and (3) vegetation analysis shows that 51.5% of land has inadequate cover (low/very low quality), highlighting restoration needs. The LD mapping reveals that 32.70% of the area is at low risk, 35.48% at moderate risk, and 31.83% at high to very high risk, underscoring the need for urgent restoration and sustainable land management practices. The study validates the effectiveness of ordinary kriging (OK) models in predicting soil properties, with tailored variogram models (Exponential, Spherical, and Gaussian) enhancing prediction accuracy. Overall, this study identifies statistically significant factors influencing LD in the study area, providing a data-driven foundation for sustainable land management, agricultural development, and environmental conservation. Full article
(This article belongs to the Special Issue Natural Resource Economics and Environment Sustainable Development)
Show Figures

Figure 1

27 pages, 7591 KiB  
Article
Advancing Land Use Modeling with Rice Cropping Intensity: A Geospatial Study on the Shrinking Paddy Fields in Indonesia
by Laju Gandharum, Djoko Mulyo Hartono, Heri Sadmono, Hartanto Sanjaya, Lena Sumargana, Anindita Diah Kusumawardhani, Fauziah Alhasanah, Dionysius Bryan Sencaki and Nugraheni Setyaningrum
Geographies 2025, 5(3), 31; https://doi.org/10.3390/geographies5030031 - 2 Jul 2025
Viewed by 781
Abstract
Indonesia faces significant challenges in meeting food security targets due to rapid agricultural land loss, with approximately 1.22 million hectares of rice fields converted between 1990 and 2022. Therefore, this study developed a prediction model for the loss of rice fields by 2030, [...] Read more.
Indonesia faces significant challenges in meeting food security targets due to rapid agricultural land loss, with approximately 1.22 million hectares of rice fields converted between 1990 and 2022. Therefore, this study developed a prediction model for the loss of rice fields by 2030, incorporating land productivity attributes, specifically rice cropping intensity/RCI, using geospatial technology—a novel method with a resolution of approximately 10 m for quantifying ecosystem service (ES) impacts. Land use/land cover data from Landsat images (2013, 2020, 2024) were classified using the Random Forest algorithm on Google Earth Engine. The prediction model was developed using a Multi-Layer Perceptron Neural Network and Markov Cellular Automata (MLP-NN Markov-CA) algorithms. Additionally, time series Sentinel-1A satellite imagery was processed using K-means and a hierarchical clustering analysis to map rice fields and their RCI. The validation process confirmed high model robustness, with an MLP-NN Markov-CA accuracy and Kappa coefficient of 83.90% and 0.91, respectively. The present study, which was conducted in Indramayu Regency (West Java), predicted that 1602.73 hectares of paddy fields would be lost within 2020–2030, specifically 980.54 hectares (61.18%) and 622.19 hectares (38.82%) with 2 RCI and 1 RCI, respectively. This land conversion directly threatens ES, resulting in a projected loss of 83,697.95 tons of rice production, which indicates a critical degradation of service provisioning. The findings provide actionable insights for land use planning to reduce agricultural land conversion while outlining the urgency of safeguarding ES values. The adopted method is applicable to regions with similar characteristics. Full article
Show Figures

Figure 1

27 pages, 18002 KiB  
Article
Quantifying Ecological Dynamics and Anthropogenic Dominance in Drylands: A Hybrid Modeling Framework Integrating MRSEI and SHAP-Based Explainable Machine Learning in Northwest China
by Beilei Zhang, Xin Yang, Mingqun Wang, Liangkai Cheng and Lina Hao
Remote Sens. 2025, 17(13), 2266; https://doi.org/10.3390/rs17132266 - 2 Jul 2025
Viewed by 390
Abstract
Arid and semi-arid regions serve as crucial ecological barriers in China, making the spatiotemporal evolution of their ecological environmental quality (EEQ) scientifically significant. This study developed a Modified Remote Sensing Ecological Index (MRSEI) by innovatively integrating the Comprehensive Salinity Indicator (CSI) into the [...] Read more.
Arid and semi-arid regions serve as crucial ecological barriers in China, making the spatiotemporal evolution of their ecological environmental quality (EEQ) scientifically significant. This study developed a Modified Remote Sensing Ecological Index (MRSEI) by innovatively integrating the Comprehensive Salinity Indicator (CSI) into the Remote Sensing Ecological Index (RSEI) and applied it to systematically evaluate the spatiotemporal evolution of EEQ (2014–2023) in Yinchuan City, a typical arid region of northwest China along the upper Yellow River. The study revealed the spatiotemporal evolution patterns through the Theil–Sen (T-S) estimator and Mann–Kendall (M-K) test, and adopted the Light Gradient Boosting Machine (LightGBM) combined with the Shapley Additive Explanation (SHAP) to quantify the contributions of ten natural and anthropogenic driving factors. The results suggest that (1) the MRSEI outperformed the RSEI, showing 0.41% higher entropy and 5.63% greater contrast, better characterizing the arid region’s heterogeneity. (2) The EEQ showed marked spatial heterogeneity. High-quality areas are concentrated in the Helan Mountains and the integrated urban/rural development demonstration zone, while the core functional zone of the provincial capital, the Helan Mountains ecological corridor, and the eastern eco-economic pilot zone showed lower EEQ. (3) A total of 87.92% of the area (7609.23 km2) remained stable with no significant changes. Notably, degraded areas (934.52 km2, 10.80%) exceeded improved zones (111.04 km2, 1.28%), demonstrating an overall ecological deterioration trend. (4) This study applied LightGBM with SHAP to analyze the driving factors of EEQ. The results demonstrated that Land Use/Land Cover (LULC) was the predominant driver, contributing 41.52%, followed by the Digital Elevation Model (DEM, 18.26%) and Net Primary Productivity (NPP, 12.63%). This study offers a novel framework for arid ecological monitoring, supporting evidence-based conservation and sustainable development in the Yellow River Basin. Full article
Show Figures

Graphical abstract

24 pages, 1862 KiB  
Article
Dynamics and Anthropisation of Edible Caterpillar Habitats in the Landscape of the Luki Biosphere Reserve, Democratic Republic of the Congo
by Ernestine Lonpi Tipi, Médard Mpanda Mukenza, Yannick Useni Sikuzani, Jean-Pierre Messina Ndzomo, Raoul Sambieni Kouagou, François Malaisse, Joseph Lumande Kasali, Damase Khasa and Jan Bogaert
Land 2025, 14(7), 1384; https://doi.org/10.3390/land14071384 - 1 Jul 2025
Viewed by 383
Abstract
The Luki Biosphere Reserve landscape is located in the southwest of the Democratic Republic of Congo. Illicit anthropogenic activities in this landscape have contributed to the degradation of forest massifs, which are habitats for edible caterpillars. Accordingly, based on five Landsat images covering [...] Read more.
The Luki Biosphere Reserve landscape is located in the southwest of the Democratic Republic of Congo. Illicit anthropogenic activities in this landscape have contributed to the degradation of forest massifs, which are habitats for edible caterpillars. Accordingly, based on five Landsat images covering 2004–2024 period, we analysed the dynamics of edible caterpillar habitats in the Luki Biosphere Reserve, its periphery, and the landscape. The study was complemented by the calculation of class area, number of class patches, dominance, and the disturbance index. The results show that fragmentation and attrition have caused forest areas to decline by 46.13%, 21.17%, and 23.54% in the Reserve, its periphery, and at the landscape level, respectively. The dynamics of caterpillar habitats are reflected in the replacement of forest and fallow land by savannah. The level of disturbance has thus risen from 0.3 to 1.6 in the Reserve, from 2.5 to 13.9 in the periphery, and from 2.0 to 9.2 on a landscape scale. These results are mainly attributed to the expansion of agricultural land. Our observations imply an extent of disturbance in caterpillar habitats that might cause their scarcity, and strongly indicate the need for promoting effective strategies for preserving and restoring forest ecosystems in this landscape. Full article
Show Figures

Figure 1

45 pages, 3819 KiB  
Article
Assessing Food Security and Environmental Sustainability in North Africa: A Composite Indicator Approach Using Data Envelopment Analysis
by Muhammad Ikram
Sustainability 2025, 17(13), 6017; https://doi.org/10.3390/su17136017 - 30 Jun 2025
Viewed by 511
Abstract
North Africa faces significant challenges of food insecurity and environmental degradation, driven by rapid population growth, ongoing droughts, severe water stress, and increasing rates of undernourishment. Achieving food security and environmental sustainability requires a balanced evaluation of agricultural productivity, resource efficiency, ecosystem health, [...] Read more.
North Africa faces significant challenges of food insecurity and environmental degradation, driven by rapid population growth, ongoing droughts, severe water stress, and increasing rates of undernourishment. Achieving food security and environmental sustainability requires a balanced evaluation of agricultural productivity, resource efficiency, ecosystem health, and climate resilience. Therefore, this study develops a composite food security and environmental sustainability index (FSESI) that encompasses complex relationships via multidimensional indicators. Data analysis was conducted for Egypt, Libya, Algeria, Tunisia, Morocco, Sudan, and Mauritania, covering the period from 2010 to 2022. A comprehensive methodology employing data envelopment analysis (DEA) for objective weighting and geometric mean aggregation was implemented. The findings indicate notable disparities; Sudan presented the highest undernourishment rate (21.8% in 2010, 11.4% in 2022), whereas Libya faced severe water stress (783.12% to 817.14%). Morocco recorded the highest FSESI score of 0.78, reflecting strong performance in both the food security and environmental dimensions, whereas Algeria and Libya each had scores of 0.48, indicating relatively modest outcomes. Finally, sensitivity analysis was employed to check the robustness of the results. This research highlights the need for immediate policy actions focused on equitable resource management, enhanced agricultural methods, and reinforced food security initiatives. This study directly supports Sustainable Development Goal (SDG) 2, Zero Hunger; SDG 6, Clean Water and Sanitation; SDG 13, Climate Action; and SDG 15, Life on Land, by addressing integrated challenges in food security and environmental sustainability in North Africa. The originality of this work lies in its thorough integration of environmental and food security dimensions through innovative aggregation methods, offering a replicable framework that policymakers and researchers can use to address complex environmental and food security issues in North Africa sustainably. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

Back to TopTop