Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (695)

Search Parameters:
Keywords = land cover assessment and monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 22713 KiB  
Article
Geospatial and Correlation Analysis of Heavy Metal Distribution on the Territory of Integrated Steel and Mining Company Qarmet JSC
by Yryszhan Zhakypbek, Kanay Rysbekov, Vasyl Lozynskyi, Sergey Mikhalovsky, Ruslan Salmurzauly, Yerkezhan Begimzhanova, Gulmira Kezembayeva, Bakhytzhan Yelikbayev and Assel Sankabayeva
Sustainability 2025, 17(15), 7148; https://doi.org/10.3390/su17157148 (registering DOI) - 7 Aug 2025
Abstract
This paper provides geospatial and correlation analysis of heavy metal distribution in the soil cover of the city of Temirtau and its industrial zones. Based on 25 soil samples taken in 2024, concentrations of nine heavy metals (As, Pb, Zn, Cu, Ni, Co, [...] Read more.
This paper provides geospatial and correlation analysis of heavy metal distribution in the soil cover of the city of Temirtau and its industrial zones. Based on 25 soil samples taken in 2024, concentrations of nine heavy metals (As, Pb, Zn, Cu, Ni, Co, Mn, Cr, Ba) were determined using X-ray fluorescence analysis. Spatial data interpolation was performed using the Kriging method in the ArcGIS Pro environment. The results showed the presence of localized extreme pollution zones, primarily near the Qarmet JSC metallurgical plant. The most significant exceedances of maximum permissible concentrations (MPC), up to 348× MPC for Cr, 160× MPC for Zn, and 72× MPC for As, were recorded at individual locations. Correlation analysis revealed a moderate positive relationship between several elements, particularly Mn and Cu (r = 0.64). Comparison of the spatial distribution of pollution with population data allowed for the assessment of potential environmental risks. This research emphasizes the need to implement systematic monitoring, sustainable land management practices, ecological maps, and preventive measures to reduce the long-term impact of heavy metals on ecosystems and public health, and to promote environmental sustainability in industrial regions. Full article
Show Figures

Figure 1

27 pages, 7041 KiB  
Article
Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data
by Mikhaïl Jean De Dieu Dotou Padonou, Antoine Denis, Yvon-Carmen H. Hountondji, Bernard Tychon and Gérard Nounagnon Gouwakinnou
Environments 2025, 12(8), 271; https://doi.org/10.3390/environments12080271 - 6 Aug 2025
Abstract
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This [...] Read more.
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This study aims to develop a multi-criteria assessment method of the negative environmental externalities of rural landscapes in the northern Benin agricultural basin, based on satellite-derived data. Starting from a 12-class land cover map produced through satellite image classification, the evaluation was conducted in three steps. First, the 12 land cover classes were reclassified into Human Disturbance Coefficients (HDCs) via a weighted sum model multi-criteria analysis based on nine criteria related to the negative environmental externalities of anthropogenic activities. Second, the HDC classes were spatially aggregated using a regular grid of 1 km2 landscape cells to produce the Landscape Environmental Sustainability Index (LESI). Finally, various discretization methods were applied to the LESI for cartographic representation, enhancing spatial interpretation. Results indicate that most areas exhibit moderate environmental externalities (HDC and LESI values between 2.5 and 3.5), covering 63–75% (HDC) and 83–94% (LESI) of the respective sites. Areas of low environmental externalities (values between 1.5 and 2.5) account for 20–24% (HDC) and 5–13% (LESI). The LESI, derived from accessible and cost-effective satellite data, offers a scalable, reproducible, and spatially explicit tool for monitoring landscape sustainability. It holds potential for guiding territorial governance and supporting transitions towards more sustainable land management practices. Future improvements may include, among others, refining the evaluation criteria and introducing variable criteria weighting schemes depending on land cover or region. Full article
Show Figures

Figure 1

14 pages, 9090 KiB  
Article
Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae)
by Huafeng Liu, Shuangyi Wang, Yunchun Li, Shuangmei Ding, Aimin Shi, Ding Yang and Zhonghua Wei
Insects 2025, 16(8), 802; https://doi.org/10.3390/insects16080802 - 2 Aug 2025
Viewed by 301
Abstract
Trachypteris picta (Pallas, 1773) is a significant pest that can cause serious damage to poplars and willows. To assess the impact of climate change on the suitable habitats of T. picta, this study conducted a comparative analysis of its global suitable habitats [...] Read more.
Trachypteris picta (Pallas, 1773) is a significant pest that can cause serious damage to poplars and willows. To assess the impact of climate change on the suitable habitats of T. picta, this study conducted a comparative analysis of its global suitable habitats using climatic factors, global land use type, and global vegetation from different periods, in combination with the maximum entropy (MaxEnt) model. The results indicate that the annual mean temperature (Bio01), mean temperature of the coldest quarter (Bio11), precipitation of the coldest quarter (Bio19), and isothermality (Bio03) are the four most important climate variables determining the distribution of T. picta. Under the current climate conditions, the highly suitable areas are primarily located in southern Europe, covering an area of 2.22 × 106 km2. Under future climate scenarios, the suitable habitat for T. picta is expected to expand and shift towards higher latitudes. In the 2050s, the SSP5-8.5 scenario has the largest suitable area compared to other scenarios, while the SSP2-4.5 scenario has the largest suitable area in the 2090s. In addition, the centroids of the total suitable areas are expected to shift toward higher latitudes under future climate conditions. The results of this study provide valuable data for the monitoring, control, and management of this pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China
by Yu Guo, Xinwei Wang, Hongying Cao, Qin Peng, Yunshe Dong, Yunchun Qi, Jian Liu, Ning Lv, Feihu Yin, Xiujin Yuan and Mei Zeng
Remote Sens. 2025, 17(15), 2634; https://doi.org/10.3390/rs17152634 - 29 Jul 2025
Viewed by 165
Abstract
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation [...] Read more.
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation dynamics in arid Northwestern China during 2000 to 2020, using the annual peak fractional vegetation cover (FVC) as the primary indicator. The Sen’s slope estimator with the Mann–Kendall test and the coefficient of variation were employed to assess the spatiotemporal variations in FVC, while the Pearson correlation, geographic detector model and random forest model were applied to identify the dominant driving factors for FVC. The results indicated that (1) overall vegetation cover was low (averaged peak FVC = 0.191), showing a spatial pattern of higher values in the northwest and lower values in the southeast; high FVC values were primarily observed in mountainous areas and river corridors; (2) the annual peak FVC increased significantly at a rate of 0.0508 yr−1, with 33.72% of the region showing significant improvements and 5.49% degradation; (3) the spatial pattern of FVC was shaped by the distribution of land use types (59.46%), while the temporal dynamics of FVC were driven by land use changes (16.37%) and the land use intensity (37.56%); (4) both the spatial pattern and the temporal dynamics were limited by the environmental conditions. These findings highlight the critical role of anthropogenic activities in shaping the spatiotemporal variations in FVC, particularly emphasizing the distinct contributions of changes in land use types and land use intensity. This study could provide a scientific basis for sustainable land management and restoration strategies in arid regions facing global changes. Full article
Show Figures

Figure 1

36 pages, 9354 KiB  
Article
Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction
by Marcos A. Bosques-Perez, Naphtali Rishe, Thony Yan, Liangdong Deng and Malek Adjouadi
Remote Sens. 2025, 17(15), 2632; https://doi.org/10.3390/rs17152632 - 29 Jul 2025
Viewed by 159
Abstract
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such [...] Read more.
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

17 pages, 14890 KiB  
Article
Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization
by Jinijn Xuan, Shun Li, Chao Huang, Xueling Zhang and Rong Mao
Land 2025, 14(8), 1541; https://doi.org/10.3390/land14081541 - 27 Jul 2025
Viewed by 245
Abstract
Heatwaves intensified by climate change increasingly threaten urban populations, especially the elderly. However, most existing studies have concentrated on short-term or single-scale analyses, lacking a comprehensive understanding of how land cover changes and urbanization affect the vulnerability of the elderly to extreme heat. [...] Read more.
Heatwaves intensified by climate change increasingly threaten urban populations, especially the elderly. However, most existing studies have concentrated on short-term or single-scale analyses, lacking a comprehensive understanding of how land cover changes and urbanization affect the vulnerability of the elderly to extreme heat. This study aims to investigate the spatiotemporal distribution patterns of heat-related health risks among the elderly in Nanchang City and to identify their key driving factors within the context of rapid urbanization. This study employs Crichton’s risk triangle framework to the heat-related health risks for the elderly in Nanchang, China, from 2002 to 2020 by integrating meteorological records, land surface temperature, land cover data, and socioeconomic indicators. The model captures the spatiotemporal dynamics of heat hazards, exposure, and vulnerability and identifies the key drivers shaping these patterns. The results show that the heat health risk index has increased significantly over time, with notably higher levels in the urban core compared to those in suburban areas. A 1% rise in impervious surface area corresponds to a 0.31–1.19 increase in the risk index, while a 1% increase in green space leads to a 0.21–1.39 reduction. Vulnerability is particularly high in economically disadvantaged, medically under-served peripheral zones. These findings highlight the need to optimize the spatial distribution of urban green space and control the expansion of impervious surfaces to mitigate urban heat risks. In high-vulnerability areas, improving infrastructure, expanding medical resources, and establishing targeted heat health monitoring and early warning systems are essential to protecting elderly populations. Overall, this study provides a comprehensive framework for assessing urban heat health risks and offers actionable insights into enhancing climate resilience and health risk management in rapidly urbanizing regions. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

20 pages, 7640 KiB  
Article
Land Cover Mapping Using High-Resolution Satellite Imagery and a Comparative Machine Learning Approach to Enhance Regional Water Resource Management
by János Tamás, Angura Louis, Zsolt Zoltán Fehér and Attila Nagy
Remote Sens. 2025, 17(15), 2591; https://doi.org/10.3390/rs17152591 - 25 Jul 2025
Viewed by 275
Abstract
Accurate land cover classification is vital for informed water resource management, especially in irrigation-dependent regions facing increased climate variability. Using fused multi-sensor remote sensing imagery from Landsat 8 and Sentinel-2, this study assesses the effectiveness of three machine learning classifiers: Random Forest (RF), [...] Read more.
Accurate land cover classification is vital for informed water resource management, especially in irrigation-dependent regions facing increased climate variability. Using fused multi-sensor remote sensing imagery from Landsat 8 and Sentinel-2, this study assesses the effectiveness of three machine learning classifiers: Random Forest (RF), Gradient Tree Boosting (GTB), and Naive Bayes (NB) in creating land cover maps for the Tisza-Körös Valley Irrigation System (TIKEVIR) in Hungary. Water bodies, built-up areas, forests, grasslands, and major crops were among the important land cover categories that were classified for the two agricultural seasons (2018 and 2022). RF performed consistently in 2022 and reached its best accuracy in 2018 (OA = 0.87, KC = 0.83, PI = 0.94). While NB’s performance in 2022 remained less consistent, GTB’s performance increased. The findings show that RF works effectively for generating accurate land cover data, providing useful information for regional monitoring, and assisting in water and environmental management decision-making. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

26 pages, 11237 KiB  
Article
Reclassification Scheme for Image Analysis in GRASS GIS Using Gradient Boosting Algorithm: A Case of Djibouti, East Africa
by Polina Lemenkova
J. Imaging 2025, 11(8), 249; https://doi.org/10.3390/jimaging11080249 - 23 Jul 2025
Viewed by 491
Abstract
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping [...] Read more.
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping of environmental dynamics enables us to define factors that trigger these processes and are crucial for our understanding of Earth system processes. In this study, a reclassification scheme of image analysis was developed for mapping the adjusted categorisation of land cover types using multispectral remote sensing datasets and Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) software. The data included four Landsat 8–9 satellite images on 2015, 2019, 2021 and 2023. The sequence of time series was used to determine land cover dynamics. The classification scheme consisting of 17 initial land cover classes was employed by logical workflow to extract 10 key land cover types of the coastal areas of Bab-el-Mandeb Strait, southern Red Sea. Special attention is placed to identify changes in the land categories regarding the thermal saline lake, Lake Assal, with fluctuating salinity and water levels. The methodology included the use of machine learning (ML) image analysis GRASS GIS modules ‘r.reclass’ for the reclassification of a raster map based on category values. Other modules included ‘r.random’, ‘r.learn.train’ and ‘r.learn.predict’ for gradient boosting ML classifier and ‘i.cluster’ and ‘i.maxlik’ for clustering and maximum-likelihood discriminant analysis. To reveal changes in the land cover categories around the Lake of Assal, this study uses ML and reclassification methods for image analysis. Auxiliary modules included ‘i.group’, ‘r.import’ and other GRASS GIS scripting techniques applied to Landsat image processing and for the identification of land cover variables. The results of image processing demonstrated annual fluctuations in the landscapes around the saline lake and changes in semi-arid and desert land cover types over Djibouti. The increase in the extent of semi-desert areas and the decrease in natural vegetation proved the processes of desertification of the arid environment in Djibouti caused by climate effects. The developed land cover maps provided information for assessing spatial–temporal changes in Djibouti. The proposed ML-based methodology using GRASS GIS can be employed for integrating techniques of image analysis for land management in other arid regions of Africa. Full article
(This article belongs to the Special Issue Self-Supervised Learning for Image Processing and Analysis)
Show Figures

Figure 1

24 pages, 22401 KiB  
Article
Comparative Global Assessment and Optimization of LandTrendr, CCDC, and BFAST Algorithms for Enhanced Urban Land Cover Change Detection Using Landsat Time Series
by Taku Murakami and Narumasa Tsutsumida
Remote Sens. 2025, 17(14), 2402; https://doi.org/10.3390/rs17142402 - 11 Jul 2025
Viewed by 400
Abstract
The rapid expansion of urban areas necessitates effective monitoring systems for sustainable development planning. Time-series change detection algorithms applied to satellite imagery offer promising solutions, but their comparative effectiveness specifically for urban land cover monitoring remains poorly understood. This study aims to systematically [...] Read more.
The rapid expansion of urban areas necessitates effective monitoring systems for sustainable development planning. Time-series change detection algorithms applied to satellite imagery offer promising solutions, but their comparative effectiveness specifically for urban land cover monitoring remains poorly understood. This study aims to systematically evaluate and optimize three widely used algorithms—LandTrendr, CCDC, and BFAST—selected for their proven capabilities in different land cover change contexts and distinct algorithmic approaches. Using Landsat 5/7/8 (TM/ETM+/OLI) time-series data from 2000 to 2020 and a globally distributed dataset of 200 sample locations spanning six continents, we assess these algorithms across multiple spectral bands and parameter settings for land cover change detection in urban areas. Our analysis reveals that CCDC achieves the highest accuracy (78.14% F1 score) when utilizing complete spectral information (bands B1–B7), outperforming both BFAST (74.32% F1 score with NDVI) and LandTrendr (71.29% F1 score with B1). We demonstrated that, contrary to conventional approaches that prioritize vegetation indices, visible light bands—particularly B1 and B2—achieve higher performance across multiple algorithms. For instance, in LandTrendr, B1 yielded an F1 score of 71.29%, whereas NDVI and EVI produced 56.19% and 53.16%, respectively. Similarly, in CCDC, B2 achieved an F1 score of 72.19%, while NDVI and EVI resulted in 68.57% and 65.33%, respectively. Our findings underscore that parameter optimization and band selection significantly impact detection accuracy, with variations up to 30% observed across different configurations. This comprehensive evaluation provides critical methodological guidance for satellite-based urban expansion monitoring and identifies specific optimization strategies to enhance the application of existing algorithms for urban land cover change detection. Full article
Show Figures

Figure 1

19 pages, 4056 KiB  
Article
Aerobiological Dynamics and Climatic Sensitivity of Airborne Pollen in Southeastern Türkiye: A Two-Year Assessment from Siirt
by Salih Akpınar
Biology 2025, 14(7), 841; https://doi.org/10.3390/biology14070841 - 10 Jul 2025
Viewed by 408
Abstract
This study investigates the composition, abundance, and seasonal variability of airborne pollen in Siirt, a transitional region between the Irano-Turanian and Mediterranean phytogeographical zones in southeastern Türkiye. The main objective was to assess pollen diversity and its relationship with meteorological parameters over a [...] Read more.
This study investigates the composition, abundance, and seasonal variability of airborne pollen in Siirt, a transitional region between the Irano-Turanian and Mediterranean phytogeographical zones in southeastern Türkiye. The main objective was to assess pollen diversity and its relationship with meteorological parameters over a two-year period (2022–2023). Airborne pollen was collected using a Hirst-type volumetric pollen and spore trap; a total of 18,666 pollen grains/m3 belonging to 37 taxa were identified. Of these, 70.67% originated from woody taxa and 29.33% from herbaceous taxa. Peak concentrations occurred in April, with the lowest levels in December. The dominant taxa, all exceeding 1% of the total, were Pinaceae (31.00%); Cupressaceae/Taxaceae (27.79%); Poaceae (18.42%); Moraceae (4.23%); Amaranthaceae (2.42%); Urticaceae (2.13%); Quercus (1.55%); Fabaceae (1.29%); and Rumex (1.02%). Spearman’s correlation analysis revealed significant relationships between daily pollen concentrations and meteorological variables such as temperature, humidity, precipitation, and wind speed. These findings highlight that both climatic conditions and the surrounding vegetation, shaped by regional land cover, play a crucial role in determining pollen dynamics. In conclusion, this study provides the first aerobiological baseline for Siirt and contributes valuable data for allergy-risk forecasting and long-term ecological monitoring in southeastern Türkiye. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

26 pages, 6987 KiB  
Article
Assessment of Integrated Coastal Vulnerability Index in the Coromandel Coast of Tamil Nadu, India Using Multi-Criteria Spatial Analysis Approaches
by Ponmozhi Arokiyadoss, Lakshmi Narasimhan Chandrasekaran, Ramachandran Andimuthu and Ahamed Ibrahim Syed Noor
Sustainability 2025, 17(14), 6286; https://doi.org/10.3390/su17146286 - 9 Jul 2025
Viewed by 406
Abstract
This study presents a comprehensive coastal vulnerability assessment framework by integrating a range of physical, environmental, and climatic parameters. Key criteria include shoreline changes, coastal geomorphology, slope, elevation, bathymetry, tidal range, wave height, shoreline change rates, population density, land use and land cover [...] Read more.
This study presents a comprehensive coastal vulnerability assessment framework by integrating a range of physical, environmental, and climatic parameters. Key criteria include shoreline changes, coastal geomorphology, slope, elevation, bathymetry, tidal range, wave height, shoreline change rates, population density, land use and land cover (LULC), temperature, precipitation, and coastal inundation factors. By synthesizing these parameters with real-time coastal monitoring data, the framework enhances the accuracy of regional risk evaluations. The study employs Multi-Criteria Spatial Analysis (MCSA) to systematically assess and prioritize vulnerability indicators, enabling a data-driven and objective approach to coastal zone management. The findings aim to support coastal planners, policymakers, and stakeholders in designing effective, sustainable adaptation and mitigation strategies for regions most at risk. This integrative approach not only strengthens the scientific understanding of coastal vulnerabilities but also serves as a valuable tool for informed decision-making under changing climate and socioeconomic conditions. Full article
Show Figures

Figure 1

35 pages, 4572 KiB  
Review
Land Use and Land Cover Products for Agricultural Mapping Applications in Brazil: Challenges and Limitations
by Priscilla Azevedo dos Santos, Marcos Adami, Michelle Cristina Araujo Picoli, Victor Hugo Rohden Prudente, Júlio César Dalla Mora Esquerdo, Gilberto Ribeiro de Queiroz, Cleverton Tiago Carneiro de Santana and Michel Eustáquio Dantas Chaves
Remote Sens. 2025, 17(13), 2324; https://doi.org/10.3390/rs17132324 - 7 Jul 2025
Viewed by 1401
Abstract
Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round cropping, multiple cropping, and regional climate variability, make LULC monitoring a highly challenging task. The country has thirteen remote sensing-based LULC [...] Read more.
Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round cropping, multiple cropping, and regional climate variability, make LULC monitoring a highly challenging task. The country has thirteen remote sensing-based LULC products specifically tailored for this purpose. However, the differences and the results of these products have not yet been synthesized to provide coherent guidance in assessing their spatio-temporal agricultural dynamics and identifying promising approaches and issues that affect LULC analysis. This review represents the first comprehensive assessment of the advantages, challenges, and limitations, highlighting the main issues when dealing with contrasting LULC maps. These challenges include incompatibility, a lack of updates, non-systematic classification ontologies, and insufficient data to monitor Brazilian LULC information. The consequences include impacts on intercropping estimation, diminished representation or misrepresentation of croplands; temporal discontinuity; an insufficient number of classes for subannual cropping evaluation; and reduced compatibility, comparability, and spectral separability. The study provides insights into the use of these products as primary input data for remote sensing-based applications. Moreover, it provides prospects for enhancing existing mapping efforts or developing new national-level initiatives to represent the spatio-temporal variation of Brazilian agriculture. Full article
Show Figures

Figure 1

22 pages, 2022 KiB  
Article
Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
by Jean Marie Vianney Nsabiyumva, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka and Federico Preti
Land 2025, 14(7), 1419; https://doi.org/10.3390/land14071419 - 6 Jul 2025
Viewed by 633
Abstract
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface [...] Read more.
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface conditions and erosion in Isare (Mumirwa) and Buhinyuza (Eastern Depressions), Burundi. Slow-forming, or progressive, terraces were installed on 16 December 2022 (Isare) and 30 December 2022 (Buhinyuza), featuring ditches and soil bunds to enhance soil and water conservation. Twelve plots were established, with 132 measurement pins, of which 72 were in non-terraced plots (n_PT) and 60 were in terraced plots (PT). Monthly measurements, conducted until May 2023, assessed erosion reduction, surface conditions, roughness, and soil thickness. Terracing reduced soil loss by 54% in Isare and 9% in Buhinyuza, though sediment accumulation in ditches was excessive, especially in n_PT. Anti-erosion ditches improved surface stability by reducing slope length, lowering erosion and runoff. Covered Surface (CoS%) exceeded 95%, while Opened Surface (OS%) and Bare Surface (BS%) declined significantly. At Isare, OS% dropped from 97% to 80%, and BS% from 96% to 3% in PT. Similar trends appeared in Buhinyuza. Findings highlight PRRPB effectiveness in this short-term timeframe, and provide insights for soil conservation in steep-slope regions of Central Africa. Full article
Show Figures

Figure 1

17 pages, 2182 KiB  
Article
Wildlife-Vehicle Collisions as a Threat to Vertebrate Conservation in a Southeastern Mexico Road Network
by Diana L. Buitrago-Torres, Gilberto Pozo-Montuy, Brandon Brand Buitrago-Marulanda, José Roberto Frías-Aguilar and Mauricio Antonio Mayo Merodio
Wild 2025, 2(3), 24; https://doi.org/10.3390/wild2030024 - 30 Jun 2025
Viewed by 1362
Abstract
Wildlife-vehicle collisions (WVCs) threaten biodiversity, particularly in the Gulf of Mexico, where road expansion increases habitat fragmentation. This research analyzes WVC patterns in southeastern Mexico, estimating collision rates across road types and assessing environmental factors influencing roadkill frequency. Field monitoring in 2016 and [...] Read more.
Wildlife-vehicle collisions (WVCs) threaten biodiversity, particularly in the Gulf of Mexico, where road expansion increases habitat fragmentation. This research analyzes WVC patterns in southeastern Mexico, estimating collision rates across road types and assessing environmental factors influencing roadkill frequency. Field monitoring in 2016 and 2023 recorded vertebrate roadkills along roads in Campeche, Chiapas, and Tabasco. Principal Component Analysis (PCA) and Generalized Additive Models (GAM) evaluated landscape influences on WVC occurrences. A total of 354 roadkill incidents involving 73 species of vertebrates were recorded, with mammals accounting for the highest mortality rate. Hotspots were identified along Federal Highway 259 and State Highways Balancán, Frontera-Jonuta, and Salto de Agua. Road type showed no significant effect. Land cover influenced WVCs, with cultivated forests, grasslands, and savannas showing the highest incidences. PCA identified temperature and elevation as key environmental drivers, while GAM suggested elevation had a weak but notable effect. These findings highlight the risks of road expansion in biodiversity-rich areas, where habitat fragmentation and increasing traffic intensify WVCs. Without targeted mitigation strategies, such as wildlife corridors, underpasses, and road signs, expanding infrastructure could further threaten wildlife populations by increasing roadkill rates and fragmenting habitats, particularly in ecologically sensitive landscapes like wetlands, forests, and coastal areas. Full article
Show Figures

Graphical abstract

55 pages, 3334 KiB  
Review
Urban Heat Island Effect: Remote Sensing Monitoring and Assessment—Methods, Applications, and Future Directions
by Lili Zhao, Xuncheng Fan and Tao Hong
Atmosphere 2025, 16(7), 791; https://doi.org/10.3390/atmos16070791 - 28 Jun 2025
Viewed by 1990
Abstract
This study systematically reviews the development and application of remote sensing technology in monitoring and evaluating urban heat island (UHI) effects. The urban heat island effect, characterized by significantly higher temperatures in urban areas compared to surrounding rural regions, has become a widespread [...] Read more.
This study systematically reviews the development and application of remote sensing technology in monitoring and evaluating urban heat island (UHI) effects. The urban heat island effect, characterized by significantly higher temperatures in urban areas compared to surrounding rural regions, has become a widespread environmental issue globally, with impacts spanning public health, energy consumption, ecosystems, and social equity. The paper first analyzes the formation mechanisms and impacts of urban heat islands, then traces the evolution of remote sensing technology from early traditional platforms such as Landsat and NOAA-AVHRR to modern next-generation systems, including the Sentinel series and ECOSTRESS, emphasizing improvements in spatial and temporal resolution and their application value. At the methodological level, the study systematically evaluates core algorithms for land surface temperature extraction and heat island intensity calculation, compares innovative developments in multi-source remote sensing data integration and fusion techniques, and establishes a framework for accuracy assessment and validation. Through analyzing the heat island differences between metropolitan areas and small–medium cities, the relationship between urban morphology and thermal environment, and regional specificity and global universal patterns, this study revealed that the proportion of impervious surfaces is the primary driving factor of heat island intensity while simultaneously finding that vegetation cover exhibits significant cooling effects under suitable conditions, with the intensity varying significantly depending on vegetation types, management levels, and climatic conditions. In terms of applications, the paper elaborates on the practical value of remote sensing technology in identifying thermally vulnerable areas, green space planning, urban material optimization, and decision support for UHI mitigation. Finally, in light of current technological limitations, the study anticipates the application prospects of artificial intelligence and emerging analytical methods, as well as trends in urban heat island monitoring against the backdrop of climate change. The research findings not only enrich the theoretical framework of urban climatology but also provide a scientific basis for urban planners, contributing to the development of more effective UHI mitigation strategies and enhanced urban climate resilience. Full article
(This article belongs to the Special Issue UHI Analysis and Evaluation with Remote Sensing Data (2nd Edition))
Show Figures

Figure 1

Back to TopTop