UHI Analysis and Evaluation with Remote Sensing Data (2nd Edition)

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Biometeorology and Bioclimatology".

Deadline for manuscript submissions: 15 December 2025 | Viewed by 447

Special Issue Editors


E-Mail Website
Guest Editor
Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy
Interests: remote sensing; satellite image processing; satellite image analysis mapping; environment; geographic information system; environmental impact assessment; climate change; spatial analysis; geospatial science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy
Interests: geographic information systems; image analysis; multispectral remote sensing; land cover; exposure analysis; pollutant dispersion models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is a follow-up of the Special Issue entitled “UHI Analysis and Evaluation with Remote Sensing Data” (https://www.mdpi.com/journal/atmosphere/special_issues/2PP7RRS190) published in Atmosphere.

The urban heat island (UHI) is an increasingly widespread phenomenon occurring worldwide, even in small urban areas. It leads to growing thermal discomfort in the hottest periods, causing increased mortality and morbidity, particularly among the weakest populations such as the elderly and children. Higher temperatures also instigate an increase in the energy required for air conditioning production. As such, urban area emissions rise and the UHI phenomenon develops further, a cycle that seems to have no end. In the context of global climate change, it is essential to study and analyze the urban heat island phenomenon using innovative tools such as remote sensing, capable of monitoring large urban areas and giving a complete view of the phenomenon. Satellite or aerial images can be used to monitor the surface temperature, analyze and characterize urban surfaces, and study the critical “hot” points of urban areas. These analyses can provide the means for urban planners to design actions against the UHI phenomenon.

In this Special Issue, we aim to publish papers that show how remote sensing (especially recent advances with new satellites) can help in the identification and analysis of urban heat islands to devise plans for the mitigation of and adaptation to this issue. We are interested in both large-scale studies, for example, the analysis of the UHI phenomenon in large metropolitan areas, and local studies, perhaps for small–medium-sized urban areas, in order to prove the presence of UHIs in these locations.

Dr. Francesca Despini
Dr. Sofia Costanzini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • urban heat island
  • remote sensing
  • urbanization
  • land surface temperature
  • thermal comfort
  • urban planning

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

55 pages, 3334 KiB  
Review
Urban Heat Island Effect: Remote Sensing Monitoring and Assessment—Methods, Applications, and Future Directions
by Lili Zhao, Xuncheng Fan and Tao Hong
Atmosphere 2025, 16(7), 791; https://doi.org/10.3390/atmos16070791 (registering DOI) - 28 Jun 2025
Abstract
This study systematically reviews the development and application of remote sensing technology in monitoring and evaluating urban heat island (UHI) effects. The urban heat island effect, characterized by significantly higher temperatures in urban areas compared to surrounding rural regions, has become a widespread [...] Read more.
This study systematically reviews the development and application of remote sensing technology in monitoring and evaluating urban heat island (UHI) effects. The urban heat island effect, characterized by significantly higher temperatures in urban areas compared to surrounding rural regions, has become a widespread environmental issue globally, with impacts spanning public health, energy consumption, ecosystems, and social equity. The paper first analyzes the formation mechanisms and impacts of urban heat islands, then traces the evolution of remote sensing technology from early traditional platforms such as Landsat and NOAA-AVHRR to modern next-generation systems, including the Sentinel series and ECOSTRESS, emphasizing improvements in spatial and temporal resolution and their application value. At the methodological level, the study systematically evaluates core algorithms for land surface temperature extraction and heat island intensity calculation, compares innovative developments in multi-source remote sensing data integration and fusion techniques, and establishes a framework for accuracy assessment and validation. Through analyzing the heat island differences between metropolitan areas and small–medium cities, the relationship between urban morphology and thermal environment, and regional specificity and global universal patterns, this study revealed that the proportion of impervious surfaces is the primary driving factor of heat island intensity while simultaneously finding that vegetation cover exhibits significant cooling effects under suitable conditions, with the intensity varying significantly depending on vegetation types, management levels, and climatic conditions. In terms of applications, the paper elaborates on the practical value of remote sensing technology in identifying thermally vulnerable areas, green space planning, urban material optimization, and decision support for UHI mitigation. Finally, in light of current technological limitations, the study anticipates the application prospects of artificial intelligence and emerging analytical methods, as well as trends in urban heat island monitoring against the backdrop of climate change. The research findings not only enrich the theoretical framework of urban climatology but also provide a scientific basis for urban planners, contributing to the development of more effective UHI mitigation strategies and enhanced urban climate resilience. Full article
(This article belongs to the Special Issue UHI Analysis and Evaluation with Remote Sensing Data (2nd Edition))
Show Figures

Figure 1

Back to TopTop