Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = laminated aluminum alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9412 KB  
Article
Ballistic Performance of 7A52/7A62 Aluminum Alloy Laminates: A Numerical Investigation of Configuration Effect
by Qunjiao Wang, Meilin Yin, Jiangong Zhou, Xinyu Liu, Hui Zhang, Ruibin Mei, Zejun Chen, Yu Cao, Qiang Wang, Fuguan Cong and Yunlong Zhang
Materials 2026, 19(1), 179; https://doi.org/10.3390/ma19010179 - 3 Jan 2026
Viewed by 332
Abstract
This study presents a systematic numerical investigation into the ballistic performance of 7A52/7A62 aluminum alloy laminated plates with varying configurations. The dynamic mechanical behavior of the base alloys, 7A52 and 7A62, was first characterized experimentally, and the corresponding Johnson-Cook (J-C) constitutive parameters were [...] Read more.
This study presents a systematic numerical investigation into the ballistic performance of 7A52/7A62 aluminum alloy laminated plates with varying configurations. The dynamic mechanical behavior of the base alloys, 7A52 and 7A62, was first characterized experimentally, and the corresponding Johnson-Cook (J-C) constitutive parameters were calibrated. Using the calibrated J-C model, a series of numerical simulations were performed on several structural configurations, including single-layer (7A52-A, 7A62-B), double-layer (AB, BA), and four-layer laminates (ABAB, BAAB, ABBA, BABA). The results demonstrate that four-layer laminates exhibit markedly better ballistic performance than monolithic and double-layer plates. Among them, the ABAB stacking sequence—arranged in an alternating soft–hard–soft–hard pattern—shows the optimal performance, yielding a residual projectile velocity of only 256 m/s. This represents an approximately 27% reduction compared to the monolithic high-strength 7A62 plate. The overall ranking of ballistic performance is as follows: ABAB > BAAB > ABBA > BABA. Energy-based analysis further indicates that multi-interface delamination, coupled with plastic deformation and damage evolution, improves the energy-absorption efficiency of the laminated plates and thus enhances their ballistic resistance. This study offers valuable guidance for the lightweight design of laminated 7XXX-series aluminum alloy protective plates. Full article
Show Figures

Figure 1

16 pages, 4428 KB  
Article
Strength and Impact Toughness of Multilayered 7075/1060 Aluminum Alloy Composite Laminates Prepared by Hot Rolling and Subsequent Heat Treatment
by Hui Zhang, Shida Liu, Siqi He, Qunjiao Wang, Fuguan Cong, Yunlong Zhang and Yu Cao
Materials 2026, 19(1), 62; https://doi.org/10.3390/ma19010062 - 23 Dec 2025
Viewed by 355
Abstract
The roll bonding of 7075/1060 composite laminates offers a promising approach toward the increase in toughness of aluminum layered composites. In this paper, 7075 and 1060 aluminum alloy plates were hot roll bonded to fabricate multilayered composite laminates. Solid solution at 470 °C [...] Read more.
The roll bonding of 7075/1060 composite laminates offers a promising approach toward the increase in toughness of aluminum layered composites. In this paper, 7075 and 1060 aluminum alloy plates were hot roll bonded to fabricate multilayered composite laminates. Solid solution at 470 °C for different holding times and subsequent aging were carried out for all the laminates. This study investigated the effect of holding times on the interfacial microstructure and interfacial bonding strength of the laminates. The interfacial shear strength was found to increase with longer holding times, which was attributed to the solid solution strengthening of the 1060 layer resulting from element diffusion. The findings also reveal that both tensile strength and toughness are positively correlated with the holding time of the solid solution, and there is a simultaneous improvement of tensile strength and toughness as the holding time increases. Microstructural characterization of the crack path profile of the Charpy impact and bending test indicates that interfacial delamination and main crack deflection become pronounced with the increase in holding time, and these lead to an increase in the fracture resistance in the crack-arrester orientation. Full article
Show Figures

Graphical abstract

20 pages, 5813 KB  
Article
Effect of Surface Treatments on Interlaminar Strength of an FML Formed by Basalt Fiber/Polyester Composite and Al 3003-H14 Sheets Manufactured via Combined VARTM and Vacuum Bagging Processes
by Cesar Alfonso Cortes-Tejada, Honorio Ortíz-Hernández, Marco Antonio García-Bernal, Gabriela Lourdes Rueda-Morales, Hilario Hernández-Moreno, Víctor Manuel Sauce-Rangel and Alexander Morales-Gómez
J. Manuf. Mater. Process. 2025, 9(10), 331; https://doi.org/10.3390/jmmp9100331 - 9 Oct 2025
Viewed by 1295
Abstract
Metal/composite interfacial interactions are critical to the mechanical performance of Fiber Metal Laminates (FMLs). In this study, the feasibility of successively combining Vacuum-Assisted Resin Transfer Molding (VARTM) and Vacuum Bagging (VB) was investigated, a strategy that has not been reported in the literature [...] Read more.
Metal/composite interfacial interactions are critical to the mechanical performance of Fiber Metal Laminates (FMLs). In this study, the feasibility of successively combining Vacuum-Assisted Resin Transfer Molding (VARTM) and Vacuum Bagging (VB) was investigated, a strategy that has not been reported in the literature for the fabrication of FMLs with 2/1 stacking configuration, using low-cost 3003-H14 aluminum alloy. The substrate was surface modified through mechanical abrasion and chemical etching in an ultrasonic bath with a 0.1 M NaOH solution, varying the exposure time (20, 40, and 60 min). These surfaces were characterized by optical microscopy and atomic force microscopy (AFM), conducting both qualitative and quantitative analyses of the two- and three-dimensional surface features associated with pore morphology. Additionally, their effects on interlaminar strength and Mode I failure modes of the adhesive joint at the metal/composite interface were evaluated. Micrographs of the surface variants revealed a systematic evolution of the metallic microstructure. The T-peel tests demonstrated that the microstructural features influenced the interlaminar behavior. The 40 min treatment exhibited the highest initial peak force (26.4 N) and the highest average peel force (12.4 N), with a predominantly cohesive mixed-mode failure, representing the most favorable configuration for maximizing adhesion at the metal/composite interface. Full article
Show Figures

Figure 1

35 pages, 10845 KB  
Article
Study on Axial Compression Performance of CFRP-Aluminum Alloy Laminated Short Tubes
by Xiaoqun Luo, Yanheng Li, Li Wang and Xiaonong Guo
Materials 2025, 18(15), 3480; https://doi.org/10.3390/ma18153480 - 24 Jul 2025
Cited by 1 | Viewed by 814
Abstract
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the [...] Read more.
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the advantages of CFRP and aluminum alloy. Such composite components have broad application prospects in the field of spatial structures. The CFRP-AL tubes were studied by experimental, numerical, and theoretical research on their axial compression performance in this paper. Firstly, the standard tensile test was carried out on 6061-T6 aluminum alloy. Combining the test results and references, the Johnson–Cook hardening model parameters of aluminum alloy were determined. The tensile test of CFRP was conducted to determine its material parameters. Based on composite material mechanics and fracture mechanics, a composite progressive damage model for the CFRP-AL tube was established. Secondly, axial compression tests were carried out on 27 CFRP-AL tubes and 3 aluminum alloy tubes with a small slenderness ratio. The test results show that the typical failure mode of CFRP-AL tubes with small slenderness ratios is strength failure, and the ultimate bearing capacity rises by 11~31% compared to aluminum alloy tubes. Thirdly, a user material subroutine capable of simulating CFRP failure was developed. Based on the user material subroutine, the effect of the initial imperfection, the fiber layer angle, the fiber layer thickness, the slenderness ratio, the diameter-thickness ratio and the CFRP volume ratio were discussed. And the failure mechanism and response of the CFRP-AL tubes under the axial compression were obtained. Finally, based on the strength theory, the formula predicting the bearing capacity of the strength failure was established, and the results of the formula were in a good agreement with the experimental and numerical results. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 1711 KB  
Review
Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates
by Cristiano Fragassa and Carlo Santulli
J. Compos. Sci. 2025, 9(7), 356; https://doi.org/10.3390/jcs9070356 - 8 Jul 2025
Cited by 3 | Viewed by 1377
Abstract
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with [...] Read more.
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with the metal. Another question may concern possible moisture penetration in the structure, which may reduce environmental resistance and result in local degradation, such as wear or even corrosion. Despite these limitations, this hybridization enjoys increasing success. Two forms are possibly available for this: introduction into metal matrix composites (MMCs), normally in the form of char from biomass combustion, or laminate reinforcement as the core for fiber metal laminates (FMLs). These two cases are treated alongside each other in this review, first because they may represent two combined options for recycling the same biomass into high-profile structures, aimed primarily at the aerospace industry. Moreover, as discussed above, the effect on the aluminum alloy can be compared and the forces to which they are subjected might be of a similar type, most particularly in terms of their hardness and impact. Both cases considered, MMCs and FMLs involved over time many lignocellulosic residues, starting from the most classical bast species, i.e., flax, hemp, sisal, kenaf, etc., and extending also to less diffuse ones, especially in view of the introduction of biomass as secondary, or residual, raw materials. Full article
Show Figures

Figure 1

22 pages, 6543 KB  
Article
Impact Resistance Study of Fiber–Metal Hybrid Composite Laminate Structures: Experiment and Simulation
by Zheyi Zhang, Haotian Guo, Yang Lan and Libin Zhao
Materials 2025, 18(12), 2906; https://doi.org/10.3390/ma18122906 - 19 Jun 2025
Cited by 2 | Viewed by 1443
Abstract
Thermoplastic carbon fiber/aluminum alloy hybrid composite laminates fully integrate the advantages of fiber-reinforced composites and metallic materials, exhibiting high fatigue resistance and impact resistance, with broad applications in fields such as national defense, aerospace, automotive engineering, and marine engineering. In this paper, thermoplastic [...] Read more.
Thermoplastic carbon fiber/aluminum alloy hybrid composite laminates fully integrate the advantages of fiber-reinforced composites and metallic materials, exhibiting high fatigue resistance and impact resistance, with broad applications in fields such as national defense, aerospace, automotive engineering, and marine engineering. In this paper, thermoplastic carbon fiber/aluminum alloy hybrid composite laminates were first prepared using a hot-press machine; then, high-velocity impact tests were conducted on the specimens using a first-stage light gas gun test system. Comparative experimental analyses were performed to evaluate the energy absorption performance of laminates with different ply thicknesses and layup configurations. High-speed cameras and finite element analysis software were employed to analyze the failure process and modes of the laminates under impact loading. The results demonstrate that fiber–metal laminates exhibit higher specific energy absorption than carbon fiber composite laminates. Meanwhile, the numerical simulation results can effectively reflect the experimental outcomes in terms of the velocity–time relationship, failure modes during the laminate impact process, and failure patterns after the laminate impact. Full article
Show Figures

Figure 1

25 pages, 7210 KB  
Article
Determination of Interface Fracture Parameters in Thermoplastic Fiber Metal Laminates Under Mixed-Mode I+II
by Michał Smolnicki and Szymon Duda
Polymers 2025, 17(11), 1462; https://doi.org/10.3390/polym17111462 - 24 May 2025
Cited by 1 | Viewed by 1178
Abstract
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials [...] Read more.
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials in terms of the metal–composite interface, which is the weakest link in this material system. In this paper, an experimental–numerical method for the determination of the fracture stress and energy for metal–composite interlayer is presented and verified. The proposed method utilizes four different experimental tests: DCB test (interface opening—mode I), ENF test (interface shearing—mode II), MMB test (mixed-mode I+II—opening with the shearing of the interface) and three-point bending test (3PB). For each test, digital twin in the form of a numerical model is prepared. The established numerical models for DCB and ENF allowed us to determine fracture stress and energy for mode I and mode II, respectively. On the basis of the numerical and experimental (from the MMB test) data, the B-K exponent is determined. Finally, the developed material model is verified in a three-point bending test, which results in mixed-mode conditions. The research is conducted on the thermoplastic FML made of aluminum alloy sheet and glass fiber reinforced polyamide 6. The research presented is complemented by fundamental mechanical tests, image processing and Scanning Electron Microscopy (SEM) analysis. As an effect, for the tested material, fracture parameters are determined using the described method. Full article
(This article belongs to the Special Issue Advances in Fatigue and Fracture of Fiber-Reinforced Polymers)
Show Figures

Graphical abstract

15 pages, 5205 KB  
Article
Simulation of the Penetration Process of 7xxx Aluminum Alloy Laminates with Different Configurations
by Qunjiao Wang, Shuhan Zhang, Meilin Yin, Hui Zhang, Xinyu Liu, Ruibin Mei, Fuguan Cong, Yunlong Zhang and Yu Cao
Materials 2025, 18(10), 2357; https://doi.org/10.3390/ma18102357 - 19 May 2025
Viewed by 766
Abstract
Aluminum alloy laminates have extensive applications in protective armor systems. A simulation-based approach was employed to investigate the anti-penetration performance of aluminum alloy laminates with different configurations. Experiments were carried out to study the mechanical properties of 7055 and 7075 aluminum alloys, and [...] Read more.
Aluminum alloy laminates have extensive applications in protective armor systems. A simulation-based approach was employed to investigate the anti-penetration performance of aluminum alloy laminates with different configurations. Experiments were carried out to study the mechanical properties of 7055 and 7075 aluminum alloys, and a J-C constitutive model was established for the 7055/7075 aluminum alloy laminate. Based on the J-C constitutive model, numerical simulation was performed to assess the anti-penetration performance of an aluminum alloy laminate with various configurations. Velocity curves during the projectile penetration process were obtained. The simulation results show that the four-layer laminate exhibits superior anti-penetration performance compared to the two-layer laminate. The four-layer laminate with the 7055/7075/7075/7055 configuration demonstrates optimal anti-penetration performance. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Laminated Materials)
Show Figures

Figure 1

15 pages, 3706 KB  
Article
Impact Damage of Aluminum-Composite Sandwich Panels and Constituents
by Shun-Fa Hwang and Ming-Yi Wu
Materials 2025, 18(9), 2105; https://doi.org/10.3390/ma18092105 - 3 May 2025
Cited by 1 | Viewed by 1057
Abstract
This study investigates the impact failure behavior of aluminum-composite sandwich panels, aluminum sheets, and composite laminates. Aluminum alloy sheets possess excellent ductility and plasticity, while carbon fiber composite sheets exhibit high strength, high rigidity, and superior heat resistance. The sandwich panel structure, composed [...] Read more.
This study investigates the impact failure behavior of aluminum-composite sandwich panels, aluminum sheets, and composite laminates. Aluminum alloy sheets possess excellent ductility and plasticity, while carbon fiber composite sheets exhibit high strength, high rigidity, and superior heat resistance. The sandwich panel structure, composed of two layers of aluminum alloy sheets and a central carbon fiber composite sheet, offers the advantages of being lightweight and high strength. These three types of specimens were subjected to impact energies of 15 J, 25 J, and 50 J. The numerical simulations employ LS-DYNA finite element software, with additional investigations into the energy absorption characteristics, which were employed and compared with the experiment. The experimental results indicate that aluminum alloy sheets only exhibit indentation under all three impact energies. Carbon fiber composite sheets sustain damage without penetration at 15 J but experience penetration failure at 25 J and 50 J. Aluminum-composite sandwich panels exhibit greater resistance to failure as compared to carbon fiber composites. At 15 J and 25 J, the top aluminum layer shows indentation, while the bottom aluminum layer develops cracks. At 50 J, complete penetration occurs. A comparison of damage morphology and force–time curves shows good agreement between the experimental and simulation results. While the carbon fiber composite plate exhibits the highest SEA, it also has the largest damage diameter, indicating more severe damage. In contrast, the aluminum alloy panel has the lowest specific energy absorption (SEA) due to its high weight. The aluminum-composite sandwich panel demonstrates intermediate performance in both damage diameter and SEA, striking a balance between the other two specimens. Full article
Show Figures

Figure 1

18 pages, 10927 KB  
Article
Study on the Formation and Evolution Mechanism of Pinhole in Aluminum Foil for the Lithium-Ion Battery Soft Packaging
by Kai Zhang, Wei Chen, Zhehang Fan, Xiaohu Chen, Changle Xiao, Yunan Chen, Yinhui Xu, Ruian Ni and Hongyan Wu
Coatings 2025, 15(4), 472; https://doi.org/10.3390/coatings15040472 - 16 Apr 2025
Viewed by 2026
Abstract
As the crucial core material in aluminum–plastic-laminated films, aluminum foil serves as a barrier and shaping element for lithium-ion battery soft packaging. However, its thinness, measuring only tens of microns, makes it susceptible to the formation of pinholes during the manufacturing process, which [...] Read more.
As the crucial core material in aluminum–plastic-laminated films, aluminum foil serves as a barrier and shaping element for lithium-ion battery soft packaging. However, its thinness, measuring only tens of microns, makes it susceptible to the formation of pinholes during the manufacturing process, which can significantly impact the barrier performance and properties of the aluminum–plastic-laminated film. The morphology and composition of foreign particles that lead to pinholes were analyzed using scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). Additionally, the formation mechanism and evolution law of pinholes were investigated using a laser scanning confocal microscope (LSCM). The results revealed that foreign particles responsible for pinholes originated from the inclusions in the aluminum alloy melt, filter aid particles from rolling oil, and environmental dust particles. To address this issue, potential strategies for controlling foreign particles were proposed. These included purifying the aluminum alloy melt, filtering the rolling oil, and maintaining a clean production environment. The simulated experiments showed that foreign particles were gradually embedded in the aluminum matrix during plastic deformation, leading to damage in the aluminum matrix. When the cumulative rolling reduction ratio exceeded 38%, the aluminum foil and foreign particles began to separate along the rolling direction, resulting in the formation of pinholes. The mechanism of uncoordinated deformation between foreign particles and aluminum foil was elaborated in detail. In addition, the simulation experiment indicated that once the cumulative reduction ratio surpassed 50%, the aspect ratio of the pinhole increased rapidly. When the cumulative reduction ratio increased to 83%, the pinhole began to gradually heal. Consequently, a quantitative relationship model between the pinhole area and the rolling reduction ratio was constructed. The pinhole evolution model enables a rough prediction of the actual pinhole area change and meets the requirements for engineering applications. This research provides both engineering applications and theoretical prediction approaches that can aid in the production of high-quality aluminum foil for lithium-ion battery soft packaging. Full article
Show Figures

Figure 1

17 pages, 92878 KB  
Article
Experimental Study on Impact Resistance of Thermoplastic Fiber–Metal Laminates with Different Layup Sequences
by Zheyi Zhang, Yang Lan, Haotian Guo and Libin Zhao
Coatings 2025, 15(4), 443; https://doi.org/10.3390/coatings15040443 - 8 Apr 2025
Cited by 4 | Viewed by 1316
Abstract
Thermoplastic fiber–metal hybrid composite laminates exhibit superior high-temperature resistance, fatigue resistance, and impact resistance, leading to their increasingly widespread application in the defense, military, aerospace, and marine engineering sectors. In this paper, the impact resistance of laminates with different layup sequences was compared [...] Read more.
Thermoplastic fiber–metal hybrid composite laminates exhibit superior high-temperature resistance, fatigue resistance, and impact resistance, leading to their increasingly widespread application in the defense, military, aerospace, and marine engineering sectors. In this paper, the impact resistance of laminates with different layup sequences was compared and analyzed through high-speed impact experiments, the dynamic response and failure mechanisms of laminates were explored, and the influence rules of different factors on the impact resistance of laminates were revealed. The findings indicate that distinct laminate configurations possess varying ballistic limits and failure modes. As the number of aluminum alloy layers increases along the thickness direction of laminates, the ballistic limit decreases progressively. When the aluminum alloy layer is distributed on the back of the laminate, the deformation and delamination degree of the laminate will be reduced, and the ballistic limit of the laminate will be improved. The aluminum alloy sandwich will cause more fiber damage, which is not conducive to the energy dissipation of the laminate. These research outcomes are anticipated to provide a technical foundation for the broader application of thermoplastic fiber–metal hybrid composite laminates. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

25 pages, 14571 KB  
Article
Friction Stir Spot Welding of Aluminum Alloy to Carbon Fiber-Reinforced Thermosetting Resin Coated by Thermoplastic Resin Using Tools with Different Surface Shapes
by Kazuto Tanaka and Yuki Nagae
J. Compos. Sci. 2025, 9(1), 17; https://doi.org/10.3390/jcs9010017 - 2 Jan 2025
Cited by 4 | Viewed by 1712
Abstract
To achieve carbon neutrality, a reduction in car body weight is essential. Multi-material structures that use lightweight materials such as carbon fiber-reinforced polymers (CFRP) and aluminum (Al) alloy are used to replace parts of steel components. This multi-material method requires specific joining techniques [...] Read more.
To achieve carbon neutrality, a reduction in car body weight is essential. Multi-material structures that use lightweight materials such as carbon fiber-reinforced polymers (CFRP) and aluminum (Al) alloy are used to replace parts of steel components. This multi-material method requires specific joining techniques for bonding dissimilar materials. Friction stir spot welding (FSSW) is one of the joining techniques used for joining dissimilar materials, enabling rapid and strong joints. FSSW for bonding A5052 Al alloy and carbon fiber-reinforced thermosetting resin (CFRTS) utilizing composite laminates with integrally molded thermoplastic resin in the outermost layer has been developed. However, joints using this method cause pyrolysis due to excessive frictional heating at the tool’s bottom, which may affect joint strength and promote corrosion in Al alloy. Therefore, this study developed new tools, a concave-shaped tool without a probe, a concave-shaped tool with a probe and a conventional FSSW tool, and investigated the influence of heat distribution and joint strength using the three new tools. The newly developed concave-shaped tool with a probe suppressed 7% of maximum heat input, decreased the pyrolysis area of epoxy resin by 47%, and increased joint strength by 4%. Finite element analysis also showed the suppression of heat input through the newly developed concave-shaped tool with a probe, achieved by reducing the contact area between the tool and Al alloy. Full article
Show Figures

Figure 1

19 pages, 7044 KB  
Article
Analysis of Tensile Failure Behavior of Metal Fiber Laminates Under Different Temperature Environments
by Hongbin Lu, Dongfa Sheng, Yuting Fang, Hongquan Yu and Fan Yang
Polymers 2024, 16(23), 3319; https://doi.org/10.3390/polym16233319 - 27 Nov 2024
Cited by 5 | Viewed by 1442
Abstract
The tensile properties of fiber metal laminates were examined at temperatures ranging from 30 °C to 180 °C in this paper through the integration of numerical simulation techniques, experimental measurements, and digital image correlation techniques. The laminates were initially modeled using finite elements, [...] Read more.
The tensile properties of fiber metal laminates were examined at temperatures ranging from 30 °C to 180 °C in this paper through the integration of numerical simulation techniques, experimental measurements, and digital image correlation techniques. The laminates were initially modeled using finite elements, and the failure behavior of porous basalt-fiber-reinforced aluminum alloy plates was numerically simulated. Consequently, metal fiber laminate stress–strain responses were varied by numerous tensile experiments conducted at varying temperatures. Simultaneously, a scanning electron microscope was used to scan a porous basalt-fiber-reinforced aluminum alloy laminate at different temperatures to determine the tensile mechanical behavior and micro-damage morphology. Lastly, the laminate’s dynamic response to the tensile process was observed through digital image correlation technology. The stress distribution was determined to be concentrated around circular openings through analysis. The strain distribution graph exhibited a “band” shape as the number of perforations increased. The findings indicate that fiber metal laminates lose tensile strength as temperatures increase. The ultimate tensile strength of the laminate decreases as the number of perforations increases at the same temperature. Complex damage mechanisms, including matrix debonding, fiber withdrawal, and matrix fracture, can be captured through scanning electron microscopy at varying temperatures. The tensile behavior and damage mechanisms of laminates with hole-containing structures under thermal conditions are examined, and the results can be used to inform the design and utilization of laminate structures. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

19 pages, 16988 KB  
Article
Comparative Analysis of Mechanical Properties and Microstructure of 7B52 Aluminum Alloy Laser-MIG Hybrid Welding and MIG Welding Joints
by Yu Lu, Dafeng Wang, Lijun Cao, Liangchao Ma and Haolin Zeng
Metals 2024, 14(10), 1110; https://doi.org/10.3390/met14101110 - 27 Sep 2024
Cited by 1 | Viewed by 1809
Abstract
Laser-MIG hybrid welding and MIG welding were carried out on 7B52 aluminum alloy, and the microstructure and mechanical properties of the joints were compared and analyzed. The results show that the average grain sizes of laser-MIG hybrid welding, MIG welding, and the laser [...] Read more.
Laser-MIG hybrid welding and MIG welding were carried out on 7B52 aluminum alloy, and the microstructure and mechanical properties of the joints were compared and analyzed. The results show that the average grain sizes of laser-MIG hybrid welding, MIG welding, and the laser weld zone are 18.38 μm, 24.16 μm, and 15.96 μm, respectively. The width of the HAZ of the laser zone is lower than that of the laser-MIG hybrid welding zone and MIG welding zone. The hardness is higher than that of the hybrid welding zone and MIG welding zone. The tensile strength of each laser-MIG hybrid welding joint zone is better than that of the MIG welding zone. The tensile strength of the laser zone is the worst. When stress ratio R = 0.1 and fatigue cycle Nf = 106, the fatigue strength of the laminated zone of the laser-MIG hybrid welding joint is better than that of the MIG welding joint, and the welding defect is the leading cause of fatigue cracks. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

15 pages, 3961 KB  
Article
Forming Epoxy Coatings on Laser-Engraved Surface of Aluminum Alloy to Reinforce the Bonding Joint with a Carbon Fiber Composite
by Hongping Zhu, Jinheng Zhang, Fei Cheng, Jiangzhou Li, Bo Wu and Zhijie Zhao
Coatings 2024, 14(9), 1201; https://doi.org/10.3390/coatings14091201 - 18 Sep 2024
Cited by 3 | Viewed by 2127
Abstract
This study designed laser engraving and resin pre-coating (RPC) treatments on an aluminum alloy (AA) surface to construct through-the-thickness “epoxy pins” for improving the bonding strength with carbon fiber reinforced polymer (CFRP). A laser engraving treatment was used to create a pitted structure [...] Read more.
This study designed laser engraving and resin pre-coating (RPC) treatments on an aluminum alloy (AA) surface to construct through-the-thickness “epoxy pins” for improving the bonding strength with carbon fiber reinforced polymer (CFRP). A laser engraving treatment was used to create a pitted structure on the AA surface; higher wettability was acquired and greater vertical spaces were formed to impregnate epoxy resin, resulting in stronger mechanical interlocking. The RPC technique was further used to guide high-viscosity epoxy resin into pits to form the epoxy coatings and to minimize defects between the resin and the substrate. The bonding strength of the specimen treated with both laser engraving with a unit dimension of 0.3 mm and RPC increased up to 227.1% in comparison with that of the base. The failure modes of the hybrid composites changed from the debonding failure of the AA surface to the delamination-dominated failure of the laminated CFRP composites. It was confirmed that laser engraving is a feasible and effective method when combined with RPC for treating AAs to improve the bonding strength of AA-CFRP composites, which provides a reference for preparing high-performance hybrid composites with metals. Full article
Show Figures

Figure 1

Back to TopTop