Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (423)

Search Parameters:
Keywords = lake volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1721 KiB  
Article
Finite Integration Method with Chebyshev Expansion for Shallow Water Equations over Variable Topography
by Ampol Duangpan, Ratinan Boonklurb, Lalita Apisornpanich and Phiraphat Sutthimat
Mathematics 2025, 13(15), 2492; https://doi.org/10.3390/math13152492 - 2 Aug 2025
Viewed by 133
Abstract
The shallow water equations (SWEs) model fluid flow in rivers, coasts, and tsunamis. Their nonlinearity challenges analytical solutions. We present a numerical algorithm combining the finite integration method with Chebyshev polynomial expansion (FIM-CPE) to solve one- and two-dimensional SWEs. The method transforms partial [...] Read more.
The shallow water equations (SWEs) model fluid flow in rivers, coasts, and tsunamis. Their nonlinearity challenges analytical solutions. We present a numerical algorithm combining the finite integration method with Chebyshev polynomial expansion (FIM-CPE) to solve one- and two-dimensional SWEs. The method transforms partial differential equations into integral equations, approximates spatial terms via Chebyshev polynomials, and uses forward differences for time discretization. Validated on stationary lakes, dam breaks, and Gaussian pulses, the scheme achieved errors below 1012 for water height and velocity, while conserving mass with volume deviations under 105. Comparisons showed superior shock-capturing versus finite difference methods. For two-dimensional cases, it accurately resolved wave interactions over complex topographies. Though limited to wet beds and small-scale two-dimensional problems, the method provides a robust simulation tool. Full article
(This article belongs to the Special Issue Numerical Analysis and Scientific Computing for Applied Mathematics)
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 328
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

27 pages, 2736 KiB  
Article
Estimation of Tree Diameter at Breast Height (DBH) and Biomass from Allometric Models Using LiDAR Data: A Case of the Lake Broadwater Forest in Southeast Queensland, Australia
by Zibonele Mhlaba Bhebhe, Xiaoye Liu, Zhenyu Zhang and Dev Raj Paudyal
Remote Sens. 2025, 17(14), 2523; https://doi.org/10.3390/rs17142523 - 20 Jul 2025
Viewed by 593
Abstract
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast [...] Read more.
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast height (DBH), an important input into allometric equations to estimate biomass. The main objective of this study is to estimate tree DBH using existing allometric models. Specifically, it compares three global DBH pantropical models to calculate DBH and to estimate the aboveground biomass (AGB) of the Lake Broadwater Forest located in Southeast (SE) Queensland, Australia. LiDAR data collected in mid-2022 was used to test these models, with field validation data collected at the beginning of 2024. The three DBH estimation models—the Jucker model, Gonzalez-Benecke model 1, and Gonzalez-Benecke model 2—all used tree H, and the Jucker and Gonzalez-Benecke model 2 additionally used CD and CA, respectively. Model performance was assessed using five statistical metrics: root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), percentage bias (MBias), and the coefficient of determination (R2). The Jucker model was the best-performing model, followed by Gonzalez-Benecke model 2 and Gonzalez-Benecke model 1. The Jucker model had an RMSE of 8.7 cm, an MAE of −13.54 cm, an MAPE of 7%, an MBias of 13.73 cm, and an R2 of 0.9005. The Chave AGB model was used to estimate the AGB at the tree, plot, and per hectare levels using the Jucker model-calculated DBH and the field-measured DBH. AGB was used to estimate total biomass, dry weight, carbon (C), and carbon dioxide (CO2) sequestered per hectare. The Lake Broadwater Forest was estimated to have an AGB of 161.5 Mg/ha in 2022, a Total C of 65.6 Mg/ha, and a CO2 sequestered of 240.7 Mg/ha in 2022. These findings highlight the substantial carbon storage potential of the Lake Broadwater Forest, reinforcing the opportunity for landholders to participate in the carbon credit systems, which offer financial benefits and enable contributions to carbon mitigation programs, thereby helping to meet national and global carbon reduction targets. Full article
Show Figures

Graphical abstract

20 pages, 16378 KiB  
Article
Ice Avalanche-Triggered Glacier Lake Outburst Flood: Hazard Assessment at Jiongpuco, Southeastern Tibet
by Shuwu Li, Changhu Li, Zhengzheng Li, Lei Li and Wei Wang
Water 2025, 17(14), 2102; https://doi.org/10.3390/w17142102 - 15 Jul 2025
Viewed by 508
Abstract
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, [...] Read more.
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, located in the southeastern part of the Tibetan Plateau, using an integrated approach combining remote sensing, field surveys, and numerical modeling. Results show that the lake has expanded significantly—from 2.08 km2 in 1990 to 5.43 km2 in 2021—with the most rapid increase observed between 2015 and 2016. InSAR data and optical imagery indicate that surrounding moraine deposits remain generally stable. However, ice avalanches from the glacier terminus are identified as the primary trigger for lake outburst via wave-induced overtopping. Mechanical and geomorphological analyses suggest that the moraine dam is resistant to downcutting erosion, reinforcing overtopping as the dominant failure mode. To assess potential impacts, three numerical simulation scenarios were conducted based on different avalanche volumes. Under the extreme scenario involving a 5-million m3 ice avalanche, the modeled peak discharge at the dam site reaches approximately 19,000 m3/s. Despite the high flood magnitude, the broad and gently sloped downstream terrain facilitates rapid attenuation of flood peaks, resulting in limited impact on downstream settlements. These findings offer critical insights for GLOF hazard assessment, disaster preparedness, and risk mitigation under a changing climate. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

13 pages, 879 KiB  
Article
Comparative Evaluation of Serum Separator V-Tube™, VQ-Tube™, and K2EDTA V-Tube™ with Becton Dickinson Tubes for Chemistry, Immunology, and Hematology Examinations
by Takho Kang, Seung Gyu Yun, Myung-Hyun Nam, Yunjung Cho and Minjeong Nam
Diagnostics 2025, 15(14), 1775; https://doi.org/10.3390/diagnostics15141775 - 14 Jul 2025
Viewed by 351
Abstract
Background: Rigorous evaluation of vacuum blood collection tubes is essential to ensure the reliability of laboratory results. Methods: In this study, we compared the serum separator tube V-Tube™ (V-Tube SST), the quick-clotting serum separator tube VQ-Tube™ (VQ-Tube SST), and the K2 [...] Read more.
Background: Rigorous evaluation of vacuum blood collection tubes is essential to ensure the reliability of laboratory results. Methods: In this study, we compared the serum separator tube V-Tube™ (V-Tube SST), the quick-clotting serum separator tube VQ-Tube™ (VQ-Tube SST), and the K2EDTA V-Tube™ (V-Tube K2EDTA) manufactured by AB Medical (Seoul, Republic of Korea), with their respective counterparts from Becton Dickinson (BD, Franklin Lakes, NJ, USA): BD Vacutainer® SST™ II Advance Tube (BD SST) and BD Vacutainer® K2EDTA 5.4 mg Tube (BD K2EDTA). The evaluation encompassed 61 measurands across the fields of chemistry, immunology, and hematology, and incorporated a stability assessment for the VQ-Tube SST. Results: The V-Tube SST, VQ-Tube SST, and V-Tube K2EDTA demonstrated comparable analytical performance to the BD tubes for the majority of measurands. However, glucose, lactate dehydrogenase, mean corpuscular volume, and mean corpuscular hemoglobin concentration indicated clinically significant differences according to the desirable biological variation database (Ricos). Conclusions: These findings suggest that, while the V-tube and VQ-tube SST generally serve as alternatives to BD tubes, caution should be taken when interpreting results for specific measurands that demonstrated clinically significant discrepancies. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Biochemical Testing)
Show Figures

Figure 1

25 pages, 10132 KiB  
Article
Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District
by Lina Hao, Guoshuai Wang, Vijay P. Singh and Tingxi Liu
Agronomy 2025, 15(7), 1650; https://doi.org/10.3390/agronomy15071650 - 7 Jul 2025
Viewed by 252
Abstract
The shifting irrigation reduction in the Hetao Irrigation District and the inability to effectively discharge salts from the system have led to significant changes in salt migration patterns. Based on the integration of long-term field observations (2017–2023) with soil hydrodynamics and solute transport [...] Read more.
The shifting irrigation reduction in the Hetao Irrigation District and the inability to effectively discharge salts from the system have led to significant changes in salt migration patterns. Based on the integration of long-term field observations (2017–2023) with soil hydrodynamics and solute transport models, this study explored the impact of irrigation reduction on water and salt migration in a cropland–wasteland–lake system. The results indicated that before and after the reduction in irrigation and decline in groundwater levels, the migration rates of groundwater from croplands to wastelands and from wastelands to lakes remained relatively stable, averaging 78% and 40%. During the crop growth period, after irrigation reduction and groundwater level decline, the volume of groundwater recharging lakes from wastelands decreased by 80–120 mm, causing a water deficit in the lakes of 679–789 mm. After irrigation reduction and groundwater level decline, during the crop growth period, 1402 kg/ha of salt remained in the wasteland groundwater, and 597–861 kg/ha of salt accumulated in the cropland groundwater, exceeding previous levels, leading to salinization in the cropland and wasteland groundwater. This study provides insights relevant to managing groundwater and soil salinity in irrigation areas. Full article
Show Figures

Figure 1

25 pages, 12071 KiB  
Article
Data Imputation Based on Retrieval-Augmented Generation
by Xiaojun Shi, Jiacheng Wang, Gregorius Justin Chung, Derick Julian and Lianpeng Qiao
Appl. Sci. 2025, 15(13), 7371; https://doi.org/10.3390/app15137371 - 30 Jun 2025
Viewed by 552
Abstract
Modern organizations collect increasing volumes of data to drive decision-making, often stored in centralized repositories such as data lakes, which consist of diverse structured and unstructured datasets. However, these repositories often suffer from issues such as incomplete, inconsistent, and low-quality data, which hinder [...] Read more.
Modern organizations collect increasing volumes of data to drive decision-making, often stored in centralized repositories such as data lakes, which consist of diverse structured and unstructured datasets. However, these repositories often suffer from issues such as incomplete, inconsistent, and low-quality data, which hinder data-driven insights. Existing methods for data imputation, including statistical techniques and machine learning approaches, often rely heavily on large amounts of labeled data and domain-specific knowledge, making them labor-intensive and limited in handling semantic heterogeneity across data formats. To address these challenges, this study proposes a novel retrieval-augmented generation (RAG) framework for data imputation that effectively combines the strengths of retrieval mechanisms and large language models (LLMs). This approach constructs semantic-based indexes for heterogeneous data, employs a recall and re-ranking strategy to enhance retrieval relevance, and proposes a method to reduce inference cost while ensuring imputation quality. Extensive experiments on real-world datasets demonstrate that the proposed framework significantly outperforms machine learning and deep learning approaches. Full article
(This article belongs to the Special Issue AI-Based Data Science and Database Systems)
Show Figures

Figure 1

33 pages, 27778 KiB  
Article
Integrated Adaptive Water Allocation Scenarios for Wetland Restoration: A Case Study of Lake Marmara Under Climate Change
by Mert Can Gunacti and Cem Polat Cetinkaya
Water 2025, 17(13), 1930; https://doi.org/10.3390/w17131930 - 27 Jun 2025
Viewed by 279
Abstract
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation [...] Read more.
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation in recent years. Within the scope of the PRIMA-funded “Mara-Mediterra” project, an integrated modeling approach was employed to evaluate multiple restoration scenarios using the WEAP (Water Evaluation and Planning) platform. Scenarios varied based on the initial storage capacity of Gördes Dam, irrigation demands, environmental flow priorities, and a potential water diversion investment from the Tabaklı reach. Results indicate that under current conditions, Lake Marmara’s ecological water needs can be sustained without the Tabaklı investment. However, under 2050 climate projections, scenarios lacking the Tabaklı investment or deprioritizing ecological needs consistently failed to meet the lake’s minimum water thresholds. Conversely, scenarios combining moderate dam storage levels, environmental prioritization, and Tabaklı inflow succeeded in restoring lake volumes by over 90%. These findings highlight the need for adaptive water planning that aligns with projected hydro-climatic shifts to ensure long-term wetland sustainability. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Graphical abstract

22 pages, 2211 KiB  
Article
Seasonality of Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part A
by Elzbieta Bialkowska-Jelinska, Philip van Beynen and Laurent Calcul
Environments 2025, 12(7), 219; https://doi.org/10.3390/environments12070219 - 27 Jun 2025
Cited by 1 | Viewed by 973
Abstract
Shallow lakes are highly vulnerable to pollution due to their small water volume. Those that receive effluent from the drainfields of onsite wastewater treatment systems (septic tanks) may contain pharmaceuticals and personal care products (PPCPs) that escaped removal during treatment. This study examined [...] Read more.
Shallow lakes are highly vulnerable to pollution due to their small water volume. Those that receive effluent from the drainfields of onsite wastewater treatment systems (septic tanks) may contain pharmaceuticals and personal care products (PPCPs) that escaped removal during treatment. This study examined the effects of seasonal rainfall variability on the assemblages and concentrations of fourteen PPCPs in two shallow lakes in West–Central Florida, USA: one surrounded by residents equipped with septic tanks and the other located within a nature preserve. Water samples were collected weekly during an 18-week interval from April to August 2021. Liquid chromatography–mass spectrometry analyses revealed the omnipresence of five PPCPs: theophylline, caffeine, cotinine, DEET, and testosterone, although acetaminophen, ibuprofen, and sulfamethoxazole were also common. Of all the PPCPs detected, theophylline, DEET, and acetaminophen concentrations were higher during the wet season in the septic tank-influenced lake, while caffeine, cotinine, and testosterone concentrations decreased. In the lake located in the nature preserve, theophylline, caffeine, and acetaminophen levels increased in the wet season. In contrast, cotinine, DEET, and testosterone levels decreased. Overall, more compounds were detected during the wet season, with highly hydrophobic PPCPs (fluoxetine, atorvastatin, and octocrylene) only present during this period. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

17 pages, 6551 KiB  
Article
Monitoring the Impacts of Human Activities on Groundwater Storage Changes Using an Integrated Approach of Remote Sensing and Google Earth Engine
by Sepide Aghaei Chaleshtori, Omid Ghaffari Aliabad, Ahmad Fallatah, Kamil Faisal, Masoud Shirali, Mousa Saei and Teodosio Lacava
Hydrology 2025, 12(7), 165; https://doi.org/10.3390/hydrology12070165 - 26 Jun 2025
Viewed by 552
Abstract
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. [...] Read more.
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. Although the influence of natural factors on groundwater is well-recognized, the impact of human activities, despite being a major contributor to its change, has been less explored due to the challenges in measuring such effects. To address this gap, our study employed an integrated approach using remote sensing and the Google Earth Engine (GEE) cloud-free platform to analyze the effects of various anthropogenic factors such as built-up areas, cropland, and surface water on groundwater storage in the Lake Urmia Basin (LUB), Iran. Key anthropogenic variables and groundwater data were pre-processed and analyzed in GEE for the period from 2000 to 2022. The processes linking these variables to groundwater storage were considered. Built-up area expansion often increases groundwater extraction and reduces recharge due to impervious surfaces. Cropland growth raises irrigation demand, especially in semi-arid areas like the LUB, leading to higher groundwater use. In contrast, surface water bodies can supplement water supply or enhance recharge. The results were then exported to XLSTAT software2019, and statistical analysis was conducted using the Mann–Kendall (MK) non-parametric trend test on the variables to investigate their potential relationships with groundwater storage. In this study, groundwater storage refers to variations in groundwater storage anomalies, estimated using outputs from the Global Land Data Assimilation System (GLDAS) model. Specifically, these anomalies are derived as the residual component of the terrestrial water budget, after accounting for soil moisture, snow water equivalent, and canopy water storage. The results revealed a strong negative correlation between built-up areas and groundwater storage, with a correlation coefficient of −1.00. Similarly, a notable negative correlation was found between the cropland area and groundwater storage (correlation coefficient: −0.85). Conversely, surface water availability showed a strong positive correlation with groundwater storage, with a correlation coefficient of 0.87, highlighting the direct impact of surface water reduction on groundwater storage. Furthermore, our findings demonstrated a reduction of 168.21 mm (millimeters) in groundwater storage from 2003 to 2022. GLDAS represents storage components, including groundwater storage, in units of water depth (mm) over each grid cell, employing a unit-area, mass balance approach. Although storage is conceptually a volumetric quantity, expressing it as depth allows for spatial comparison and enables conversion to volume by multiplying by the corresponding surface area. Full article
Show Figures

Figure 1

21 pages, 3284 KiB  
Article
Significance of Spring Inflow to Great Salt Lake, Utah, U.S.A.
by Lauren E. Bunce, Tim K. Lowenstein, Elliot Jagniecki and David Collins
Hydrology 2025, 12(6), 159; https://doi.org/10.3390/hydrology12060159 - 19 Jun 2025
Viewed by 545
Abstract
Spring waters (n = 103) from locations surrounding Great Salt Lake (GSL) were mapped, collected, and analyzed to determine their chemical compositions. A ternary Ca-SO4-alkalinity plot was used to group these waters into compositional types based on the principle of chemical [...] Read more.
Spring waters (n = 103) from locations surrounding Great Salt Lake (GSL) were mapped, collected, and analyzed to determine their chemical compositions. A ternary Ca-SO4-alkalinity plot was used to group these waters into compositional types based on the principle of chemical divides. Different spring water types were mixed with Bear, Jordan, and Weber River waters to determine the amount of spring inflow needed to reproduce the chemical composition of GSL. The Pitzer-based computer program EQL/EVP was used to simulate evaporation of spring-river water mixtures. The goal was to find spring-river water mixtures that, when evaporated, reproduced the chemical composition of modern GSL. This approach yielded GSL brine composition from a starting mixture of 12% spring inflow and 88% river water, by volume. The calculated spring inflow–river water mixture contains, on a molar percentage basis, greater than 50% of the B, K, Li, Na, and Cl supplied by springs and greater than 50% of the Ba, Ca, Sr, SO4, and alkalinity derived from rivers. Understanding GSL spring inflow and brine evolution as lake elevation drops is critical to lake environments, ecosystems, and industrial brine shrimp harvesting and mineral extraction. Full article
(This article belongs to the Special Issue Lakes as Sensitive Indicators of Hydrology, Environment, and Climate)
Show Figures

Figure 1

19 pages, 4046 KiB  
Article
Combining Hydrodynamic Modelling and Solar Potential Assessment to Evaluate the Effects of FPV Systems on Mihăilești Reservoir, Romania
by Gabriela Elena Dumitran, Elena Catalina Preda, Liana Ioana Vuta, Bogdan Popa and Raluca Elena Ispas
Hydrology 2025, 12(6), 157; https://doi.org/10.3390/hydrology12060157 - 19 Jun 2025
Viewed by 879
Abstract
Floating photovoltaic (FPV) systems are a new green technology emerging lately, having the indisputable advantage of not covering agricultural land but instead the surface of lakes or reservoirs. Being a new technology, even though the number of studies is significant, reliable results remain [...] Read more.
Floating photovoltaic (FPV) systems are a new green technology emerging lately, having the indisputable advantage of not covering agricultural land but instead the surface of lakes or reservoirs. Being a new technology, even though the number of studies is significant, reliable results remain limited. This paper presents the possible influence of an FPV farm installed on the surface of a reservoir in Romania in four scenarios of the surface being covered with photovoltaic panels. The changes in the water mass under the FPV panels were determined using mathematical modelling as a tool. For this purpose, a water quality model was implemented for Mihăilești Reservoir, Romania, and the variations in the temperature, the phytoplankton biomass, and the total phosphorus and nitrogen were computed. Also, by installing FPV panels, it was estimated that a volume of water of between 1.75 and 7.43 million m3/year can be saved, and the greenhouse gas emission reduction associated with the proposed solutions will vary between 15,415 and 66,066 tCO2e/year; these results are in agreement with those reported in other scientifical studies. The overall conclusion is that the effect of an FPV farm on the reservoir’s surface is beneficial for the water quality in the reservoir. Full article
(This article belongs to the Special Issue Hydrodynamics and Water Quality of Rivers and Lakes)
Show Figures

Figure 1

29 pages, 753 KiB  
Article
Sustainable Thermal Energy Storage Systems: A Mathematical Model of the “Waru-Waru” Agricultural Technique Used in Cold Environments
by Jorge Luis Mírez Tarrillo
Energies 2025, 18(12), 3116; https://doi.org/10.3390/en18123116 - 13 Jun 2025
Viewed by 3295
Abstract
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that [...] Read more.
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that are cultivated (a series of earth platforms surrounded by water canals) with water, using water as thermal energy storage to store energy during the day and to regulate the temperature of the soil and crop atmosphere at night. The problem is that these cultures left no evidence in written documents that have been preserved to this day indicating the mathematical models, the physics involved, and the experimental part they performed for the research, development, and innovation of the “Waru-Waru” technique. From a review of the existing literature, there is (1) bibliography that is devoted to descriptive research (about the geometry, dimensions, and shapes of the crop fields (and more based on archaeological remains that have survived to the present day) and (2) studies presenting complex mathematical models with many physical parameters measured only with recently developed instrumentation. The research objectives of this paper are as follows: (1) develop a mathematical model that uses finite differences in fluid mechanics, thermodynamics, and heat transfer to explain the experimental and theory principles of this pre-Inca/Inca technique; (2) the proposed mathematical model must be in accordance with the mathematical calculation tools available in pre-Inca/Inca cultures (yupana and quipu), which are mainly based on arithmetic operations such as addition, subtraction, and multiplication; (3) develop a mathematical model in a sequence of steps aimed at determining the best geometric form for thermal energy storage and plant cultivation and that has a simple design (easy to transmit between farmers); (4) consider the assumptions necessary for the development of the mathematical model from the point of view of research on the geometry of earth platforms and water channels and their implantation in each cultivation area; (5) transmit knowledge of the construction and maintenance of “Waru-Waru” agricultural technology to farmers who have cultivated these fields since pre-Hispanic times. The main conclusion is that, in the mathematical model developed, algebraic mathematical expressions based on addition and multiplication are obtained to predict and explain the evolution of soil and water temperatures in a specific crop field using crop field characterization parameters for which their values are experimentally determined in the crop area where a “Waru-Waru” is to be built. Therefore, the storage of thermal energy in water allows crops to survive nights with low temperatures, and indirectly, it allows the interpretation that the Inca culture possessed knowledge of mathematics (addition, subtraction, multiplication, finite differences, approximation methods, and the like), physics (fluids, thermodynamics, and heat transfer), and experimentation, with priority given to agricultural techniques (and in general, as observed in all archaeological evidence) that are in-depth, exact, practical, lasting, and easy to transmit. Understanding this sustainable energy storage technique can be useful in the current circumstances of global warming and climate change within the same growing areas and/or in similar climatic and environmental scenarios. This technique can help in reducing the use of fossil or traditional fuels and infrastructure (greenhouses) that generate heat, expanding the agricultural frontier. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

22 pages, 25970 KiB  
Article
Experimental Study on Diversion Dike to Mitigate Debris Flow Blocking River Disaster
by Xing Gao, Liang Li, Longyang Pan, Xingguo Yang, Hongwei Zhou, Jian Liu, Mingyang Wang and Peimin Rao
Water 2025, 17(12), 1736; https://doi.org/10.3390/w17121736 - 8 Jun 2025
Viewed by 559
Abstract
Barrier lakes formed by debris flows blocking rivers can burst rapidly, posing significant threats to downstream areas. Mitigating the risk of barrier lake breaches caused by debris flow blockages is crucial for ensuring safety in affected regions. This study employed physical experiments to [...] Read more.
Barrier lakes formed by debris flows blocking rivers can burst rapidly, posing significant threats to downstream areas. Mitigating the risk of barrier lake breaches caused by debris flow blockages is crucial for ensuring safety in affected regions. This study employed physical experiments to investigate the influence of connection angles between the main flume and the tributary flume, as well as the installation of diversion dikes, on the morphological characteristics of debris flow deposits and the resulting barrier lake breach behavior. The findings reveal that when the debris flow enters the main flume at an intersection angle of 60°, compared to vertical entry (90°), the deposit’s height and volume are significantly reduced, while its length is increased. However, with the installation of a diversion dike, the height, volume, and length of the deposits are minimized, achieving the smallest values observed. Specifically, compared to vertical entry and a 60° connection angle without a diversion dike, the deposit volume decreased by 31.54~56.26%, height by 10.81~34.75%, and length by 2.33~25.05%. Post-breach observations indicate that the installation of a diversion dike results in the widest breach, the smallest peak flow, and the earliest occurrence of the peak flow. These findings demonstrate that diversion dikes effectively mitigate the barrier lake breach disaster caused by debris flow by altering the deposit morphology. The results provide valuable insights for the prevention and management of debris flow-induced river blockages and associated disasters in mountainous regions. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Graphical abstract

13 pages, 3074 KiB  
Proceeding Paper
Evaluation of Surface Area Dynamics of Manta and Beleu Lakes
by Ana Jeleapov
Environ. Earth Sci. Proc. 2025, 32(1), 19; https://doi.org/10.3390/eesp2025032019 - 3 Jun 2025
Viewed by 385
Abstract
This study evaluated the surface area and volume dynamics of the largest and most important natural lakes in the Republic of Moldova: Manta and Beleu. Lakes and surrounding areas represent the main natural ecosystem of the country, are a shelter to thousands of [...] Read more.
This study evaluated the surface area and volume dynamics of the largest and most important natural lakes in the Republic of Moldova: Manta and Beleu. Lakes and surrounding areas represent the main natural ecosystem of the country, are a shelter to thousands of animals and plant species, and are included in the protected areas network. The lakes are situated in the Lower Prut floodplain, with the main water sources being the Prut River through channels, as well as groundwater, surface runoff and precipitation. Regulations of the Prut River flow, climate change, and the increasing frequency of droughts and floods have a certain impact on lake extension and volume dynamics. The main methods used to evaluate surface area variation are the analysis of satellite images (Landsats, from 1975 to 2024) and the application of the NDWI index. As a result, it was identified that the extent of Beleu Lake varied from 0 to 19 km2, and that of Manta Lake from 5 to 27 km2. The actual average surface area is 7–11 km2 for Beleu and 15–19 km2 for Manta. The last catastrophic drought in 2022 decreased the surface area of Beleu by up to 3.7 km2 and that of Manta by up to 5 km2, while the most recent floods in 2020 extended the area of Beleu by up to 12 km2 and that of Manta by up to 27.3 km2. The volumes of Beleu vary from 0 to 40 mil.m3, with an average of 6.5–9 mil.m3, and of Manta from 4.5 mil.m3 to 55 mil.m3, with an average of 15–22 mil.m3. The shoreline lengths corresponding to the average water surface areas are 14–20 km for Beleu and 35–40 km for Manta. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

Back to TopTop