Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (498)

Search Parameters:
Keywords = lake level measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 647 KiB  
Article
Geographic Scale Matters in Analyzing the Effects of the Built Environment on Choice of Travel Modes: A Case Study of Grocery Shopping Trips in Salt Lake County, USA
by Ensheng Dong, Felix Haifeng Liao and Hejun Kang
Urban Sci. 2025, 9(8), 307; https://doi.org/10.3390/urbansci9080307 - 5 Aug 2025
Abstract
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt [...] Read more.
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt Lake County, UT, this research investigated a variety of influential factors affecting mode choices associated with grocery shopping. We analyze how built environment (BE) characteristics, measured at seven spatial scales or different ways of aggregating spatial data—including straight-line buffers, network buffers, and census units—affect travel mode decisions. Key predictors of choosing walking, biking, or transit over driving include age, household size, vehicle ownership, income, land use mix, street density, and distance to the central business district (CBD). Notably, the influence of BE factors on mode choice is sensitive to different spatial aggregation methods and locations of origins and destinations. The straight-line buffer was a good indicator for the influence of store sales amount on mode choices; the network buffer was more suitable for the household built environment factors, whereas the measurement at the census block and block group levels was more effective for store-area characteristics. These findings underscore the importance of considering both the spatial analysis method and the location (home vs. store) when modeling non-work travel. A multi-scalar approach can enhance the accuracy of travel demand models and inform more effective land use and transportation planning strategies. Full article
17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 (registering DOI) - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Viewed by 279
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance (Rrs), optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

20 pages, 4961 KiB  
Article
Modelling of Water Level Fluctuations and Sediment Fluxes in Nokoué Lake (Southern Benin)
by Tètchodiwèï Julie-Billard Yonouwinhi, Jérôme Thiébot, Sylvain S. Guillou, Gérard Alfred Franck Assiom d’Almeida and Felix Kofi Abagale
Water 2025, 17(15), 2209; https://doi.org/10.3390/w17152209 - 24 Jul 2025
Viewed by 486
Abstract
Nokoué Lake is located in the south of Benin and is fed by the Ouémé and Sô Rivers. Its hydrosedimentary dynamics were modelled using Telemac2D, incorporating the main environmental factors of this complex ecosystem. The simulations accounted for flow rates and suspended solids [...] Read more.
Nokoué Lake is located in the south of Benin and is fed by the Ouémé and Sô Rivers. Its hydrosedimentary dynamics were modelled using Telemac2D, incorporating the main environmental factors of this complex ecosystem. The simulations accounted for flow rates and suspended solids concentrations during periods of high and low water. The main factors controlling sediment transport were identified. The model was validated using field measurements of water levels and suspended solids. The results show that the north–south current velocity ranges from 0.5 to 1 m/s during periods of high water and 0.1 to 0.5 m/s during low-water periods. Residual currents are influenced by rainfall, river discharge, and tides. Complex circulation patterns are caused by increased river flow during high water, while tides dominate during low water and transitional periods. The northern, western, and south-eastern parts of the lake have weak residual currents and are, therefore, deposition zones for fine sediments. The estimated average annual suspended solids load for 2022–2023 is 17 Mt. The model performance shows a strong agreement between the observed and simulated values: R2 = 0.91 and NSE = 0.93 for water levels and R2 = 0.86 and NSE = 0.78 for sediment transport. Full article
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 325
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

27 pages, 2736 KiB  
Article
Estimation of Tree Diameter at Breast Height (DBH) and Biomass from Allometric Models Using LiDAR Data: A Case of the Lake Broadwater Forest in Southeast Queensland, Australia
by Zibonele Mhlaba Bhebhe, Xiaoye Liu, Zhenyu Zhang and Dev Raj Paudyal
Remote Sens. 2025, 17(14), 2523; https://doi.org/10.3390/rs17142523 - 20 Jul 2025
Viewed by 580
Abstract
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast [...] Read more.
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast height (DBH), an important input into allometric equations to estimate biomass. The main objective of this study is to estimate tree DBH using existing allometric models. Specifically, it compares three global DBH pantropical models to calculate DBH and to estimate the aboveground biomass (AGB) of the Lake Broadwater Forest located in Southeast (SE) Queensland, Australia. LiDAR data collected in mid-2022 was used to test these models, with field validation data collected at the beginning of 2024. The three DBH estimation models—the Jucker model, Gonzalez-Benecke model 1, and Gonzalez-Benecke model 2—all used tree H, and the Jucker and Gonzalez-Benecke model 2 additionally used CD and CA, respectively. Model performance was assessed using five statistical metrics: root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), percentage bias (MBias), and the coefficient of determination (R2). The Jucker model was the best-performing model, followed by Gonzalez-Benecke model 2 and Gonzalez-Benecke model 1. The Jucker model had an RMSE of 8.7 cm, an MAE of −13.54 cm, an MAPE of 7%, an MBias of 13.73 cm, and an R2 of 0.9005. The Chave AGB model was used to estimate the AGB at the tree, plot, and per hectare levels using the Jucker model-calculated DBH and the field-measured DBH. AGB was used to estimate total biomass, dry weight, carbon (C), and carbon dioxide (CO2) sequestered per hectare. The Lake Broadwater Forest was estimated to have an AGB of 161.5 Mg/ha in 2022, a Total C of 65.6 Mg/ha, and a CO2 sequestered of 240.7 Mg/ha in 2022. These findings highlight the substantial carbon storage potential of the Lake Broadwater Forest, reinforcing the opportunity for landholders to participate in the carbon credit systems, which offer financial benefits and enable contributions to carbon mitigation programs, thereby helping to meet national and global carbon reduction targets. Full article
Show Figures

Graphical abstract

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 226
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

24 pages, 3329 KiB  
Article
Isolation of a Novel Streptomyces sp. TH05 with Potent Cyanocidal Effects on Microcystis aeruginosa
by Xuhan Wang, Siqi Zhu, Shenchen Tao, Shaoyong Zhang, Ruijun Wang and Liqin Zhang
Toxins 2025, 17(7), 354; https://doi.org/10.3390/toxins17070354 - 17 Jul 2025
Viewed by 475
Abstract
In this paper, cultivable actinobacteria were isolated, cultured, and identified from the heavily algal-bloomed waters of Taihu Lake using 16S rRNA gene sequencing. Among the isolates, a single strain exhibiting vigorous cyanocidal activity against Microcystis aeruginosa FACHB-905 was selected for further investigation. The [...] Read more.
In this paper, cultivable actinobacteria were isolated, cultured, and identified from the heavily algal-bloomed waters of Taihu Lake using 16S rRNA gene sequencing. Among the isolates, a single strain exhibiting vigorous cyanocidal activity against Microcystis aeruginosa FACHB-905 was selected for further investigation. The cyanocidal efficacy and underlying mechanisms of this strain, designated TH05, were assessed through using chlorophyll content, cyanobacterial inhibition rate, and cyanobacterial cell morphology measurements. In addition, oxidative stress responses, expression of key functional genes in FACHB-905, and variations in microcystin concentrations were comprehensively evaluated. Cyanobacterial blooms caused by Microcystis aeruginosa pose serious ecological and public health threats due to the release of microcystins (MCs). In this study, we evaluated the cyanocidal activity and mechanism of a novel actinomycete strain, Streptomyces sp. TH05. Optimization experiments revealed that a light–dark cycle of 12 h/12 h, temperature of 25 °C, and pH 7 significantly enhanced cyanocidal efficacy. Under these conditions, TH05 achieved an 84.31% inhibition rate after seven days of co-cultivation with M. aeruginosa. Scanning electron microscopy revealed two distinct cyanocidal modes: direct physical attachment of TH05 mycelia to cyanobacterial cells, causing cell wall disruption, and indirect membrane damage via extracellular bioactive compounds. Biochemical analyses showed increased levels of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) during the first five days, peaking at 2.47-, 2.12-, and 1.91-fold higher than control levels, respectively, indicating elevated oxidative stress. Gene expression analysis using elf-p as a reference showed that TH05 modulated key genes associated with photosynthesis (PsaB, PstD1, PstD2, RbcL), DNA repair and stress response (RecA, FtsH), and microcystin biosynthesis (McyA, McyD). All genes were upregulated except for RbcL, which was downregulated. In parallel, microcystin content peaked at 32.25 ng/L on day 1 and decreased to 16.16 ng/L by day 9, which was significantly lower than that of the control group on day 9 (29.03 ng/L). These findings suggest that strain TH05 exhibits potent and multifaceted cyanocidal activity, underscoring its potential for application in the biological control of cyanobacterial blooms. Full article
Show Figures

Figure 1

13 pages, 620 KiB  
Article
Assessing Environmental Risk Posed by Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part B
by Elzbieta Bialkowska-Jelinska, Philip van Beynen and Laurent Calcul
Environments 2025, 12(7), 231; https://doi.org/10.3390/environments12070231 - 8 Jul 2025
Viewed by 815
Abstract
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it [...] Read more.
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it is essential to ascertain whether these contaminants pose any risk to aquatic organisms who live in the water bodies receiving this waste. Risk quotients (RQ) are a commonly used method to do so. For our pilot study, we undertook such analysis for three trophic levels: algae, crustaceans, and fish from two small lakes, one fed by septic tanks and the other not. This research was conducted in 2021 from the end of the dry season and through most of the wet season in west central Florida, USA. Of the 14 PPCPs measured, six had RQs that posed a risk to all three trophic levels. This risk increased during the wet season. Both lakes, regardless of whether they directly received PPCPs from septic tanks or not, had some level of risk. However, the lake without septic tanks had a smaller risk, both in elevated RQs and the occurrence to the various species. Of the PPCPs measured, DEET, caffeine, and theophylline posed the greatest risk. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Graphical abstract

14 pages, 496 KiB  
Review
Analysis of Heavy Metal Pollution Characteristics and Biological Effects in Lake Sediments: Implications for Health Risk Assessment
by Zheng Li, Weiwei Zhang, Shuhang Wang, Xia Jiang, Huaicheng Guo, Yong Liu and Zhenghui Fu
Processes 2025, 13(7), 2140; https://doi.org/10.3390/pr13072140 - 5 Jul 2025
Viewed by 482
Abstract
Heavy metals have long been a significant and challenging topic in the research and treatment of lake water environments due to their non-degradability and ease of bioaccumulation. With the advancement of industries such as manufacturing, agriculture, and heavy industry, coupled with the increasing [...] Read more.
Heavy metals have long been a significant and challenging topic in the research and treatment of lake water environments due to their non-degradability and ease of bioaccumulation. With the advancement of industries such as manufacturing, agriculture, and heavy industry, coupled with the increasing demand for heavy metals, the levels of heavy metals entering the environment have been rising annually. This trend necessitates more refined control measures for heavy metals in the environment. Currently, research on heavy metals in lake sediments in China mainly focuses on spatial distribution, morphological analysis, and ecological risk assessment. However, the characteristics of heavy metal migration, transformation, and biological effects are still largely unquantifiable. This article analyzes soil pollution cases in multiple regions of China and summarizes the nine main sources of heavy metals in the environment. It discusses the characteristics and biological effects of heavy metal migration and transformation. Finally, from the perspective of human health risk assessment, it explores the future development direction of heavy metal research. Full article
(This article belongs to the Special Issue Advances in Water Resource Pollution Mitigation Processes)
Show Figures

Figure 1

24 pages, 11020 KiB  
Article
Monitoring and Assessment of Slope Hazards Susceptibility Around Sarez Lake in the Pamir by Integrating Small Baseline Subset InSAR with an Improved SVM Algorithm
by Yang Yu, Changming Zhu, Majid Gulayozov, Junli Li, Bingqian Chen, Qian Shen, Hao Zhou, Wen Xiao, Jafar Niyazov and Aminjon Gulakhmadov
Remote Sens. 2025, 17(13), 2300; https://doi.org/10.3390/rs17132300 - 4 Jul 2025
Viewed by 386
Abstract
Sarez Lake, situated at one of the highest altitudes among naturally dammed lakes, is regarded as potentially hazardous due to its geological setting. Therefore, developing an integrated monitoring and risk assessment framework for slope-related geological hazards in this region holds significant scientific and [...] Read more.
Sarez Lake, situated at one of the highest altitudes among naturally dammed lakes, is regarded as potentially hazardous due to its geological setting. Therefore, developing an integrated monitoring and risk assessment framework for slope-related geological hazards in this region holds significant scientific and practical value. In this study, we processed 220 Sentinel-1A SAR images acquired between 12 March 2017 and 2 August 2024, using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to extract time-series deformation data with millimeter-level precision. These deformation measurements were combined with key environmental factors to construct a susceptibility evaluation model based on the Information Value and Support Vector Machine (IV-SVM) methods. The results revealed a distinct spatial deformation pattern, characterized by greater activity in the western region than in the east. The maximum deformation rate along the shoreline increased from 280 mm/yr to 480 mm/yr, with a marked acceleration observed between 2022 and 2023. Geohazard susceptibility in the Sarez Lake area exhibits a stepped gradient: the proportion of area classified as extremely high susceptibility is 15.26%, decreasing to 29.05% for extremely low susceptibility; meanwhile, the density of recorded hazard sites declines from 0.1798 to 0.0050 events per km2. The spatial configuration is characterized by high susceptibility on both flanks, a central low, and convergence of hazardous zones at the front and distal ends with a central expansion. These findings suggest that mitigation efforts should prioritize the detailed monitoring and remediation of steep lakeside slopes and fault-associated fracture zones. This study provides a robust scientific and technical foundation for the emergency warning and disaster management of high-altitude barrier lakes, which is applicable even in data-limited contexts. Full article
Show Figures

Figure 1

25 pages, 3581 KiB  
Article
Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System
by Jingyi Huang, Fengyan Tian, Yuanxing Huang, Hong Tao and Feipeng Li
Water 2025, 17(13), 2000; https://doi.org/10.3390/w17132000 - 3 Jul 2025
Viewed by 375
Abstract
Excessive nitrogen accumulation from aquaculture poses a significant threat to water quality in river–lake systems. This study investigated the Taipu River and five interconnected lakes to analyze the forms, spatial distribution, and ecological impact of nitrogen in both water and surface sediments. Sediment [...] Read more.
Excessive nitrogen accumulation from aquaculture poses a significant threat to water quality in river–lake systems. This study investigated the Taipu River and five interconnected lakes to analyze the forms, spatial distribution, and ecological impact of nitrogen in both water and surface sediments. Sediment total nitrogen (TN), ammonium nitrogen (NH4+-N), and nitrate nitrogen (NO3-N) were measured, with aquaculture-dominated lakes such as Xueluoyang Lake and Caodang Marsh exhibiting significantly higher sedimentary TN concentrations than the Taipu River. In Xueluoyang Lake, the average TN content reached 1037.3 mg/kg—1.87 times higher than in the river—highlighting the legacy effect of historical intensive aquaculture. Correlation analyses showed strong associations between sediment NH4+-N and NO3-N and nitrogen levels in overlying water, confirming sediments as a major endogenous nitrogen source. Multivariate statistical methods, including Pearson’s correlation, hierarchical clustering, and principal component analysis, were applied to elucidate spatial patterns and key influencing factors. Water quality evaluation indices and sediment organic pollution assessments revealed widespread TN exceedance, particularly in dry seasons, with water quality deteriorating to Class V or worse. These results underscore the need for strengthened control of sedimentary nitrogen release and effective management of agricultural non-point source pollution to restore and protect water quality in river–lake systems. Full article
(This article belongs to the Special Issue Sources, Transport, and Fate of Contaminants in Waters and Sediment)
Show Figures

Figure 1

17 pages, 1618 KiB  
Article
A Phosphorus Microfractionation (P-MF) Method for Measuring Phosphorus Fractions in Small Quantities of Suspended Solids and Sediments: Detailed Method and Example Application
by Jacob B. Taggart, Rebecca L. Ryan, A. Woodruff Miller, Theron G. Miller and Gustavious P. Williams
Environments 2025, 12(7), 218; https://doi.org/10.3390/environments12070218 - 26 Jun 2025
Viewed by 365
Abstract
The standard methods for sediment phosphorus (P) fractionation are impractical for use with suspended solids due to the inherent difficulties associated with collecting sufficient sample quantities for analysis. To allow the fractionation analysis of small quantities of suspended solids or sediment, we developed [...] Read more.
The standard methods for sediment phosphorus (P) fractionation are impractical for use with suspended solids due to the inherent difficulties associated with collecting sufficient sample quantities for analysis. To allow the fractionation analysis of small quantities of suspended solids or sediment, we developed a P-microfractionation (P-MF) method and evaluated the minimum sample size threshold. The dry mass threshold is likely <1.0 g for Utah Lake suspended solids and between 0.35 and 0.99 g for Utah Lake sediments, though we recommend experimentation to refine these thresholds for other locations, as Utah Lake sediment P concentrations are high (~1000 mg kg−1). We estimated dry mass using duplicate samples, as drying a sample changes the P fractions. We show that Utah Lake suspended solids have a significantly higher P content across most P fractions compared to those in sediments, emphasizing the importance of considering suspended solids when managing water nutrient levels in eutrophic water bodies. P-MF has the potential to enable researchers to use reasonably sized water samples to assess the P sorption behavior of suspended solids, a measurement not typically performed. Full article
Show Figures

Figure 1

36 pages, 3656 KiB  
Review
Current Status of Application of Spaceborne GNSS-R Raw Intermediate-Frequency Signal Measurements: Comprehensive Review
by Qiulan Wang, Jinwei Bu, Yutong Wang, Donglan Huang, Hui Yang and Xiaoqing Zuo
Remote Sens. 2025, 17(13), 2144; https://doi.org/10.3390/rs17132144 - 22 Jun 2025
Viewed by 468
Abstract
In recent years, spaceborne Global Navigation Satellite System reflectometry (GNSS-R) technology has made significant progress in the fields of Earth observation and remote sensing, with a wide range of applications, important research value, and broad development prospects. However, despite existing research focusing on [...] Read more.
In recent years, spaceborne Global Navigation Satellite System reflectometry (GNSS-R) technology has made significant progress in the fields of Earth observation and remote sensing, with a wide range of applications, important research value, and broad development prospects. However, despite existing research focusing on the application of spaceborne GNSS-R L1-level data, the potential value of raw intermediate-frequency (IF) signals has not been fully explored for special applications that require a high accuracy and spatiotemporal resolution. This article provides a comprehensive overview of the current status of the measurement of raw IF signals from spaceborne GNSS-R in multiple application fields. Firstly, the development of spaceborne GNSS-R microsatellites launch technology is introduced, including the ability of microsatellites to receive GNSS signals and receiver technique, as well as related frequency bands and technological advancements. Secondly, the key role of coherence detection in spaceborne GNSS-R is discussed. By analyzing the phase and amplitude information of the reflected signals, parameters such as scattering characteristics, roughness, and the shape of surface features are extracted. Then, the application of spaceborne GNSS-R in inland water monitoring is explored, including inland water detection and the measurement of the surface height of inland (or lake) water bodies. In addition, the widespread application of group delay sea surface height measurement and carrier-phase sea surface height measurement technology in the marine field are also discussed. Further research is conducted on the progress of spaceborne GNSS-R in the retrieval of ice height or ice sheet height, as well as tropospheric parameter monitoring and the study of atmospheric parameters. Finally, the existing research results are summarized, and suggestions for future prospects are put forward, including improving the accuracy of signal processing and reflection signal analysis, developing more advanced algorithms and technologies, and so on, to achieve more accurate and reliable Earth observation and remote sensing applications. These research results have important application potential in fields such as environmental monitoring, climate change research, and weather prediction, and are expected to provide new technological means for global geophysical parameter retrieval. Full article
(This article belongs to the Special Issue Satellite Observations for Hydrological Modelling)
Show Figures

Figure 1

Back to TopTop