Analysis of Heavy Metal Pollution Characteristics and Biological Effects in Lake Sediments: Implications for Health Risk Assessment
Abstract
1. Introduction
2. Source Analysis of Heavy Metals in Soil and Sediment
3. Characteristics and Biological Effects of Heavy Metal Migration and Transformation
3.1. Research on Heavy Metal Migration and Transformation Based on Adsorption/Desorption
3.2. Research on the Response Relationship Between Heavy Metals, Microorganisms, and Resistance Genes
3.2.1. The Response Relationship Between Heavy Metals and Microorganisms
3.2.2. The Response Relationship Between Heavy Metals and Resistance Genes
3.3. Study on the Impact of Heavy Metal Pollution on Aquatic Organisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mao, G.; Zhao, Y.; Zhang, F.; Liu, J.; Huang, X. Spatiotemporal variability of heavy metals and identification of potential source tracers in the surface water of the Lhasa River basin. Environ. Sci. Pollut. Res. 2019, 26, 7442–7452. [Google Scholar] [CrossRef] [PubMed]
- Yavar, A.N.; Keshavarzi, B. Geochemical characteristics, partitioning, quantitative source apportionment, and ecological and health risk of heavy metals in sediments and water: A case study in Shadegan Wetland, Iran. Mar. Pollut. Bull. 2019, 149, 110495. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, J.; Guo, H. Plateau River research: Ecological risk assessment of surface sediments in the Yarlung Tsangpo River. Environ. Sci. Pollut. Res. 2020, 27, 6126–6138. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Chen, H.; Li, Q.; Yu, C.; Huang, X.; Guo, H. Water environment in the Tibetan Plateau: Heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environ. Geochem. Health 2020, 42, 2451–2469. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, X.; Wang, S.; Che, F.; Zhang, Y.; Yang, P.; Zhang, J.; Liu, Y.; Guo, H.; Fu, Z. Adsorption and desorption of heavy metals at water sediment interface based on bayesian model. J. Environ. Manag. 2023, 329, 117035. [Google Scholar] [CrossRef]
- Malferrari, D.; Brigatti, M.F.; Laurora, A.; Pini, S. Heavy met als in sediments from canals for water supplying and drainage: Mobilization and control strategies. J. Hazard. Mater. 2009, 161, 723–727. [Google Scholar] [CrossRef]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the KurangNallah-Feeding tributary of the Rawal Lake Reservoir, Rajistan. Sci. Total Environ. 2014, 470, 925–933. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Moussa, E.M.M.; El-Sabagh, M.E.I. Evaluation of heavy met al content in Qaroun Lake, El-Fayoum, Egypt. Part I: Bottom sediments. J. Radiat. Res. Appl. Sci. 2015, 8, 276–285. [Google Scholar]
- Milenkovic, N.; Damjanovic, M.; Ristic, M. Study of heavy met al pollution in sediments from the Iron Gate (Danube River), Serbia and Montenegro. Pol. J. Environ. Stud. 2005, 6, 781–787. [Google Scholar]
- Mwamburi, J. Variations in trace elements in bottom sediments of major rivers in Lake Victoria’s basin, Kenya. Veritas Rev. Filos. Teol. 2014, 31, 205–219. [Google Scholar] [CrossRef]
- Gao, X.; Li, P. Concentration and fractionation of trace met als in surface sediments of intertidal Bohai Bay, China. Mar. Pollut. Bull. 2012, 64, 1529–1536. [Google Scholar] [CrossRef]
- Li, H.B.; Yu, S.; Li, G.L.; Liu, Y.; Yu, G.B.; Deng, H.; Wu, S.C.; Wong, M.H. Urbanization increased met al levels in lake surface sediment and catchment topsoil of waterscape parks. Sci. Total Environ. 2012, 432, 202–209. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, G.; Hao, T.; Huang, Z.; Fang, H.; Wang, G. Release of heavy met als from sediment bed under wave-induced liquefaction. Mar. Pollut. Bull. 2015, 97, 209–216. [Google Scholar] [CrossRef]
- Fisherpower, L.M.; Cheng, T.; Rastghalam, Z.S. Cu and Znadsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter. Chemosphere 2015, 144, 1973–1979. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, Y.; Jiang, X.; Guo, H.; Wang, S.; Li, Z. Health of plateau soil environment: Corresponding relationship of heavy metals in different land use/cover types (LULCC). Sci. Total Environ. 2025, 973, 179162. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, Y.; Liu, Y.; Jiang, X.; Guo, H.; Wang, S.; Li, Z. Climate change driven land use evolution and soil heavy metal release effects in lakes on the Qinghai Tibet Plateau. Sci. Total Environ. 2025, 958, 177898. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Zhang, J.; Guo, H.; Jiang, X.; Wang, S.; Zhang, Y.; Fu, Z. Nutrient release to Qinghai Lake from buffer zone evolution driven by climate change. J. Hydrol. 2025, 654, 132833. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, J.; Bi, J.; Liu, T.; Huang, M.; Li, G.; Ma, Y.; Zhang, B.-T. Heavy Metals in Sediments of the Yangtze River, Poyang Lake and Its Tributaries: Spatial Distribution, Relationship Analysis and Source Apportionment. Water 2025, 17, 1295. [Google Scholar] [CrossRef]
- Yuan, G.-L.; Liu, C.; Chen, L.; Yang, Z. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. J. Hazard. Mater. 2011, 185, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Yan, Q. Spatial distribution, sediment–water partitioning, risk assessment and source apportionment of heavy metals in the Golmud River-Dabson Salt Lake ecosystem. Environ. Res. 2025, 268, 120792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liao, Q.; Shao, S.; Zhang, N.; Shen, Q.; Liu, C. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers. Int. J. Environ. Res. Public Health 2015, 12, 14115–14131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, H.-Y.; Zhang, Y.-H.; Du, S.-L.; Cao, J.-L.; Liu, Y.-F.; Zhao, H.; Ding, T.-T. Heavy metals in sediments of the river-lake system in the Dianchi basin, China: Their pollution, sources, and risks. Sci. Total Environ. 2024, 957, 177652. [Google Scholar] [CrossRef] [PubMed]
- Blaser, P.; Zimmermann, S.; Luster, J.; Shotyk, W. Critical examination of trace element enrichments and depletions in soils: As,Cr,Cu,Ni,Pb and Zn Swiss forest soils. Sci. Total Environ. 2000, 249, 257–280. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, C.; Zhao, Q.; Wang, Y.; Huo, M.; Wang, J.; Wang, S. Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. J. Hazard. Mater. 2016, 320, 10–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X. Rare earth elements in surface sediments of a marine coast under heavy anthropogenic influence: The Bohai Bay, China. Estuar. Coast. Shelf Sci. 2015, 164, 86–93. [Google Scholar] [CrossRef]
- Resongles, E.; Casiot, C.; Freydier, R.; Dezileau, L.; Viers, J.; Elbaz-Poulichet, F. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci. Total Environ. 2014, 481, 509. [Google Scholar] [CrossRef]
- Ye, F.; Huang, X.; Zhang, D.; Tian, L.; Zeng, Y.. Distribution of heavy metals in sediments of the Pearl River Estuary, southern China: Implications for sources and historical changes. J. Environ. Sci. 2012, 24, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Stumm, W. Aquatic Surface Chemistry; John Wiley and Sons: New York, NY, USA, 1987. [Google Scholar]
- Stumm, W. Aquatic Chemical Kinetics; John Wiley and Sons: New York, NY, USA, 1990. [Google Scholar]
- Huang, C.P.; O’Melia, C.R.; Morgan, J.J. Aquatic Chemistry: Interfacial and Interspecies Processes; American Chemical Society: Washington, DC, USA, 1995. [Google Scholar]
- Davari, M.; Rahnemaie, R.; Homaee, M. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils. Environ. Sci. Pollut. Res. 2015, 22, 13024–13032. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Zhu, G.W.; Zhao, L.L.; Yao, X.; Zhang, Y.; Gao, G.; Qin, B. Influence of algal bloom degradation on nutrient release at the sediment-water interface in Lake Taihu, China. Environ. Sci. Pollut. Res. 2013, 20, 1803–1811. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.E.; Gromiec, M.J. Mathematical Submodels in Water Quality Systems; Elsevier Science Publisher BV.: New York, NY, USA, 1989. [Google Scholar]
- Jalali, M.; Peikam, E.N. Phosphorus sorption-desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Environ. Monit. Assess. 2013, 185, 537–552. [Google Scholar] [CrossRef]
- Kerr, J.G.; Burford, M.; Olley, J.; Udy, J. Phosphorus sorption in soils and sediments: Implications for phosphate supply to a subtropical river in southeast Queensland, Australia. Biogeochemistry 2011, 102, 73–85. [Google Scholar] [CrossRef]
- Machesky, M.L.; Holm, T.R.; Slowikowski, J.A. Phosphorus speciation in stream bed sediments from an agricultural watershed: Solid-phase associations and sorption behavior. Aquat. Geochem. 2010, 16, 639–662. [Google Scholar] [CrossRef]
- Hiemstra, T.; Vanriemsdijk, W.H. A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid. Interface Sci. 1996, 179, 488–508. [Google Scholar] [CrossRef]
- Huang, W.; Wang, K.; Du, H.W.; Wang, T.; Wang, S.; Yangmao, Z.; Jiang, X. Characteristics of phosphorus sorption at the sediment-water interface in Dongting Lake, a Yangtze-connected lake. Hydrol. Res. 2016, 47, 225–237. [Google Scholar] [CrossRef]
- Huang, W.; Chen, X.; Wang, K.; Jiang, X. Seasonal characteristics of phosphorus sorption by sediments from plain lakes with different trophic statuses. R. Soc. Open Sci. 2018, 5, 172237. [Google Scholar] [CrossRef]
- Wang, M.; Tong, Y.; Chen, C.; Liu, X.; Lu, Y.; Zhang, W.; He, W.; Wang, X.; Zhao, S.; Lin, Y. Ecological risk assessment to marine organisms induced by heavy metals in China’s coastal waters. Mar. Pollut. Bull. 2018, 126, 349–356. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Guo, M.X.; Ji, J. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Sci. Rep. 2017, 7, 40709. [Google Scholar] [CrossRef]
- Huang, D.L.; Liu, L.S.; Zeng, G.; Xu, P.; Wan, J. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 2017, 174, 545–553. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, S.; Zhang, X. Research status of heavy metals in sediments of southern Shandong Peninsula. Front. Mar. Geol. 2016, 32, 39–42. (In Chinese) [Google Scholar]
- Chen, X.; Zhao, Y.; Zhao, X.; Wu, J.; Zhu, L.; Zhang, X.; Wei, Z.; Liu, Y.; He, P. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: Sensitive, resistant and actor. J. Hazard. Mater. 2020, 398, 122858. [Google Scholar] [CrossRef]
- Hoyle, B.D.; Beveridge, T.J. Metal-binding by the peptidoglycan sacculus of escherichia-coli K-12. Can. J. Microbiol. 1984, 30, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Dash, H.R.; Basu, S.; Das, S. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B. Arch. Microbiol. 2017, 199, 445–455. [Google Scholar] [CrossRef]
- Iyer, A.; Mody, K.; Jha, B. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar. Pollut. Bull. 2004, 49, 974–977. [Google Scholar] [CrossRef] [PubMed]
- Pacwa-Plociniczak, M.; Plaza, G.A.; Piotrowska-Seget, Z.; Singh Cameotra, S. Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci. 2011, 12, 633–654. [Google Scholar] [CrossRef]
- Aşçı, Y.; Nurbaş, M.; Açıkel, Y.S. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. J. Hazard. Mater. 2008, 154, 663–673. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.C.; de Francisco, P.; Amaro, F.; Díaz, S.; Martín-González, A. Structural and Functional Diversity of Microbial Metallothionein Genes. Microb. Divers. Genom. Era 2019, 387–407. [Google Scholar]
- Zhang, X.; Tang, S.; Wang, M.; Sun, W.; Xie, Y.; Peng, H.; Zhong, A.; Liu, H.; Zhang, X.; Yu, H.; et al. Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. Chemosphere 2019, 217, 790–799. [Google Scholar] [CrossRef]
- Baumgartner, R.J.; Van Kranendonk, M.J.; Pagès, A.; Fiorentini, M.L.; Wacey, D.; Ryan, C. Accumulation of transition metals and metalloids in sulfidized stromatolites of the 3.48 billion-year-old Dresser Formation, Pilbara Craton. Precambrian Res. 2020, 337, 105534. [Google Scholar] [CrossRef]
- He, Z.F.; Shen, J.Q.; Li, Q.Q.; Yang, Y.; Zhang, D.; Pan, X. Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review. Sci. Total Environ. 2023, 871, 162148. [Google Scholar] [CrossRef]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. [Google Scholar] [CrossRef]
- Denef, V.J.; Mueller, R.S.; Banfield, J.F. AMD biofilms: Using model communities to study microbial evolution and ecological complexity in nature. Isme J. 2010, 4, 599–610. [Google Scholar] [CrossRef]
- Knapp, C.W.; Mccluskey, S.M.; Singh, B.K.; Campbell, C.D.; Graham, D.W. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in Aarchived Scottish Soils. PLoS ONE 2011, 6, e27300. [Google Scholar] [CrossRef]
- Berg, J.; Thorsen, M.K.; Holm, P.E.; Jensen, J.; Nybroe, O.; Brandt, K.K. Cu Exposure under Field Conditions Coselects for Antibiotic Resistance as Determined by a Novel Cultivation-Independent Bacterial Community Tolerance Assay. Environ. Sci. Technol. 2010, 44, 8724–8728. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Huang, Q.; Peng, X.; Zhou, X.; Gao, S.; Li, Y.; Luo, X.; Zhao, Y.; Rensing, C.; Su, J.; et al. MRG Chip: A High-Throughput qPCR-based tool for assessment of the heavy metal(loid) resistome. Environ. Sci. Technol. 2022, 56, 1065–10667. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Liu, W.Z.; Xu, C.; Wei, B.; Wang, J. Antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze River, China: Effect of land use and sediment characteristics. Chemosphere 2017, 178, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, H.; Li, L.; Deng, C.; Chen, Y.; Ding, H.; Yu, Z. Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? J. Hazard. Mater. 2022, 424, 127285. [Google Scholar] [CrossRef]
- Xue, C.; Zheng, C.; Zhao, Q.; Sun, S. Occurrence of antibiotics and antibiotic resistance genes in cultured prawns from rice-prawn co-culture and prawn monoculture systems in China. Sci. Total Environ. 2022, 806, 150307. [Google Scholar] [CrossRef]
- Chu, B.T.; Petrovich, M.L.; Chaudhary, A.; Wright, D.; Murphy, B.; Wells, G.; Poretsky, R. Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments. Appl. Environ. Microbiol. 2018, 84, e2117–e2168. [Google Scholar]
- Tong, L.; Qin, L.; Guan, C.; Wilson, M.E.; Li, X.; Cheng, D.; Ma, J.; Liu, H.; Gong, F. Antibiotic resistance gene profiling in response to antibiotic usage and environmental factors in the surface water and groundwater of Honghu Lake, China. Environ. Sci. Pollut. Res. 2020, 27, 31995–32005. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Yang, Y.; Wang, Z. Antibiotic and antibiotic resistance genes in freshwater aquaculture ponds in China: A meta-analysis and assessment. J. Clean. Prod. 2021, 329, 129719. [Google Scholar] [CrossRef]
- Dias, V.; Vasseur, C.; Bonzorn, J. Exposure of Chironomus riparius larvae to uranium:: Effects on survival, development time, growth, and mouthpart deformities. Chemosphere 2008, 71, 574–581. [Google Scholar] [CrossRef]
- Costas, N.; Pardo, I.; Méndez-Fernández, L.; Martínez-Madrid, M.; Rodríguez, P. Sensitivity of macroinvertebrate indicator taxa to metal gradients in mining areas in Northern Spain. Ecol. Indic. 2018, 93, 207–218. [Google Scholar] [CrossRef]
- Bere, T.; Dalu, T.; Mwedzi, T. Detecting the impact of heavy metal contaminated sediment on benthic macroinvertebrate communities in tropical streams. Sci. Total Environ. 2016, 572, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Matyar, F. Antibiotic and heavy metal resistance in Bacteria isolated from the Eastern Mediterranean Sea Coast. Bull. Environ. Contam. Toxicol. 2012, 89, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Kalantzi, I.; Pergantis, S.A.; Black, K.D.; Shimmield, T.M.; Papageorgiou, N.; Tsapakis, M.; Karakassis, I. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 2016, 194, 659–670. [Google Scholar] [CrossRef]
- Wang, X.; Su, P.; Lin, Q.; Song, J.; Sun, H.; Cheng, D.; Wang, S.; Peng, J.; Fu, J. Distribution, assessment and coupling relationship of heavy metals and macroinvertebrates in sediments of the Weihe River Basin. Sustain. Cities Soc. 2019, 50, 101665. [Google Scholar] [CrossRef]
- Kong, M.; Hang, X.; Wang, L.; Yin, H.; Zhang, Y. Accumulation and risk assessment of heavy metals in sediments and zoobenthos (Bellamya aeruginosa and Corbicula fluminea) from Lake Taihu. Water Sci. Technol. 2016, 73, 203–214. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Y.; Hu, X.N.; Meng, W. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol. Environ. Saf. 2012, 81, 55–64. [Google Scholar]
- Zhang, M.; Sun, Q.; Chen, P.; Wei, X.; Wang, B. How microorganisms tell the truth of potentially toxic elements pollution in environment. J. Hazard. Mater. 2022, 431, 128456. [Google Scholar] [CrossRef]
- Gupta, A.; Joia, J. Microbes as potential tool for remediation of heavy metals: A review. J. Microb. Biochem. Technol. 2016, 8, 364–372. [Google Scholar] [CrossRef]
Sources of Heavy Metal Pollution | Heavy Metal Species |
---|---|
Mining, petrochemical, thermal power generation, smelting and processing discharge wastewater, slag, and waste gas | Cd, Hg, Cu, Zn, Fe, S, As, Pb, Cr, Ni, Mo |
Floating and sinking during coal and petrochemical combustion | Cr, Hg, As, Pb |
Electroplating wastewater | Cr, Pb, Sn, Ni, Cu |
Wastewater from plastics, batteries, electronics, and cosmetics industries | Hg, Pb, Cd |
Wastewater from mercury industry | Hg |
Wastewater from dyestuff and chemical tannery industry | Cr, Cd |
Automobile exhaust | Pb |
Chemical fertilizer and pesticide | Cd, As |
Serial Number | Name of Typical Plot | Industry Involved | Main Pollutants | Total Soil Survey Points | Over Standard Rate |
---|---|---|---|---|---|
1 | Land for heavily polluted enterprises | Ferrous metals, non-ferrous metals, leather products, paper making, petroleum and coal, chemical medicine, chemical fiber, rubber and plastic, mineral products, metal products, electric power, and other industries. | Cd, Hg, Cu, Zn, Fe, S, As, Pb, Cr | 5846 | 36.3% |
2 | Derelict land | Chemical industry, mining industry, metallurgy industry, and other industries | Zn, Hg, Pb, Cr, As, PAHs | 775 | 34.9% |
3 | Industrial park | Metal smelting industrial park Chemical Industry Park | Cd, Pb, Cu, As, Zn, PAHs | 2523 | 29.4% |
4 | Solid waste centralized treatment and disposal site | / | Mainly inorganic and organic pollution | 1351 | 21.3% |
5 | Oil production area | / | Petroleum hydrocarbons and PAHs | 494 | 23.6% |
6 | Mining area | / | Cd, Pb, As, and PAHs | 1672 | 33.4% |
7 | Sewage irrigation area | / | Cd, As, and PAHs | 55 | 26.4% |
8 | On both sides of trunk highway | Pb, Zn, As, and PAHs | 1578 | 20.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, W.; Wang, S.; Jiang, X.; Guo, H.; Liu, Y.; Fu, Z. Analysis of Heavy Metal Pollution Characteristics and Biological Effects in Lake Sediments: Implications for Health Risk Assessment. Processes 2025, 13, 2140. https://doi.org/10.3390/pr13072140
Li Z, Zhang W, Wang S, Jiang X, Guo H, Liu Y, Fu Z. Analysis of Heavy Metal Pollution Characteristics and Biological Effects in Lake Sediments: Implications for Health Risk Assessment. Processes. 2025; 13(7):2140. https://doi.org/10.3390/pr13072140
Chicago/Turabian StyleLi, Zheng, Weiwei Zhang, Shuhang Wang, Xia Jiang, Huaicheng Guo, Yong Liu, and Zhenghui Fu. 2025. "Analysis of Heavy Metal Pollution Characteristics and Biological Effects in Lake Sediments: Implications for Health Risk Assessment" Processes 13, no. 7: 2140. https://doi.org/10.3390/pr13072140
APA StyleLi, Z., Zhang, W., Wang, S., Jiang, X., Guo, H., Liu, Y., & Fu, Z. (2025). Analysis of Heavy Metal Pollution Characteristics and Biological Effects in Lake Sediments: Implications for Health Risk Assessment. Processes, 13(7), 2140. https://doi.org/10.3390/pr13072140