Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (187)

Search Parameters:
Keywords = knowledge-to-action cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 681 KB  
Review
Organic Amendments for Sustainable Agriculture: Effects on Soil Function, Crop Productivity and Carbon Sequestration Under Variable Contexts
by Oluwatoyosi O. Oyebiyi, Antonio Laezza, Md Muzammal Hoque, Sounilan Thammavongsa, Meng Li, Sophia Tsipas, Anastasios J. Tasiopoulos, Antonio Scopa and Marios Drosos
C 2026, 12(1), 7; https://doi.org/10.3390/c12010007 - 19 Jan 2026
Abstract
Soil amendments play a critical role in improving soil health and supporting sustainable crop production, especially under declining soil fertility and climate-related stress. However, their impact varies because each amendment influences the soil through different biogeochemical processes rather than a single universal mechanism. [...] Read more.
Soil amendments play a critical role in improving soil health and supporting sustainable crop production, especially under declining soil fertility and climate-related stress. However, their impact varies because each amendment influences the soil through different biogeochemical processes rather than a single universal mechanism. This review synthesizes current knowledge on a wide range of soil amendments, including compost, biosolids, green and animal manure, biochar, hydrochar, bagasse, humic substances, algae extracts, chitosan, and newer engineered options such as metal–organic framework (MOF) composites, highlighting their underlying principles, modes of action, and contributions to soil function, crop productivity, and soil carbon dynamics. Across the literature, three main themes emerge: improvement of soil physicochemical properties, enhancement of nutrient cycling and nutrient-use efficiency, and reinforcement of plant resilience to biotic and abiotic stresses. Organic nutrient-based amendments mainly enrich the soil and build organic matter, influencing soil carbon inputs and short- to medium-term increases in soil organic carbon stocks. Biochar, hydrochar, and related materials act mainly as soil conditioners that improve structure, water retention, and soil function. Biostimulant-type amendments, such as algae extracts and chitosan, influence plant physiological responses and stress tolerance. Humic substances exhibit multifunctional effects at the soil–root interface, contributing to improved nutrient efficiency and, in some systems, enhanced carbon retention. The review highlights that no single amendment is universally superior, with outcomes governed by soil–crop context. Its novelty lies in its mechanism-based, cross-amendment synthesis that frames both yield and carbon outcomes as context-dependent rather than universally transferable. Within this framework, humic substances and carbon-rich materials show potential for climate-smart soil management, but long-term carbon sequestration effects remain uncertain and context-dependent. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

26 pages, 490 KB  
Article
Signaling or Substantiating? Green Technology Standard-Setting, Knowledge Integration, and Dual Green Innovation Across the Firm Life Cycle
by Xun Zhang, Wenjing Zhao, Biao Xu and Jun Wu
Sustainability 2026, 18(2), 929; https://doi.org/10.3390/su18020929 - 16 Jan 2026
Viewed by 100
Abstract
This study examines how corporate participation in green technology standard-setting affects two dimensions of green innovation–substantive and symbolic green innovation–through the mediating role of knowledge integration and across different stages of the firm life cycle. Analyzing panel data from Chinese A-share listed firms [...] Read more.
This study examines how corporate participation in green technology standard-setting affects two dimensions of green innovation–substantive and symbolic green innovation–through the mediating role of knowledge integration and across different stages of the firm life cycle. Analyzing panel data from Chinese A-share listed firms (2010–2023), we find that standard-setting participation significantly enhances both types of innovation, with a stronger and more enduring effect on substantive innovation. The effects exhibit clear life cycle heterogeneity: substantive green innovation is consistently enhanced across all stages of the firm life cycle, whereas symbolic green innovation is predominantly reinforced during the maturity stage. Grounded in the knowledge-based view and institutional theory, our findings highlight how institutional engagement fosters sustainable innovation by strengthening firms’ capacity for knowledge acquisition and integration. This research advances understanding of the strategic value of standard-setting in sustainability efforts and provides actionable insights for aligning standardization practices with long-term innovation goals. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

17 pages, 2171 KB  
Article
Targeting Redox Homeostasis and Cell Survival Signaling with a Flavonoid-Rich Extract of Bergamot Juice in In Vitro and In Vivo Colorectal Cancer Models
by Alessandro Maugeri, Paola De Cicco, Rebecca Amico, Martina Farina, Michele Navarra and Francesca Borrelli
Pharmaceutics 2026, 18(1), 7; https://doi.org/10.3390/pharmaceutics18010007 - 20 Dec 2025
Viewed by 326
Abstract
Background/Objectives: Colorectal cancer (CRC) is the second most common cause of cancer death worldwide. Evidence suggests that a polyphenol-rich diet may lower the risk of CRC. The aim of this study was to demonstrate the potential antitumor effects of a flavonoid-rich extract [...] Read more.
Background/Objectives: Colorectal cancer (CRC) is the second most common cause of cancer death worldwide. Evidence suggests that a polyphenol-rich diet may lower the risk of CRC. The aim of this study was to demonstrate the potential antitumor effects of a flavonoid-rich extract of bergamot juice (BJe) in both in vitro and in vivo CRC models, assessing the underlying mechanisms. Methods: CRC cells, among which HCT-116, have been employed to assess the fine mechanism of action of BJe, whereas a mouse model of azoxymethane (AOM)-induced CRC was exploited to appreciate the anti-cancer effects of BJe. Results: BJe inhibited the growth of several CRC cells, especially HCT-116. In this cell line, BJe induced apoptosis and blocked the cell cycle in the G1 phase, as well as modulated the gene expression of apoptosis- and cell cycle-related factors. Moreover, BJe prompted reactive oxygen species production and impaired mitochondrial membrane potential. In the nucleus of these cancerous cells, BJe induced DNA damage as confirmed by the raised levels of 8-oxo-2′-deoxyguanosine and phosphorylation of histone H2A.X. In mice with AOM-induced CRC, BJe was able to lower the number of aberrant crypt foci. Moreover, BJe reduced the percentage of mice bearing both polyps and tumors, as well as their number. Conclusions: Our study supports the role of BJe against CRC, providing knowledge on the underlying mechanism of action. Full article
Show Figures

Figure 1

29 pages, 6548 KB  
Review
Remote Sensing-Based Advances in Climate Change Impacts on Agricultural Ecosystem Respiration
by Xingshuai Mei, Tongde Chen, Jianjun Li, Fengqiuli Zhang, Jiarong Hou and Keding Sheng
Agriculture 2025, 15(23), 2509; https://doi.org/10.3390/agriculture15232509 - 3 Dec 2025
Viewed by 571
Abstract
Global climate change is exerting a growing impact on agricultural ecosystems. Accurately assessing the spatiotemporal dynamics of agricultural ecosystem respiration and its response mechanisms to climate has therefore emerged as a critical issue in agricultural carbon cycle research and climate change response. It [...] Read more.
Global climate change is exerting a growing impact on agricultural ecosystems. Accurately assessing the spatiotemporal dynamics of agricultural ecosystem respiration and its response mechanisms to climate has therefore emerged as a critical issue in agricultural carbon cycle research and climate change response. It should be noted that the ‘agro-ecosystem’ referred to in this study covers two major types: one is the farmland agro-ecosystem dominated by crop planting (such as farmland, orchard and other artificial management systems), and the other is the grassland agro-ecosystem dominated by herbaceous plants and managed by humans (such as grazing grassland and mowing grassland). Remote sensing technology provides a new way to break through the limitations of traditional ground observation by virtue of its advantages of large-scale and continuous monitoring. Based on the CiteSpace bibliometric method, this study focused on the key time window of 2021–2025, systematically searched the core collection of Web of Science, and finally included 222 related literature. This period marks the initial stage of the rise and rapid development of this interdisciplinary field, enabling us to capture the formation of its knowledge structure and the evolution of its research paradigm from the source. Through the quantitative analysis of this literature, it aims to reveal the research hotspots, development paths and frontier trends in this field. The results show that China occupies a dominant position in this field (135 articles). The evolution of research shows a three-stage development characterized by “technology-driven-method fusion-system coupling,” which is divided into the initial development period (2021–2022), the rapid growth period (2023–2024) and the deepening development period (2025) (because 2025 has not yet ended, this stage is a preliminary discussion). Keyword clustering analysis identified 13 important research directions, including machine learning (# 0 clustering), permafrost (# 1 clustering) and carbon flux (# 2 clustering). It is found that the deep integration of artificial intelligence and remote sensing data is promoting the transformation of research methods from traditional inversion to intelligent modeling. At the same time, the attention to alpine grassland and other ecosystems also reflects the trend that the research frontier extends to the interaction zone between the agricultural ecosystem and the natural environment. Future research should prioritize three key directions: building multi-scale monitoring networks, developing “grey box” models that integrate mechanisms and data fusion, and evaluating the carbon emission reduction efficiency of agricultural management practices. These efforts will provide a theoretical basis for carbon management and climate adaptation in agricultural ecosystems, as well as scientific and technological support for achieving global agricultural sustainable development goals (specifically, SDG13 on climate action and SDG15 on terrestrial ecosystem conservation). Full article
Show Figures

Figure 1

18 pages, 1494 KB  
Article
Mapping of the Diversity and Cultural Competencies in Healthcare and Healthcare Education Through Participatory Action Research (PAR)
by Costas S Constantinou, Panayiota Andreou, Eirini Kampriani and Alexia Papageorgiou
Societies 2025, 15(12), 330; https://doi.org/10.3390/soc15120330 - 26 Nov 2025
Viewed by 421
Abstract
This participatory action research (PAR) study explored the diversity and cultural competencies essential for working effectively and appropriately with diverse patients in healthcare and healthcare education. Ninety-four (94) medical students participated in two PAR cycles, engaging in brainstorming, group exercises, collaborative work, discussions, [...] Read more.
This participatory action research (PAR) study explored the diversity and cultural competencies essential for working effectively and appropriately with diverse patients in healthcare and healthcare education. Ninety-four (94) medical students participated in two PAR cycles, engaging in brainstorming, group exercises, collaborative work, discussions, reflections, and role-plays. Together, they addressed the central question regarding the diversity and cultural competencies that are necessary for working effectively with diverse patients in healthcare. Participants identified eight core competencies, namely open-mindedness, empathy and cultural empathy, deep listening, explore further, knowledge, self-reflection, work in partnership, and praise the patient. They also ranked these competencies and explained their significance in healthcare settings. Based on participants’ explanations, a thematic network was developed, illustrating how these competencies interrelate. The analysis highlighted that these competencies must function together to foster a deeper understanding of patients, ultimately contributing to improved health outcomes. This interrelationship is represented in the Wheel Model proposed in the study, showing that empathy and cultural empathy sit at the center of the wheel, supported and reinforced by the other competencies all of which interact to enable the wheel to roll smoothly. Interestingly, the driving force seems to be the competency “open mindedness” as it puts most of the rest competencies in motion. The study also revealed that participants came to appreciate the importance of these competencies gradually, particularly after engaging in specific diversity-related activities and completing the two PAR cycles. This finding highlights that prior experience or knowledge alone might be insufficient for working effectively with diversity, underscoring the need for lifelong training, continuous learning, and the accumulation of relevant experience. In the absence of other PAR on diversity and cultural competencies in healthcare and healthcare education, the findings of this study both align with and diverge from those of Delphi studies, offering new directions for future research. Full article
(This article belongs to the Topic Diversity Competence and Social Inequalities, 2nd Edition)
Show Figures

Figure 1

45 pages, 3086 KB  
Review
Modelling of Insulation Thermal Ageing: Historical Evolution from Fundamental Chemistry Towards Becoming an Electrical Machine Design Tool
by Antonis Theofanous, Israr Ullah, Michael Galea, Paolo Giangrande, Vincenzo Madonna, Yatai Ji, John Licari and Maurice Apap
Energies 2025, 18(23), 6087; https://doi.org/10.3390/en18236087 - 21 Nov 2025
Viewed by 911
Abstract
Electrical insulation systems (EISs) are the principal reliability bottleneck of modern electrical machines (EMs). Among the many stresses acting on insulation, thermal stress is the most pervasive because it accelerates chemical reactions that progressively erode dielectric and mechanical integrity, ultimately dictating service life. [...] Read more.
Electrical insulation systems (EISs) are the principal reliability bottleneck of modern electrical machines (EMs). Among the many stresses acting on insulation, thermal stress is the most pervasive because it accelerates chemical reactions that progressively erode dielectric and mechanical integrity, ultimately dictating service life. As EMs migrate into compact, high-power-density platforms—automotive, aerospace, and industrial drives—designers need lifetime models that are not merely explanatory but actionable, linking operating temperatures and missions to quantified ageing and risk. This review article traces the evolution of thermal-ageing modelling from fundamental chemistry to a practical design tool. The historical empirical lineage of Arrhenius equation, Arrhenius–Dakin model, and Montsinger model is first revisited, clarifying their assumptions, parameter definitions, and the construction of thermal endurance curves. A discussion then follows on extensions that address deviations from first-order kinetics and demonstrate how variable temperature histories can be incorporated through cumulative damage formulations suitable for duty-cycle analysis. Since models are required to be anchored in data, accelerated thermal ageing (ATA) practices on representative specimens are outlined, alongside a description of the Weibull post-processing for deriving percentile lifetimes aligned with design targets. Building upon these foundations, the Physics-of-Failure (PoF) approach is introduced as a reliability-oriented design (ROD) methodology, in which validated lifetime models guide material selection and geometry optimisation while supporting prognostics and health management during operation. The emerging trend towards a hybrid PoF–AI approach is also discussed, which integrates artificial intelligence to identify nonlinear degradation patterns and drifting parameter relationships beyond the reach of empirical models, with physical constraints ensuring that predictions remain consistent with known ageing mechanisms. Such integration enables the learning process to adapt to operational variability and coupled stress effects, thereby improving both the accuracy and physical interpretability of lifetime estimation. The review aims to provide a concise view of models, tests, and workflows that convert thermal-ageing knowledge into robust, design-time decisions. By linking empirical and physics-based insights with modern data-driven learning, these developments support proactive maintenance, sustainable asset management, and extended operational lifetimes for next-generation EMs. Full article
Show Figures

Figure 1

19 pages, 536 KB  
Review
The Origins and Genetic Diversity of HIV-1: Evolutionary Insights and Global Health Perspectives
by Ivailo Alexiev and Reneta Dimitrova
Int. J. Mol. Sci. 2025, 26(22), 10909; https://doi.org/10.3390/ijms262210909 - 11 Nov 2025
Cited by 1 | Viewed by 3474
Abstract
Human immunodeficiency virus (HIV), comprising two distinct types, HIV-1 and HIV-2, remains one of the most significant global health challenges, originating from multiple cross-species transmissions of simian immunodeficiency viruses (SIVs) in the early 20th century. This review traces the evolutionary trajectory of HIV [...] Read more.
Human immunodeficiency virus (HIV), comprising two distinct types, HIV-1 and HIV-2, remains one of the most significant global health challenges, originating from multiple cross-species transmissions of simian immunodeficiency viruses (SIVs) in the early 20th century. This review traces the evolutionary trajectory of HIV from zoonotic spillover to its establishment as a global pandemic. HIV-1, the principal strain responsible for AIDS, emerged from SIVcpz in Central African chimpanzees, with phylogenetic evidence indicating initial human transmission between the 1920s and 1940s in present day Democratic Republic of Congo. The virus disseminated through colonial trade networks, reaching the Caribbean by the 1960s before establishing endemic transmission in North America and Europe. HIV’s extraordinary genetic diversity—driven by high mutation rates (~10−5 mutations per base per replication cycle) and frequent recombination events—has generated multiple groups, subtypes, and circulating recombinant forms (CRFs) with distinct epidemiological patterns. HIV-1 Group M, comprising subtypes A through L, accounts for over 95% of global infections, with subtype C predominating in sub-Saharan Africa and Asia, while subtype B dominates in Western Europe and North America. The extensive genetic heterogeneity of HIV significantly impacts diagnostic accuracy, antiretroviral therapy efficacy, and vaccine development, as subtypes exhibit differential biological properties, transmission efficiencies, and drug resistance profiles. Contemporary advances, including next-generation sequencing (NGS) for surveillance, broadly neutralizing antibodies for cross-subtype prevention and therapy, and long-acting antiretroviral formulations to improve adherence, have transformed HIV management and prevention strategies. NGS enables near real-time surveillance of drug resistance mutations and inference of transmission networks where it is available, although access and routine application remain uneven across regions. Broadly neutralizing antibodies demonstrate cross-subtype efficacy, while long-acting formulations have the potential to improve treatment adherence. This review synthesizes recent evidence and offers actionable recommendations to optimize clinical and public health responses—including the routine use of genotypic resistance testing where feasible, targeted use of phylogenetic analysis for outbreak investigation, and the development of region-specific diagnostic and treatment algorithms informed by local subtype prevalence. While the understanding of HIV’s evolutionary dynamics has substantially improved and remains essential, translating this knowledge into universally implemented intervention strategies remains a key challenge for achieving the UNAIDS 95-95-95 targets and the goal of ending AIDS as a public health threat by 2030. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 987 KB  
Review
Chromatin Regulation of HSV Gene Transcription
by Yuxuan Zheng, Juncheng Zhang and Dongli Pan
Viruses 2025, 17(11), 1409; https://doi.org/10.3390/v17111409 - 23 Oct 2025
Viewed by 1151
Abstract
Herpes simplex virus (HSV) has a complicated life cycle including stages of primary lytic infection, latent infection, and reactivation. Although the HSV genomic DNA within the viral capsid is devoid of histones, it rapidly associates with histones upon entering the nucleus to form [...] Read more.
Herpes simplex virus (HSV) has a complicated life cycle including stages of primary lytic infection, latent infection, and reactivation. Although the HSV genomic DNA within the viral capsid is devoid of histones, it rapidly associates with histones upon entering the nucleus to form viral chromatin. This chromatin is not integrated into the host chromosome and displays features distinct from the cellular chromatin. The composition, structure, and post-translational modifications of the HSV chromatin change over the course of infection due to the actions of numerous viral and host molecules. In turn, the chromatin states influence the transcription profiles of viral genes at all stages of the viral life cycle and may dictate the outcomes of the lytic-latent balance. These mechanisms may be exploited to develop new antiviral therapeutics. This review summarizes current knowledge about the formation, regulation, and functions of the HSV chromatin and discusses the questions remaining to be answered. Full article
(This article belongs to the Special Issue Herpesvirus Transcriptional Control)
Show Figures

Figure 1

10 pages, 640 KB  
Opinion
Animal Rabies in Kazakhstan: Stable Endemicity, Surveillance Pitfalls, and Priority Actions
by Sarsenbay K. Abdrakhmanov, Asem Zh. Abenova, Aizada A. Mukhanbetkaliyeva, Fedor I. Korennoy and Andres M. Perez
Pathogens 2025, 14(11), 1079; https://doi.org/10.3390/pathogens14111079 - 23 Oct 2025
Viewed by 1531
Abstract
Rabies is endemic in Kazakhstan, with the primary reservoirs being wild canids, such as foxes and dogs, maintaining distinct sylvatic and urban cycles. This paper outlines three high-return priorities for rabies control in the country, informed by the epidemiological patterns of the disease, [...] Read more.
Rabies is endemic in Kazakhstan, with the primary reservoirs being wild canids, such as foxes and dogs, maintaining distinct sylvatic and urban cycles. This paper outlines three high-return priorities for rabies control in the country, informed by the epidemiological patterns of the disease, the national regulatory framework (Order No. 7-1/587), and evidence on the knowledge, attitudes, and practices (KAP) of the Kazakh population. The three priorities are (a) transition into a One Health, real-time surveillance system featuring standardized digital reporting and GIS-guided interventions; (b) implementation of biannual oral rabies vaccination (ORV) of foxes in high-risk districts, incorporating mandatory quality assurance (via tetracycline biomarkers and/or serology) aligned with EU/EFSA standards; and (c) adopt an urban strategy focused on dogs to increase vaccination coverage and reduce delays in human post-exposure prophylaxis (PEP). These measures align with the WOAH Terrestrial Code and the “Zero by 30” roadmap, leveraging existing national assets like risk maps and laboratory capacity, such as dFAT, RT-PCR, and sequencing. Kazakhstan’s predictable rabies pattern allows for targeting district-level strategies and transparent measurement of risk reduction, contingent on enforcing standardized reporting and rigorous quality assurance programs. The opinions introduced in this paper are based on the scientific evidence collected in Kazakhstan over the last decade and summarize the need for urgent actions to promote rabies control in the country. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Figure 1

53 pages, 16657 KB  
Review
Biologically Active Benzimidazole Hybrids as Cancer Therapeutics: Recent Advances
by Mohamed A. S. Badawy, Stefan Bräse, Taha F. S. Ali, Mohamed Abdel-Aziz and Hamdy M. Abdel-Rahman
Pharmaceuticals 2025, 18(10), 1454; https://doi.org/10.3390/ph18101454 - 28 Sep 2025
Cited by 2 | Viewed by 2148
Abstract
Cancer is a highly significant medical concern, as it is the second most prevalent cause of mortality after cardiovascular diseases. It arises due to dysregulated cell cycle control, leading to a gradual decline in cellular differentiation and unrestricted cellular proliferation. Therefore, the primary [...] Read more.
Cancer is a highly significant medical concern, as it is the second most prevalent cause of mortality after cardiovascular diseases. It arises due to dysregulated cell cycle control, leading to a gradual decline in cellular differentiation and unrestricted cellular proliferation. Therefore, the primary objective for researchers is to develop a cancer treatment that addresses drug resistance while providing effective therapeutic benefits and minimizing side effects. Benzimidazole has garnered significant attention because it serves as an auxiliary isostere of nucleotides, which are found in several natural and biologically active molecules. Benzimidazole compounds possess a privileged pharmacophore that exhibits various pharmacological actions. Several benzimidazole derivatives exhibit dual or multiple anticancer properties through diverse mechanisms, focusing on specific compounds or employing strategies that are not gene specific. Furthermore, many drugs based on benzimidazole have previously been approved to treat cancer. This comprehensive review encompasses the most important reports on various benzimidazole hybrids, highlighting their anticancer significance, mechanism of action, and structure-activity relationships from 2005 up to 2025. These provide valuable knowledge for designing effective anticancer drugs. Full article
(This article belongs to the Special Issue Advances in Medicinal Chemistry: 2nd Edition)
Show Figures

Graphical abstract

27 pages, 5600 KB  
Article
Comparative Study of Ferrocene- and Indene-Based Tamoxifen Derivatives of Different Molecular Flexibility on High-Mortality Cancer Cell Lines
by Márton Kalabay, Zsófia Szász, Eszter Lajkó, Bálint Bagu, Éva Pállinger, Cintia Duró, Tamás Jernei, Antal Csámpai, Angéla Takács and László Kőhidai
Pharmaceuticals 2025, 18(9), 1417; https://doi.org/10.3390/ph18091417 - 20 Sep 2025
Viewed by 911
Abstract
Tamoxifen is a well-established selective estrogen receptor modulator (SERM) widely used in breast cancer treatment, yet its efficacy varies across tumor types. To enhance its antitumor potential, we previously synthesized and investigated novel ferrocene-linked (T5, T15) derivatives. This publication is a close continuation [...] Read more.
Tamoxifen is a well-established selective estrogen receptor modulator (SERM) widely used in breast cancer treatment, yet its efficacy varies across tumor types. To enhance its antitumor potential, we previously synthesized and investigated novel ferrocene-linked (T5, T15) derivatives. This publication is a close continuation of this work, introducing a new indene-based (T6) derivative. Objectives: The main aim of this study was to further broaden our knowledge of the mechanism behind the increased antitumor effect of the ferrocene-linked drugs (T5 and T15) and compare it with a new, indene-based tamoxifen derivative, T6. The indene moiety was selected as a rigid, hydrophobic aromatic unit to probe pharmacological effects independent of ferrocene’s redox activity. Methods: The compounds were tested on MCF7, MDA-MB231 and PANC1 cells. Cell viability was assessed with the AlamarBlue assay and the xCELLigence SP system. Reactive oxygen species (ROS) production was measured with the ROS Glo assay. Flow cytometry and RT-qPCR experiments were conducted to assess apoptosis and ROS regulation as well. Results: The modified compounds demonstrated an increased cell-viability-decreasing effect in breast (MCF7, MDA-MB-231) and pancreatic (PANC1) cancer cell lines, influencing both estrogen-receptor-dependent and -independent pathways. T6 led to G2/M phase arrest in PANC1 cells. Beyond cell cycle disruption, these derivatives significantly elevated ROS levels, contributing to apoptosis. Conclusions: Our findings suggest that these structural modifications retain tamoxifen’s pharmacophore properties while expanding its mechanism of action, particularly through universal interactions independent of the ER status of tumor cells. The enhanced antitumor effects highlight the potential of these derivatives as promising candidates for improved cancer therapies. Full article
(This article belongs to the Special Issue Chemotherapeutic and Targeted Drugs in Antitumor Therapy)
Show Figures

Graphical abstract

20 pages, 3114 KB  
Article
An Integrated Transcriptomic and Proteomic Approach Uncovers the Molecular Mechanisms of Hypoosmotic Adaptation in Scylla paramamosain Megalopa
by Ning Qiao, Zhiqiang Liu, Yuanyuan Li, Fengying Zhang, Chunyan Ma, Xueyang Wang, Jiayuan Xu, Lingbo Ma, Keyi Ma and Wei Wang
Int. J. Mol. Sci. 2025, 26(18), 9188; https://doi.org/10.3390/ijms26189188 - 20 Sep 2025
Cited by 1 | Viewed by 938
Abstract
Salinity is a pivotal environmental factor that governs crustacean survival and development through its regulatory effects on key physiological processes, including osmoregulation and metabolic homeostasis. In the mud crab Scylla paramamosain, salinity tolerance of the megalopa plays an important role in larval [...] Read more.
Salinity is a pivotal environmental factor that governs crustacean survival and development through its regulatory effects on key physiological processes, including osmoregulation and metabolic homeostasis. In the mud crab Scylla paramamosain, salinity tolerance of the megalopa plays an important role in larval survival rates and aquaculture yield. Here, we employed a combined transcriptomic and proteomic strategy to comprehensively dissect the molecular adaptive mechanisms of S. paramamosain megalopa exposed to acute and prolonged low-salinity stress (8‰) compared to control condition (17‰). Illumina-based transcriptome sequencing generated 81.71 Gb of high-quality clean data, which were assembled into 42,210 unigenes. LC-MS/MS-based proteomic profiling identified 51,390 unique peptides, corresponding to 5909 confidently quantified proteins. Transcriptomic profiling identified 2627 differentially expressed genes (DEGs) under acute low-salinity stress, comprising 1332 upregulated and 1295 downregulated genes compared to the control group. In contrast, a total of 733 DEGs were identified under prolonged low-salinity exposure, including 390 upregulated and 343 downregulated genes. Parallel proteomic analysis identified 199 differentially expressed proteins (DEPs) in the acute stress group, with 105 upregulated and 94 downregulated relative to the control group. Under prolonged stress, 206 DEPs were detected, including 124 upregulated and 82 downregulated proteins compared to the control group. Significant GO term and KEGG pathway enrichments contained metal ion binding, oxidoreductase activity, nucleus, apoptotic process, innate immune response, and amino acid metabolism, suggesting that megalopa employ coordinated regulatory mechanisms involving metabolic reprogramming, immunity system modulation, ion homeostasis maintenance and cell cycle regulation to adapt to hypoosmotic stress. Integrated multi-omics analysis identified 17 genes displaying significant concordant differential expression at both mRNA and protein levels during acute hypoosmotic stress, versus only 5 gene-protein pairs during prolonged stress exposure, indicating extensive post-transcriptional regulation and protein turnover mechanisms in sustained hypoosmotic condition. To the best of our knowledge, this study established the first integrative transcriptome-proteome framework elucidating hypoosmotic adaptation (8‰) mechanisms in S. paramamosain megalopa. The identified molecular signatures offer actionable targets for selective breeding of salinity-tolerant strains and precision management of megalopa culture under suboptimal salinity condition, while fundamentally advancing our mechanistic understanding of osmoregulatory plasticity across decapod crustaceans. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

48 pages, 2609 KB  
Review
Antibacterial, Photoprotective, Anti-Inflammatory, and Selected Anticancer Properties of Honokiol Extracted from Plants of the Genus Magnolia and Used in the Treatment of Dermatological Problems—A Review
by Mirosława Chwil, Katarzyna Dzida, Paulina Terlecka, Daniela Gruľová, Renata Matraszek-Gawron, Karol Terlecki, Anna Kasprzyk and Mikołaj Kostryco
Int. J. Mol. Sci. 2025, 26(17), 8737; https://doi.org/10.3390/ijms26178737 - 8 Sep 2025
Cited by 3 | Viewed by 4091
Abstract
Magnolia raw materials have long been used in Chinese folk medicine. The biologically active chemical compounds in Magnolia, mainly lignans, e.g., honokiol, exert health-enhancing effects in certain diseases, including skin conditions. Since the scientific literature does not provide a comparative analysis of [...] Read more.
Magnolia raw materials have long been used in Chinese folk medicine. The biologically active chemical compounds in Magnolia, mainly lignans, e.g., honokiol, exert health-enhancing effects in certain diseases, including skin conditions. Since the scientific literature does not provide a comparative analysis of the therapeutic properties of honokiol on the skin in various biological models, an attempt was made to supplement the knowledge in this field. This review presents the antimicrobial, anti-inflammatory, and photoprotective properties of honokiol used in dermatological problems and its anticancer activity in melanoma and non-melanoma skin cancers. Honokiol reduces the expression of HSV-1 genes, inhibits DNA replication, lowers the level of proteins, regulates the colonisation of viral glycoproteins with high membrane selectivity, and inhibits the endocytosis process. It has antibacterial activity, as it destroys bacterial cell walls and membranes. It disrupts vacuolar functioning and intracellular calcium homeostasis in dermatophyte cells and inhibits fungal growth by delaying germination, altering membrane permeability, and reducing hyphal growth. It reduces inflammatory cytokines and stimulates anti-inflammatory cytokine IL-10. Honokiol prevents UV-B induced skin cancer through targeting cell cycle regulators, inflammatory mediators, and cell survival signals. It induces apoptosis via extrinsic and intrinsic pathways, activating proapoptotic proteins. It acts as an inhibitor of the oncogenic protein KRT18 in melanoma and prevents the progression of highly metastatic melanoma. Future research should explore the signalling pathways and molecular mechanisms of honokiol action and its synergistic effects at the cellular level and help to develop methods for delivering honokiol to the organism by nanocarriers to improve selective therapies in some diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

28 pages, 1016 KB  
Review
Sustainable Dental and Periodontal Practice: A Narrative Review on the 4R-Framework—Reduce, Reuse, Rethink, Recycle—And Waste Management Rationalization
by Federica Di Spirito, Francesco Giordano, Maria Pia Di Palo, Giuseppina De Benedetto, Leonardo Aulisio and Giovanni Boccia
Dent. J. 2025, 13(9), 392; https://doi.org/10.3390/dj13090392 - 28 Aug 2025
Cited by 1 | Viewed by 3005
Abstract
Background/Objectives: While dentistry plays a critical role in promoting oral health, it also contributes significantly to environmental degradation through high energy consumption, water usage, and reliance on disposable, non-recyclable materials. Periodontology, in particular, involves resource-intensive procedures such as full-mouth disinfection, frequent surgical [...] Read more.
Background/Objectives: While dentistry plays a critical role in promoting oral health, it also contributes significantly to environmental degradation through high energy consumption, water usage, and reliance on disposable, non-recyclable materials. Periodontology, in particular, involves resource-intensive procedures such as full-mouth disinfection, frequent surgical interventions, and aerosol-generating instrumentation. The aim of the present narrative review is to synthesize current knowledge and delineate feasible, evidence-informed strategies to operationalize sustainability across the full spectrum of periodontal treatment settings. Methods: The electronic search of the present narrative review was performed across PubMed/MEDLINE, Web of Science, BioMed Central, Scopus, CINAHL, and Cochrane Library databases. Results: The review identified actionable sustainability strategies across pre-workplace (e.g., eco-conscious procurement and transport reduction), workplace (e.g., energy- and water-saving technologies, digital workflows, and pollution control), and waste management (e.g., reuse protocols, recycling, and sustainable material selection). Particular emphasis was placed on the role of dental education, life cycle assessments, and digital innovations. Conclusions: The transition toward sustainable periodontology requires the adoption of evidence-based practices and leveraging digital innovation to reduce the environmental impact while maintaining high standards of care. Full article
Show Figures

Figure 1

24 pages, 1859 KB  
Article
Interaction-Based Vehicle Automation Model for Intelligent Vision Systems
by Julian Balcerek and Paweł Pawłowski
Electronics 2025, 14(17), 3406; https://doi.org/10.3390/electronics14173406 - 27 Aug 2025
Viewed by 596
Abstract
In this paper, we introduce a new vehicle automation model describing the latest intelligent vision systems, but not limited to them, based on interactions between the vehicle, its user, and the environment, occurring simultaneously or at different times. The proposed model addresses the [...] Read more.
In this paper, we introduce a new vehicle automation model describing the latest intelligent vision systems, but not limited to them, based on interactions between the vehicle, its user, and the environment, occurring simultaneously or at different times. The proposed model addresses the lack of vehicle automation models that would simultaneously incorporate the latest vision systems and human actions, organize them according to interaction types, and enable quantitative performance analysis. The model, based on interactions, organizes in terms of types and enables parametric analysis of the operation of the latest automatic vision systems and modern knowledge about human behavior using the perception of visual information. The concept of interaction cycles was introduced, thanks to which it is possible to analyze subsequently occurring interactions, i.e., when actions trigger reactions. Interactions were decomposed into fragments containing single direct unidirectional interactions. The interactions have been assigned consistent numerical effectiveness parameters related to image recognition by individual systems, thanks to which numerical analysis at different levels of detail is possible, depending on the needs. For each of the six interaction types, ten applications of the newest and available vision systems, including those prepared by the authors, were reviewed and selected for effectiveness analysis using the presented model. The analysis was performed by appropriately weighting and averaging or multiplying interaction effectiveness. The overall effectiveness of the interaction model for selected solutions was over 80%. The model also allows the selection of weights for individual components, depending on the criterion being analyzed, e.g., safety or environmental protection. Humans turned out to be the weakest link in interactions, e.g., reducing the human driver role increased overall effectiveness of interactions to almost 90%, and its increase resulted in an effectiveness reduction to over 70%. Examples of selecting solutions for implementation based on the interaction cycle and its fragment, taking into account the effectiveness of subsequent interactions, were also presented. The presented model is characterized by its comprehensiveness, simplicity and scalability according to needs. It can be used both for scientific analysis of existing solutions and be helpful in selecting solutions for modification and implementation by the vehicle manufacturers. Full article
Show Figures

Figure 1

Back to TopTop