Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,097)

Search Parameters:
Keywords = kinase ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1881 KB  
Article
From Latent Manifolds to Targeted Molecular Probes: An Interpretable, Kinome-Scale Generative Machine Learning Framework for Family-Based Kinase Ligand Design
by Gennady Verkhivker, Ryan Kassab and Keerthi Krishnan
Biomolecules 2026, 16(2), 209; https://doi.org/10.3390/biom16020209 - 29 Jan 2026
Abstract
Scaffold-aware artificial intelligence (AI) models enable systematic exploration of chemical space conditioned on protein-interacting ligands, yet the representational principles governing their behavior remain poorly understood. The computational representation of structurally complex kinase small molecules remains a formidable challenge due to the high conservation [...] Read more.
Scaffold-aware artificial intelligence (AI) models enable systematic exploration of chemical space conditioned on protein-interacting ligands, yet the representational principles governing their behavior remain poorly understood. The computational representation of structurally complex kinase small molecules remains a formidable challenge due to the high conservation of ATP active site architecture across the kinome and the topological complexity of structural scaffolds in current generative AI frameworks. In this study, we present a diagnostic, modular and chemistry-first generative framework for design of targeted SRC kinase ligands by integrating ChemVAE-based latent space modeling, a chemically interpretable structural similarity metric (Kinase Likelihood Score), Bayesian optimization, and cluster-guided local neighborhood sampling. Using a comprehensive dataset of protein kinase ligands, we examine scaffold topology, latent-space geometry, and model-driven generative trajectories. We show that chemically distinct scaffolds can converge toward overlapping latent representations, revealing intrinsic degeneracy in scaffold encoding, while specific topological motifs function as organizing anchors that constrain generative diversification. The results demonstrate that kinase scaffolds spanning 37 protein kinase families spontaneously organize into a coherent, low-dimensional manifold in latent space, with SRC-like scaffolds acting as a structural “hub” that enables rational scaffold transformation. Our local sampling approach successfully converts scaffolds from other kinase families (notably LCK) into novel SRC-like chemotypes, with LCK-derived molecules accounting for ~40% of high-similarity outputs. However, both generative strategies reveal a critical limitation: SMILES-based representations systematically fail to recover multi-ring aromatic systems—a topological hallmark of kinase chemotypes—despite ring count being a top feature in our structural similarity metric. This “representation gap” demonstrates that no amount of scoring refinement can compensate for a generative engine that cannot access topologically constrained regions. By diagnosing these constraints within a transparent pipeline and reframing scaffold-aware ligand design as a problem of molecular representation our work provides a conceptual framework for interpreting generative model behavior and for guiding the incorporation of structural priors into future molecular AI architectures. Full article
(This article belongs to the Special Issue Cancer Biology: Machine Learning and Bioinformatics)
Show Figures

Graphical abstract

15 pages, 4527 KB  
Article
Molecular Docking and MD Modeling Techniques for the Development of Novel ROS1 Kinase Inhibitors
by Mohammad Jahoor Alam, Arshad Jamal, Shaik Daria Hussain, Shahzaib Ahamad, Dinesh Gupta and Ashanul Haque
Pharmaceuticals 2026, 19(2), 229; https://doi.org/10.3390/ph19020229 - 28 Jan 2026
Abstract
Background: Chemotherapy is a cornerstone of cancer treatment; however, resistance to first-line chemotherapeutic agents remains a major challenge. ROS1, one of fifty-eight receptor tyrosine kinases, has been implicated in various cancer subtypes, including glioblastoma, non-small-cell lung cancer, and cholangiocarcinoma. Notably, the Gly2032Arg mutation [...] Read more.
Background: Chemotherapy is a cornerstone of cancer treatment; however, resistance to first-line chemotherapeutic agents remains a major challenge. ROS1, one of fifty-eight receptor tyrosine kinases, has been implicated in various cancer subtypes, including glioblastoma, non-small-cell lung cancer, and cholangiocarcinoma. Notably, the Gly2032Arg mutation in the ROS1 protein has been linked to resistance against the kinase inhibitor crizotinib. Objectives: Given the challenge, we conducted a comprehensive in silico study to identify new drug candidates. Methods: The study starts with modeling the Gly2032Arg-mutated ROS1 protein, followed by structure-based screening of the PubChem database. Results: Out of 1760 molecules screened, we selected the top 4 molecules (PubChem CID: 67463531, 72544946, 139431449, and 139431487) with structural features similar to crizotinib, a high docking score, and drug likeness. To further validate the effectiveness of the identified compounds, we assessed their binding affinity using the Molecular Mechanics with Generalized Born Surface Area (MM-GBSA) scoring method. To underpin the behavior and stability of protein–ligand complexes, 500 ns molecular dynamics (MD) simulations were conducted, and parameters including RMSD, RMSF, and H-bond dynamics were studied and compared. Density functional theory (DFT) at the B3LYP/6-31G* level was performed to elucidate molecular features of the identified compounds. Conclusions: Overall, this study sheds light on a new series of compounds effective against mutated targets, thereby offering a new horizon in this area. Full article
Show Figures

Graphical abstract

21 pages, 5177 KB  
Article
Identification of FDA-Approved Drugs as Potential Inhibitors of WEE2: Structure-Based Virtual Screening and Molecular Dynamics with Perspectives for Machine Learning-Assisted Prioritization
by Shahid Ali, Abdelbaset Mohamed Elasbali, Wael Alzahrani, Taj Mohammad, Md. Imtaiyaz Hassan and Teng Zhou
Life 2026, 16(2), 185; https://doi.org/10.3390/life16020185 - 23 Jan 2026
Viewed by 293
Abstract
Wee1-like protein kinase 2 (WEE2) is an oocyte-specific kinase that regulates meiotic arrest and fertilization. Its largely restricted expression in female germ cells and absence in somatic tissues make it a highly selective target for reproductive health interventions. Despite its central role in [...] Read more.
Wee1-like protein kinase 2 (WEE2) is an oocyte-specific kinase that regulates meiotic arrest and fertilization. Its largely restricted expression in female germ cells and absence in somatic tissues make it a highly selective target for reproductive health interventions. Despite its central role in human fertility, no clinically approved WEE2 modulator is available. In this study, we employed an integrated in silico approach that combines structure-based virtual screening, molecular dynamics (MD) simulations, and MM-PBSA free-energy calculations to identify repurposed drug candidates with potential WEE2 inhibitory activity. Screening of ~3800 DrugBank compounds against the WEE2 catalytic domain yielded ten high-affinity hits, from which Midostaurin and Nilotinib emerged as the most mechanistically relevant based on kinase-targeting properties and pharmacological profiles. Docking analyses revealed strong binding affinities (−11.5 and −11.3 kcal/mol) and interaction fingerprints highly similar to the reference inhibitor MK1775, including key contacts with hinge-region residues Val220, Tyr291, and Cys292. All-atom MD simulations for 300 ns demonstrated that both compounds induce stable protein–ligand complexes with minimal conformational drift, decreased residual flexibility, preserved compactness, and stable intramolecular hydrogen-bond networks. Principal component and free-energy landscape analyses further indicate restricted conformational sampling of WEE2 upon ligand binding, supporting ligand-induced stabilization of the catalytic domain. MM-PBSA calculations confirmed favorable binding free energies for Midostaurin (−18.78 ± 2.23 kJ/mol) and Nilotinib (−17.47 ± 2.95 kJ/mol), exceeding that of MK1775. To increase the translational prioritization of candidate hits, we place our structure-based pipeline in the context of modern machine learning (ML) and deep learning (DL)-enabled virtual screening workflows. ML/DL rescoring and graph-based molecular property predictors can rapidly re-rank docking hits and estimate absorption, distribution, metabolism, excretion, and toxicity (ADMET) liabilities before in vitro evaluation. Full article
(This article belongs to the Special Issue Role of Machine and Deep Learning in Drug Screening)
Show Figures

Figure 1

14 pages, 7853 KB  
Article
Efficacy and Safety of HAIC Combined with PD-(L)1 Inhibitors and Bevacizumab Versus HAIC with PD-(L)1 Inhibitors and TKIs in Advanced Hepatocellular Carcinoma: A Retrospective Cohort Study
by Zizhuo Wang, Wei Xu, Songlin Song, Yanqiao Ren, Jiacheng Liu, Yiming Liu, Xuefeng Kan, Chuansheng Zheng and Bin Liang
Cancers 2026, 18(2), 314; https://doi.org/10.3390/cancers18020314 - 20 Jan 2026
Viewed by 127
Abstract
Background: The combination of hepatic arterial infusion chemotherapy (HAIC) with immune checkpoint inhibitors (ICIs) and anti-angiogenic agents represents a potential therapeutic strategy for advanced hepatocellular carcinoma (HCC). This study aimed to compare the efficacy and safety of triple therapies combining HAIC with ICIs [...] Read more.
Background: The combination of hepatic arterial infusion chemotherapy (HAIC) with immune checkpoint inhibitors (ICIs) and anti-angiogenic agents represents a potential therapeutic strategy for advanced hepatocellular carcinoma (HCC). This study aimed to compare the efficacy and safety of triple therapies combining HAIC with ICIs and either bevacizumab or tyrosine kinase inhibitors (TKIs) in these patients. Methods: This retrospective single-center study enrolled 65 consecutive patients with advanced HCC who received HAIC combined with ICIs plus either bevacizumab (bevacizumab group, n = 31) or TKIs (TKIs group, n = 34) between June 2021 and June 2023. Primary endpoints included progression-free survival (PFS), objective response rate (ORR), duration of response (DOR), and safety profiles. Results: The bevacizumab group demonstrated significantly prolonged median PFS (10.9 vs. 7.4 months, p = 0.001) and higher ORR (83.9% vs. 61.8%, p = 0.047) compared with the TKIs group. DOR was longer in the bevacizumab group (7.9 vs. 5.3 months, p = 0.008). Median overall survival (OS) was not reached in the bevacizumab group versus 22.6 months in the TKIs group. Grade 3–4 adverse events occurred in 67.7% of the bevacizumab group and 73.5% of the TKIs group, with distinct toxicity profiles. Gastrointestinal hemorrhage (45.2%) and gastric ulcer (22.6%) predominated in the bevacizumab group, whereas the TKIs group exhibited more hepatic enzyme elevations (aspartate aminotransferase, 67.6%; alanine aminotransferase, 61.8%), proteinuria (29.4%), diarrhea (26.5%), hand-foot syndrome (20.6%), and reactive cutaneous capillary endothelial proliferation (11.8%). Conclusions: Bevacizumab-containing triplet therapy was associated with improved tumor control and delayed progression compared to TKIs-based regimens in advanced HCC. The higher bleeding risk in the bevacizumab group highlights the necessity of standardized baseline evaluation and adequate preventive measures. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

39 pages, 9691 KB  
Review
Advances in Targeting BCR-ABLT315I Mutation with Imatinib Derivatives and Hybrid Anti-Leukemic Molecules
by Aleksandra Tuzikiewicz, Wiktoria Wawrzyniak, Andrzej Kutner and Teresa Żołek
Molecules 2026, 31(2), 341; https://doi.org/10.3390/molecules31020341 - 19 Jan 2026
Viewed by 147
Abstract
Resistance to imatinib remains a therapeutic challenge, largely driven by point mutations within the kinase domain of the BCR-ABL, among which the T315I substitution constitutes the most clinically significant barrier. Ponatinib effectively inhibits this mutant form but is limited by dose-dependent cardiovascular [...] Read more.
Resistance to imatinib remains a therapeutic challenge, largely driven by point mutations within the kinase domain of the BCR-ABL, among which the T315I substitution constitutes the most clinically significant barrier. Ponatinib effectively inhibits this mutant form but is limited by dose-dependent cardiovascular toxicity, prompting efforts to develop safer and more selective agents. Recent advances highlight aminopyrimidine-derived scaffolds and their evolution into thienopyrimidines, oxadiazoles, and pyrazines with improved activity against BCR-ABLT315I. Further progress has been achieved with benzothiazole–picolinamide hybrids incorporating a urea-based pharmacophore, which benefit from strategic hinge-region substitutions and phenyl linkers that enhance potency. Parallel research into dual-mechanism inhibitors, including Aurora and p38 kinase modulators, demonstrates additional opportunities for overcoming resistance. Combination strategies, such as vorinostat with ponatinib, provide complementary therapeutic avenues. Natural-product-inspired approaches utilizing fungal metabolites provided structurally diverse scaffolds that could engage sterically constrained mutant kinases. Hybrid molecules derived from approved TKIs, including GNF-7, olverembatinib, and HG-7-85-01, exemplify rational design trends that balance efficacy with improved safety. Molecular modeling continues to deepen understanding of ligand engagement within the T315I-mutated active site, supporting the development of next-generation inhibitors. In this review, we summarized recent progress in the design, optimization, and biological evaluation of small molecules targeting the BCR-ABLT315I mutation. Full article
Show Figures

Figure 1

23 pages, 1032 KB  
Review
Effects of Cannabidiol on Bone Health: A Comprehensive Scoping Review
by Shabbir Adnan Shakir and Kok-Yong Chin
Biomedicines 2026, 14(1), 208; https://doi.org/10.3390/biomedicines14010208 - 18 Jan 2026
Viewed by 247
Abstract
Background/objectives: Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa, which has potential skeletal benefits through modulation of bone cell function and inflammatory signalling. However, evidence of its effects and mechanisms in bone health remains fragmented. This scoping review summarised the current [...] Read more.
Background/objectives: Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa, which has potential skeletal benefits through modulation of bone cell function and inflammatory signalling. However, evidence of its effects and mechanisms in bone health remains fragmented. This scoping review summarised the current findings on the impact of CBD on bone outcomes and its mechanisms of action. Methods: A systematic search of PubMed, Scopus, and Web of Science was conducted in October 2025 for original studies published in English, with the primary objective of examining the effects of CBD on bone health, regardless of study design. After applying inclusion and exclusion criteria, 24 primary studies were included. Data on model design, CBD formulation, treatment parameters, bone-related outcomes, and proposed mechanisms were extracted and analysed descriptively. Results: Among the studies included, eleven demonstrated beneficial effects of CBD on bone formation, mineralisation, callus quality, or strength; eleven showed mixed outcomes; and two demonstrated no apparent benefit. Previous studies have shown that CBD suppresses bone resorption by reducing osteoclast differentiation and activity while promoting osteoblast proliferation and matrix deposition. Mechanistically, CBD’s effects involve activation of cannabinoid receptor 2, modulation of the receptor activator of nuclear factor-κB ligand/osteoprotegerin pathway, and regulation of osteoblastogenic and osteoclastogenic signalling through bone morphogenetic protein, Wnt, mitogen-activated protein kinase, nuclear factor-κB, and peroxisome proliferator-activated receptor signalling. The anti-inflammatory and antioxidant actions of CBD further contribute to a favourable bone microenvironment. Conclusions: Preclinical evidence suggests that CBD has a bone-protective role through multifaceted pathways that enhance osteoblast function and suppress osteoclast activity. Nevertheless, robust human trials are necessary to confirm its efficacy, determine its optimal dosing, and clarify its long-term safety. Full article
Show Figures

Graphical abstract

12 pages, 2880 KB  
Article
Gene Expression Profiles of Melanocytes Over-Expressing miR-5110 in Alpaca
by Shanshan Yang, Dingxing Jiao, Fengsai Li, Xuqi Wang, Tao Song, Lili Wang, Ping Rui and Zengjun Ma
Curr. Issues Mol. Biol. 2026, 48(1), 93; https://doi.org/10.3390/cimb48010093 - 16 Jan 2026
Viewed by 125
Abstract
Previous studies have shown that miR-5110 regulates pigmentation by cotargeting melanophilin (MLPH) and WNT family member 1 (WNT1). In order to find the possible molecular mechanism for pigmentation, we examined the mRNA expression profiles in melanocytes of alpaca transfected with miR-5110, inhibitor or [...] Read more.
Previous studies have shown that miR-5110 regulates pigmentation by cotargeting melanophilin (MLPH) and WNT family member 1 (WNT1). In order to find the possible molecular mechanism for pigmentation, we examined the mRNA expression profiles in melanocytes of alpaca transfected with miR-5110, inhibitor or negative control (NC) plasmids using high-throughput RNA sequencing. The results showed that a total of 91,976 unigenes were assembled from the reads, among which 13,262 had sequence sizes greater than 2000 nucleotides. According to the KEGG pathway analysis, four pathways related to melanogenesis, the MAPK signaling pathway, Wnt signaling pathway, and cAMP signaling pathway were identified. Compared to the NC, 162 gene were upregulated and 41 genes were downregulated in melanocytes over expressed by miR-5110. The differential expressions of mRNAs Dickkopf 3 (DKK3), premelanosome protein (Pmel), insulin-like growth factor 1 receptor (IGF1R), cyclin-dependent kinase 5 (CDK5), endothelin receptor type B (Ednrb), kit ligand (Kitl), Myc, and S100 were verified using qRT-PCR, which agreed with the results of RNA sequencing. We also verified the differential expressions of mRNAs of some genes in the MAPK signaling pathway using qRT-PCR, which agreed with the results of RNA sequencing. Interestingly, several genes were screened as candidates for the melanogenesis regulated by miR-5110, including Kitl and MAPK-activated protein kinase 3 (MAPKAPK3). These findings provide new insights for further molecular studies on the effects of miR-5110 on the melanogenesis and pigmentation. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

20 pages, 3172 KB  
Article
Molecular Investigation of Product Nkabinde in HIV Therapy: A Network Pharmacology and Molecular Docking Approach
by Samuel Chima Ugbaja, Mlungisi Ngcobo, Siphathimandla Authority Nkabinde, Magugu Nkabinde and Nceba Gqaleni
Int. J. Mol. Sci. 2026, 27(2), 808; https://doi.org/10.3390/ijms27020808 - 13 Jan 2026
Viewed by 513
Abstract
HIV/AIDS continues to pose a significant global public health concern, with Sub-Saharan Africa having the highest number of people living with HIV (PLHIV). Traditional medicines have been increasingly essential in treating and managing PLHIV. Product Nkabinde (PN), a polyherbal formulation derived from traditional [...] Read more.
HIV/AIDS continues to pose a significant global public health concern, with Sub-Saharan Africa having the highest number of people living with HIV (PLHIV). Traditional medicines have been increasingly essential in treating and managing PLHIV. Product Nkabinde (PN), a polyherbal formulation derived from traditional medicinal plants, has recently demonstrated significant potential in the treatment of HIV. This study aims to elucidate the molecular mechanisms underlying the therapeutic effects of phytochemicals identified from PN in HIV treatment, utilizing network pharmacology and molecular docking. The intersecting (common) genes of the 27 phytochemicals of PN and HIV were computed on a Venn diagram, while the protein–protein interaction (PPI) network of the intersecting genes was plotted using STRING. The hub (10) genes were computed and analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways using ShinyGO. Molecular docking and protein–ligand interaction analysis of the 27 phytochemicals with each of the 10 hub genes were performed using the Maestro Schrodinger suite. The KEGG analysis reveals an important network with lower False Discovery Rate (FDR) values and higher fold enrichment. The pathway enrichments reveal that the 10 hub genes regulated by PN focus on immune regulation, metabolic modulation, viral comorbidity, carcinogenesis, and inflammation. GO analysis further reveals that PN plays key roles in transcription regulation, such as miRNA, responses to hormones and endogenous stimuli, oxidative stress regulation, and apoptotic signalling, kinase binding, protein kinase binding, transcription factor binding, and ubiquitin ligase binding enriched pathways. Consequently, molecular docking unveils complexes with higher binding energies, such as rutin-HSP90AA1 (−10.578), catechin-JUN (−9.512), quercetin-3-O-arabinoside-AKT1 (−9.874), rutin-EGFR (−8.127), aloin-ESR1 (−8.585), and quercetin-3-0-β-D-(6′-galloyl)-glucopyranoside-BCL2 (−7.021 kcal/mol). Overall, the results reveal pathways associated with HIV pathology and possible anti-HIV mechanisms of PN. Therefore, further in silico, in vitro, and in vivo validations are required to substantiate these findings. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

28 pages, 14749 KB  
Article
Cytosolic Immunostimulatory DNA Ligands and DNA Damage Activate the Integrated Stress Response, Stress Granule Formation, and Cytokine Production
by Trupti Devale, Lekhana Katuri, Gauri Mishra, Aditya Acharya, Praveen Manivannan, Brian R. Hibbard and Krishnamurthy Malathi
Cells 2026, 15(2), 139; https://doi.org/10.3390/cells15020139 - 13 Jan 2026
Viewed by 464
Abstract
The presence of aberrant double-stranded DNA (dsDNA) in the cytoplasm of cells is sensed by unique pattern recognition receptors (PRRs) to trigger innate immune response. The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) signaling pathway is activated by the presence of non-self [...] Read more.
The presence of aberrant double-stranded DNA (dsDNA) in the cytoplasm of cells is sensed by unique pattern recognition receptors (PRRs) to trigger innate immune response. The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) signaling pathway is activated by the presence of non-self or mislocalized self-dsDNA from nucleus or mitochondria released in response to DNA damage or cellular stress in the cytoplasm. Activation of cGAS leads to the synthesis of the second messenger cyclic GMP–AMP (cGAMP), which binds and activates STING, triggering downstream signaling cascades that result in the production of type I interferons (IFNs) and proinflammatory cytokines. Here, we show that diverse immunostimulatory dsDNA ligands and chemotherapy agents like Doxorubicin and Taxol trigger the integrated stress response (ISR) by activating endoplasmic reticulum (ER) stress kinase, protein kinase RNA-like ER kinase (PERK), in addition to the canonical IFN pathways. PERK-mediated phosphorylation and inactivation of the alpha subunit of eukaryotic translation initiation factor-2 (eIF2α) result in the formation of stress granules (SGs). SG formation by dsDNA was significantly reduced in PERK knockout cells or by inhibiting PERK activity. Transcriptional induction of IFNβ and cytokines, ISR signaling, and SG formation by dsDNA was dampened in cells lacking PERK activity, STING, or key stress-granule nucleating protein, Ras-GAP SH3 domain-binding protein 1 (G3BP1), demonstrating an important role of the signal transduction pathway mediated by STING and SG assembly. Lastly, STING regulates reactive oxygen species (ROS) production in response to DNA damage, highlighting the crosstalk between DNA sensing and oxidative stress pathways. Together, our data identify STING–PERK–G3BP1 signaling axis that couples cytosolic DNA sensing to stress response pathways in maintaining cellular homeostasis. Full article
(This article belongs to the Special Issue Endoplasmic Reticulum Stress Signaling Pathway: From Bench to Bedside)
Show Figures

Figure 1

22 pages, 2568 KB  
Article
Molecular Pathology of Advanced NSCLC: Biomarkers and Therapeutic Decisions
by Melanie Winter, Jan Jeroch, Maximilian Wetz, Marc-Alexander Rauschendorf and Peter J. Wild
Cancers 2026, 18(2), 216; https://doi.org/10.3390/cancers18020216 - 9 Jan 2026
Viewed by 292
Abstract
Background: Advances in molecular pathology have transformed NSCLC (Non-Small Cell Lung Cancer) diagnosis, prognosis, and treatment by enabling precise tumor characterization and targeted therapeutic strategies. We review key genomic alterations in NSCLC, including EGFR (epidermal growth factor receptor) mutations, ALK (anaplastic lymphoma kinase) [...] Read more.
Background: Advances in molecular pathology have transformed NSCLC (Non-Small Cell Lung Cancer) diagnosis, prognosis, and treatment by enabling precise tumor characterization and targeted therapeutic strategies. We review key genomic alterations in NSCLC, including EGFR (epidermal growth factor receptor) mutations, ALK (anaplastic lymphoma kinase) and ROS1 (ROS proto-oncogene 1) rearrangements, BRAF (B-Raf proto-oncogene serine/threonine kinase) mutations, MET (mesenchymal–epithelial transition factor) alterations, KRAS (Kirsten rat sarcoma) mutations, HER2 (human epidermal growth factor receptor 2) alterations and emerging NTRK (neurotrophic receptor tyrosine kinase) fusions and AXL-related pathways. Methods: A total of 48 patients with NSCLC was analyzed, including 22 women and 26 men (mean age 70 years, range 44–86). Tumor specimens were classified histologically as adenocarcinomas (n = 81%) or squamous cell carcinomas (n = 19%). Smoking history, PD-L1 (programmed death-ligand 1) expression, and genetic alterations were assessed. NGS (Next-generation sequencing) identified genomic variants, which were classified according to ACMG (American College of Medical Genetics and Genomics) guidelines. Results: The cohort consisted of 29 former smokers, 13 current smokers, and 5 non-smokers (12%), with a mean smoking burden of 33 pack years. PD-L1 TPS (tumor proportion score) was ≥50% in 10 patients, ≥1–<50% in 22, and <1% in 15 patients. In total, 120 genomic variants were detected (allele frequency ≥ 5%). Of these, 52 (43%) were classified as likely pathogenic or pathogenic, 48 (40%) as variants of unknown significance, and 20 (17%) as benign or likely benign. The most frequently altered genes were TP53 (tumor protein p53) (31%), KRAS and EGFR (15% each), and STK11 (serine/threonine kinase 11) (12%). Adenocarcinomas accounted for 89% of all alterations, with TP53 (21%) and KRAS (15%) being most common, while squamous cell carcinomas predominantly harbored TP53 (38%) and MET (15%) mutations. In patients with PD-L1 TPS ≥ 50%, KRAS mutations were enriched (50%), particularly KRAS G12C and G12D, with frequent co-occurrence of TP53 mutations (20%). No pathogenic EGFR mutations were detected in this subgroup. Conclusions: Comprehensive genomic profiling in NSCLC revealed a high prevalence of clinically relevant mutations, with TP53, KRAS and EGFR as the dominant drivers. The strong association of KRAS mutations with high PD-L1 expression, irrespective of smoking history, highlights the interplay between genetic and immunological pathways in NSCLC. These findings support the routine implementation of broad molecular testing to guide precision oncology approaches in both adenocarcinoma and squamous cell carcinoma patients. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

29 pages, 4039 KB  
Review
Targeting Mesenchymal-Epidermal Transition (MET) Aberrations in Non-Small Cell Lung Cancer: Current Challenges and Therapeutic Advances
by Fahua Deng, Weijie Ma and Sixi Wei
Cancers 2026, 18(2), 207; https://doi.org/10.3390/cancers18020207 - 8 Jan 2026
Viewed by 510
Abstract
The mesenchymal–epithelial transition (MET) receptor is a tyrosine kinase activated by its sole known ligand, hepatocyte growth factor (HGF). MET signaling regulates key cellular processes, including proliferation, survival, migration, motility, and angiogenesis. Dysregulation and hyperactivation of this pathway are implicated in multiple malignancies, [...] Read more.
The mesenchymal–epithelial transition (MET) receptor is a tyrosine kinase activated by its sole known ligand, hepatocyte growth factor (HGF). MET signaling regulates key cellular processes, including proliferation, survival, migration, motility, and angiogenesis. Dysregulation and hyperactivation of this pathway are implicated in multiple malignancies, including lung, breast, colorectal, and gastrointestinal cancers. In non–small cell lung cancer (NSCLC), aberrant activation of the MET proto-oncogene contributes to 1% of known oncogenic drivers and is associated with poor clinical outcomes. Several mechanisms can induce MET hyperactivation, including MET gene amplification, transcriptional upregulation of MET or HGF, MET fusion genes, and MET exon 14 skipping mutations. Furthermore, MET pathway activation represents a frequent mechanism of acquired resistance to EGFR- and ALK-targeted tyrosine kinase inhibitors (TKIs) in EGFR- and ALK-driven NSCLCs. Although MET has long been recognized as a promising therapeutic target in NSCLC, the clinical efficacy of MET-targeted therapies has historically lagged behind that of EGFR and ALK inhibitors. Encouragingly, several MET TKIs such as capmatinib, tepotinib, and savolitinib have been approved for the treatment of MET exon 14 skipping mutations. They have also demonstrated potential in overcoming MET-driven resistance to EGFR TKIs or ALK TKIs. On 14 May 2025, the U.S. Food and Drug Administration granted accelerated approval to telisotuzumab vedotin-tllv for adult patients with locally advanced or metastatic non-squamous NSCLC whose tumors exhibit high c-Met protein overexpression and who have already received prior systemic therapy. In this review, we summarize the structure and physiological role of the MET receptor, the molecular mechanisms underlying aberrant MET activation, its contribution to acquired resistance against targeted therapies, and emerging strategies for effectively targeting MET alterations in NSCLC. Full article
Show Figures

Figure 1

12 pages, 3854 KB  
Article
Crosstalk of Tumor-Derived Extracellular Vesicles with Immune Recipient Cells and Cancer Metastasis
by Han Jie, Alicja C Gluszko and Theresa L. Whiteside
Cancers 2026, 18(2), 196; https://doi.org/10.3390/cancers18020196 - 7 Jan 2026
Viewed by 227
Abstract
Background. Contributions of tumor-derived extracellular vesicles, TEX, to tumor progression and metastasis involve their crosstalk with immune cells in the tumor microenvironment. This crosstalk results in metabolic reprogramming of immune cells from anti-tumor to pro-tumor activity. Mechanistic underpinnings of the TEX entry [...] Read more.
Background. Contributions of tumor-derived extracellular vesicles, TEX, to tumor progression and metastasis involve their crosstalk with immune cells in the tumor microenvironment. This crosstalk results in metabolic reprogramming of immune cells from anti-tumor to pro-tumor activity. Mechanistic underpinnings of the TEX entry and delivery of molecular signals responsible for metabolic reprogramming may be unique for different types of immune cells. Methods. An in vitro model of THP-1 myeloid cells co-incubated with TEX illustrates the role TEX play in polarization of macrophages to TAMs. Results. In THP-1 cells, the dominant signaling pathway of melanoma cell-derived TEX involves HSP-90/TLR2. This leads to activation of the NF-κB and MAP kinase pathways and initiates THP-1 cell polarization from M0 to M2 with strong expression of immunosuppressive PD-L1. TEX may be seen as “danger” by the myeloid cells, which utilize the pattern recognition receptors (PRR), such as PAMPs or DAMPs, for engaging the complementary ligands carried by TEX. The same melanoma TEX signaling to T cells via DAMPs induced mitochondrial stress, resulting in T-cell apoptosis. Conclusions. As the signaling receptors/ligands in TEX are determined by the tumor, it appears that the tumor equips TEX with an address recognizing specific PRRs expressed on different recipient immune cells. Thus, TEX, acting like pathogens, are equipped by the tumor to alter the context of intercellular crosstalk and impose a distinct autophagy-not-apoptosis signature in recipient THP-1 cells. The tumor might endorse TEX to promote tumor progression and metastasis by enabling them to engage the signaling system normally used by immune cells for defense against pathogens. Full article
(This article belongs to the Special Issue Exosomes in Cancer Metastasis (2nd Edition))
Show Figures

Figure 1

22 pages, 5084 KB  
Article
Crystallographic Fragment Screening with CK2α’, an Isoform of Human Protein Kinase CK2 Catalytic Subunit, and Its Use to Obtain a CK2α’/Heparin Complex Structure
by Christian Werner, Tatjana Barthel, Hugo Harasimowicz, Christelle Marminon, Manfred S. Weiss, Marc Le Borgne and Karsten Niefind
Kinases Phosphatases 2026, 4(1), 1; https://doi.org/10.3390/kinasesphosphatases4010001 - 4 Jan 2026
Viewed by 282
Abstract
CK2α and CK2α’, two paralogous members of the human kinome, are catalytic subunits of protein kinase CK2. Together with the regulatory subunit CK2β, they form heterotetrameric holoenzymes. CK2 is the subject of efforts to develop effective and selective inhibitors. For this, secondary binding [...] Read more.
CK2α and CK2α’, two paralogous members of the human kinome, are catalytic subunits of protein kinase CK2. Together with the regulatory subunit CK2β, they form heterotetrameric holoenzymes. CK2 is the subject of efforts to develop effective and selective inhibitors. For this, secondary binding sites remote from the canonical ATP/GTP cavity are critical. A crystallographic fragment screening with CK2α’ crystals and an established molecular fragment collection was performed to identify new ligands at known or novel sites. It resulted in fourteen CK2α’/fragment structures. Five fragments were found at the CK2β interface of CK2α’ and three fragments at the established αD pocket, which exhibits subtle differences between CK2α and CK2α’; comparative co-crystallisations with CK2α showed that one of them binds to the αD pocket of CK2α’ exclusively. No fragments bound at the substrate-binding region of CK2α’, but a CK2α’ structure with dp10, a decameric section of the substrate-competitive inhibitor heparin, and the indenoindole-type ATP-competitive inhibitor 4w was determined. A comparison with a published CK2α/dp10 structure revealed features consistent with reports about substrate specificity differences between the isoenzymes: dp10 binds to CK2α’ and CK2α with opposite strand orientations, and the local conformations of the isoenzymes in the helix αD region are significantly different. Full article
(This article belongs to the Special Issue Past, Present and Future of Protein Kinase CK2 Research—2nd Edition)
Show Figures

Graphical abstract

11 pages, 1742 KB  
Review
Malformation Pattern and Molecular Findings in the FGFR1-Related Hartsfield Syndrome Phenotype
by Federica Gaudioso and Giulia Pascolini
Med. Sci. 2026, 14(1), 4; https://doi.org/10.3390/medsci14010004 - 22 Dec 2025
Viewed by 319
Abstract
Background/Objectives: The Fibroblast Growth Factor Receptor 1 (FGFR1, MIM*136350) is a protein member of the fibroblast growth factor receptor (FGFR) family, with various biological functions, such as the normal development control. It contains an extracellular site for the ligand (three Ig-like [...] Read more.
Background/Objectives: The Fibroblast Growth Factor Receptor 1 (FGFR1, MIM*136350) is a protein member of the fibroblast growth factor receptor (FGFR) family, with various biological functions, such as the normal development control. It contains an extracellular site for the ligand (three Ig-like domains, IgI, IgII, IgIII), a single transmembrane and a cytoplasmic protein tyrosine kinase (TK) domain. Variants in this gene have been associated with a wide spectrum of genetic disorders, including the clinical entity known as FGFR1-related Hartsfield or Hartsfield syndrome (HRTFDS, MIM#615465), which is an autosomal dominant or recessive disorder characterized by the clinical association of split-hand/foot malformation (SHFM) and holoprosencephaly (HPE). Dysmorphic facies, including cleft/lip palate, genitourinary anomalies, cardiovascular defects and intellectual disability/developmental delay (ID/DD) can also be a part of the clinical picture. Methods: The malformation phenotype of HRTFDS has been reviewed in 26 previously reported patients in terms of single congenital defects, mutational spectrum, impacted protein domains and inheritance. Molecular basis, clinical management, main differential diagnoses and genetic counseling were also illustrated. Results: SHFM was identified in every patient. The other main associated features included craniofacial defects, skeletal malformation identified at radiography, genitourinary anomalies, HPE and cardiovascular disorders. FGFR1 causative variants mainly impact the TK domain and have a smaller impact on other protein sites (IgII, IgIII). Conclusions: This study extensively recapitulates the malformation phenotype associated with HRTFDS and the underlying molecular perturbations. A multidisciplinary clinical approach is fundamental, in which genetic counseling can have an important role. However, our results are partial and refer to a restricted number of patients, pointing out the necessity of other descriptions and similar research. Additional studies will expand clinical and molecular knowledge as well as further clarify the biological mechanisms. Full article
Show Figures

Figure 1

19 pages, 4885 KB  
Article
The Olive Phenolic S-(-)-Hydroxyoleocanthal Attenuates Neuroendocrine Prostate Cancer via Modulation of EPHA3-Centered Oncogenic Network
by Md Towhidul Islam Tarun, Hassan Y. Ebrahim and Khalid A. El Sayed
Cancers 2026, 18(1), 26; https://doi.org/10.3390/cancers18010026 - 21 Dec 2025
Viewed by 490
Abstract
Background/Objectives. Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men in the United States. Treatment with second-generation androgen receptor (AR) inhibitors, such as enzalutamide, can trigger lineage plasticity, promoting the transdifferentiation of PCa cells into an AR-independent, poorly differentiated [...] Read more.
Background/Objectives. Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men in the United States. Treatment with second-generation androgen receptor (AR) inhibitors, such as enzalutamide, can trigger lineage plasticity, promoting the transdifferentiation of PCa cells into an AR-independent, poorly differentiated neuroendocrine phenotype (NEPC). The receptor tyrosine kinase EPHA3 is a critical driver for NEPC. It is overexpressed in PCa, particularly in androgen-independent and neuroendocrine subtypes. EPHA3 activates c-Myc signaling to enhance EZH2 expression, promoting histone H3K27 trimethylation. The neural transcription factor BRN2 functions upstream of both EZH2 and ASCL1. The latter regulates the Notch pathway ligand DLL3, thereby orchestrating neuroendocrine differentiation. Elevated expression of classical neuroendocrine markers CHGA and SYP is characteristic of the NEPC phenotype. This study reports the novel usage of the olive phenolic S-(-)-hydroxyoleocanthal (HOC, oleacein) to effectively control NEPC by targeting the EPHA3–BRN2–EZH2–ASCL1–DLL3–SYP–CHGA oncogenic network. Methods. Cell viability assays were conducted to assess in vitro effects. To model NEPC progression and recurrence, NCI-H660-Luc cells were xenografted into male athymic nude mice. RNA-sequencing was performed to compare the differentially expressed genes between placebo control and treated tumors. Results. HOC significantly attenuated the proliferation of NEPC NCI-H660 cells in vitro. Daily oral administration of HOC at 10 mg/kg body weight markedly suppressed the progression of NEPC NCI-H660-Luc tumors. Continued HOC treatments after surgical excision of the primary tumors substantially reduced locoregional recurrence. HOC significantly downregulated the expression of EPHA3, BRN2, EZH2, ASCL1, DLL3, SYP, and CHGA in treated primary and recurrence tumors versus placebo control. Conclusions. These findings establish HOC as a multifaceted therapeutic entity capable of disrupting key NEPC oncogenic networks, highlighting its potential as a novel lead intervention for aggressive NEPC. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

Back to TopTop