Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (328)

Search Parameters:
Keywords = killing activating receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 508 KiB  
Article
The Cytotoxic Potential of Humanized γδ T Cells Against Human Cancer Cell Lines in In Vitro
by Husheem Michael, Abigail T. Lenihan, Mikaela M. Vallas, Gene W. Weng, Jonathan Barber, Wei He, Ellen Chen, Paul Sheiffele and Wei Weng
Cells 2025, 14(15), 1197; https://doi.org/10.3390/cells14151197 - 4 Aug 2025
Viewed by 297
Abstract
Cancer is a major global health issue, with rising incidence rates highlighting the urgent need for more effective treatments. Despite advances in cancer therapy, challenges such as adverse effects and limitations of existing treatments remain. Immunotherapy, which harnesses the body’s immune system to [...] Read more.
Cancer is a major global health issue, with rising incidence rates highlighting the urgent need for more effective treatments. Despite advances in cancer therapy, challenges such as adverse effects and limitations of existing treatments remain. Immunotherapy, which harnesses the body’s immune system to target cancer cells, offers promising solutions. Gamma delta (γδ) T cells are noteworthy due to their potent ability to kill various cancer cells without needing conventional antigen presentation. Recent studies have focused on the role of γδ T cells in α-galactosylceramide (α-GalCer)-mediated immunity, opening new possibilities for cancer immunotherapy. We engineered humanized T cell receptor (HuTCR)-T1 γδ mice by replacing mouse sequences with human counterparts. This study investigates the cytotoxic activity of humanized γδ T cells against several human cancer cell lines (A431, HT-29, K562, and Daudi) in vitro, aiming to elucidate mechanisms underlying their anticancer efficacy. Human cancer cells were co-cultured with humanized γδ T cells, with and without α-GalCer, for 24 h. The humanized γδ T cells showed enhanced cytotoxicity across all tested cancer cell lines compared to wild-type γδ T cells. Additionally, γδ T cells from HuTCR-T1 mice exhibited higher levels of anticancer cytokines (IFN-γ, TNF-α, and IL-17) and Granzyme B, indicating their potential as potent mediators of anticancer immune responses. Blocking γδ T cells’ cytotoxicity confirmed their γδ-mediated function. These findings represent a significant step in preclinical development of γδ T cell-based cancer immunotherapies, providing insights into their mechanisms of action, optimization of therapeutic strategies, and identification of predictive biomarkers for clinical application. Full article
(This article belongs to the Special Issue Unconventional T Cells in Health and Disease)
Show Figures

Figure 1

19 pages, 3664 KiB  
Article
Feasibility of Manufacturing and Antitumor Activity of TIL for Advanced Endometrial Cancers
by Yongliang Zhang, Kathleen N. Moore, Amir A. Jazaeri, Judy Fang, Ilabahen Patel, Andrew Yuhas, Patrick Innamarato, Nathan Gilbert, Joseph W. Dean, Behzad Damirchi, Joe Yglesias, Rongsu Qi, Michelle R. Simpson-Abelson, Erwin Cammaart, Sean R. R. Hall and Hequn Yin
Int. J. Mol. Sci. 2025, 26(15), 7151; https://doi.org/10.3390/ijms26157151 - 24 Jul 2025
Viewed by 582
Abstract
Lifileucel, a tumor-infiltrating lymphocyte (TIL) cell therapy approved for advanced melanoma, demonstrates promise for treating other solid tumors, including endometrial cancer (EC). The current study evaluates the feasibility of manufacturing TILs from EC tumors using Iovance’s proprietary 22-day Gen2 manufacturing process. Key parameters, [...] Read more.
Lifileucel, a tumor-infiltrating lymphocyte (TIL) cell therapy approved for advanced melanoma, demonstrates promise for treating other solid tumors, including endometrial cancer (EC). The current study evaluates the feasibility of manufacturing TILs from EC tumors using Iovance’s proprietary 22-day Gen2 manufacturing process. Key parameters, including TIL yield, viability, immune phenotype, T-cell receptor clonality, and cytotoxic activity, were assessed. Of the 11 EC tumor samples processed at research scale, 10 (91%) successfully generated >1 × 109 viable TIL cells, with a median yield of 1.1 × 1010 cells and a median viability of 82.8%. Of the four EC tumor samples processed at full scale, all achieved the pre-specified TVC and viability targets. Putative tumor-reactive T-cell clones were maintained throughout the manufacturing process. Functional reactivity was evidenced by the upregulation of 4-1BB in CD8+ T cells, OX40 in CD4+ T cells, and increased production of IFN-γ and TNF-α upon autologous tumor stimulation. Furthermore, antitumor activity was confirmed using an in vitro autologous tumor organoid killing assay. These findings demonstrate the feasibility of ex vivo TIL expansion from EC tumors. This study provides a rationale for the initiation of the phase II clinical trial IOV-END-201 (NCT06481592) to evaluate lifileucel in patients with advanced EC. Full article
(This article belongs to the Special Issue Endometrial Cancer: From Basic Science to Novel Therapeutics)
Show Figures

Figure 1

17 pages, 1548 KiB  
Article
CD19-ReTARGTPR: A Novel Fusion Protein for Physiological Engagement of Anti-CMV Cytotoxic T Cells Against CD19-Expressing Malignancies
by Anne Paulien van Wijngaarden, Isabel Britsch, Matthias Peipp, Douwe Freerk Samplonius and Wijnand Helfrich
Cancers 2025, 17(14), 2300; https://doi.org/10.3390/cancers17142300 - 10 Jul 2025
Viewed by 426
Abstract
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current [...] Read more.
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current immunotherapies for CD19-expressing hematological malignancies, such as chimeric antigen receptor (CAR) T cells and bispecific T cell engagers (BiTEs), bypass TCR/pHLA interactions, resulting in CTL hyperactivation and excessive cytokine release, which frequently cause severe immune-related adverse events (irAEs). Thus, there is a pressing need for T cell-based therapies that preserve physiological activation while maintaining antitumor efficacy. Methods: To address this, we developed CD19-ReTARGTPR, a novel fusion protein consisting of the immunodominant cytomegalovirus (CMV) pp65-derived peptide TPRVTGGAM (TPR) covalently presented by a soluble HLA-B*07:02/β2-microglobulin complex fused to a high-affinity CD19-targeting Fab antibody fragment. The treatment of CD19-expressing cancer cells with CD19-ReTARGTPR makes them recognizable for pre-existing anti-CMVpp65 CTLs via physiological TCR-pHLA engagement. Results: Our preclinical data demonstrate that CD19-ReTARGTPR efficiently redirects anti-CMV CTLs to eliminate CD19-expressing cancer cells, including both established cell lines and primary chronic lymphocytic leukemia (CLL) cells. Unlike CD19-directed CAR T cells or the CD19/CD3 BiTE blinatumomab, CD19-ReTARGTPR mediated robust cytotoxic activity without triggering supraphysiological cytokine release. Importantly, this approach retained efficacy even against cancer cells with low CD19 expression. Conclusions: In summary, we provide a robust proof-of-concept study and show that CD19-ReTARGTPR offers a promising alternative strategy for T cell redirection, enabling the selective and effective killing of CD19-expressing malignancies while minimizing cytokine-driven toxicities through physiological CTL activation pathways. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Graphical abstract

27 pages, 1379 KiB  
Article
A Multifaceted Exploration of Shirakiopsis indica (Willd) Fruit: Insights into the Neuropharmacological, Antipyretic, Thrombolytic, and Anthelmintic Attributes of a Mangrove Species
by Mahathir Mohammad, Md. Jahirul Islam Mamun, Mst. Maya Khatun, Md. Hossain Rasel, M Abdullah Al Masum, Khurshida Jahan Suma, Mohammad Rashedul Haque, Sayed Al Hossain Rabbi, Md. Hemayet Hossain, Hasin Hasnat, Nafisah Mahjabin and Safaet Alam
Drugs Drug Candidates 2025, 4(3), 31; https://doi.org/10.3390/ddc4030031 - 1 Jul 2025
Viewed by 476
Abstract
Background: Shirakiopsis indica (Willd.) (Family: Euphorbiaceae), a mangrove species found in the Asian region, is a popular folkloric plant. Locally, the plant is traditionally used to treat various types of ailments, especially for pain relief. Therefore, the current study investigates the neuropharmacological, [...] Read more.
Background: Shirakiopsis indica (Willd.) (Family: Euphorbiaceae), a mangrove species found in the Asian region, is a popular folkloric plant. Locally, the plant is traditionally used to treat various types of ailments, especially for pain relief. Therefore, the current study investigates the neuropharmacological, antipyretic, thrombolytic, and anthelmintic properties of the S. indica fruit methanolic extract (SIF-ME). Methods: The neuropharmacological activity was evaluated using several bioactive assays, and the antipyretic effect was investigated using the yeast-induced pyrexia method, both in Swiss albino mice models. Human blood clot lysis was employed to assess thrombolytic activity, while in vitro anthelmintic characteristics were tested on Tubifex tubifex. Insights into phytochemicals from SIF-ME have also been reported from a literature review, which were further subjected to molecular docking, pass prediction, and ADME/T analysis and validated the wet-lab outcomes. Results: In the elevated plus maze test, SIF-ME at 400 mg/kg demonstrated significant anxiolytic effects (200.16 ± 1.76 s in the open arms, p < 0.001). SIF-ME-treated mice exhibited increased head dipping behavior and spent a longer time in the light box, confirming strong anxiolytic activity in the hole board and light–dark box tests, respectively. It (400 mg/kg) also significantly reduced depressive behavior during forced swimming and tail suspension tests (98.2 ± 3.83 s and 126.33 ± 1.20 s, respectively). The extract induced strong locomotor activity, causing mice’s mobility to gradually decrease over time in the open field and hole cross tests. The antipyretic effect of SIF-ME (400 mg/kg) was minimal using the yeast-induced pyrexia method, while it (100 μg/mL) killed T. tubifex in 69.33 ± 2.51 min, indicating a substantial anthelmintic action. SIF-ME significantly reduced blood clots by 67.74% (p < 0.001), compared to the control group’s 5.56%. The above findings have also been predicted by in silico molecular docking studies. According to the molecular docking studies, the extract’s constituents have binding affinities ranging from 0 to −10.2 kcal/mol for a variety of human target receptors, indicating possible pharmacological activity. Conclusions: These findings indicate that SIF-ME could serve as a promising natural source of compounds with neuropharmacological, anthelmintic, thrombolytic, and antipyretic properties. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

19 pages, 3401 KiB  
Article
Interleukin 21-Armed EGFR-VHH-CAR-T Cell Therapy for the Treatment of Esophageal Squamous Cell Carcinoma
by Chenglin Zhang, Yanyan Liu, Haoran Guo, Ying Peng, Lei Huang, Shuangshuang Lu and Zhimin Wang
Biomedicines 2025, 13(7), 1598; https://doi.org/10.3390/biomedicines13071598 - 30 Jun 2025
Viewed by 494
Abstract
Background/Objectives: Esophageal squamous cell carcinoma (ESCC) is a common form of esophageal cancer with a poor prognosis and limited treatment options. Epidermal growth factor receptor (EGFR), an overexpressed oncogenic gene in all ESCC patients, is an attractive target for developing therapies against ESCC. [...] Read more.
Background/Objectives: Esophageal squamous cell carcinoma (ESCC) is a common form of esophageal cancer with a poor prognosis and limited treatment options. Epidermal growth factor receptor (EGFR), an overexpressed oncogenic gene in all ESCC patients, is an attractive target for developing therapies against ESCC. There is an extremely urgent need to develop immunotherapy tools targeting EGFR for the treatment of ESCC. Methods: In this study, we developed human Interleukin-21 (hIL-21)-armed, chimeric-antigen-receptor-modified T (CAR-T) cells targeting EGFR as a new therapeutic approach. The CAR contains a variable domain of the llama heavy chain of heavy-chain antibodies (VHHs), also known as nanobodies (Nbs), as a promising substitute for the commonly used single-chain variable fragment (ScFv) for CAR-T development. Results: We show that nanobody-derived, EGFR-targeting CAR-T cells specifically kill EGFR-positive esophageal cancer cells in vitro and in animal models. Human IL-21 expression in CAR-T cells further improved their expansion and antitumor ability and were observed to secrete more interferon-gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and Interleukin-2 (IL-2) when co-cultured with ESCC cell lines in vitro. More CD8+ CAR-T cells and CD3+CD8+CD45RO+CD62L+ central memory T cells were detected in CAR-T cells expressing hIL-21 cells. Notably, hIL-21-expressing CAR-T cells showed superior antitumor activity in vivo in a KYSE-150 xenograft mouse model. Conclusions: Our results show that hIL-21-armed, nanobody-derived, EGFR-specific CAR-T cell therapy is a highly promising option for treating ESCC patients. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

9 pages, 1025 KiB  
Article
Combination of Medium-High-Hydrostatic-Pressure Treatment with Post-/Pre-Heat Treatment for Pasteurization of Bacillus subtilis Spore Suspended in Soy Milk
by Morimatsu Kazuya
Microorganisms 2025, 13(7), 1469; https://doi.org/10.3390/microorganisms13071469 - 24 Jun 2025
Viewed by 351
Abstract
Medium-high-hydrostatic-pressure (MHHP) treatment can induce the spore to germinate via activating the germination receptor, subsequently resulting in the loss of the heat resistance of the spore and finally killing the germinated spore, although the ungerminated spore, even after MHHP treatment, can survive. This [...] Read more.
Medium-high-hydrostatic-pressure (MHHP) treatment can induce the spore to germinate via activating the germination receptor, subsequently resulting in the loss of the heat resistance of the spore and finally killing the germinated spore, although the ungerminated spore, even after MHHP treatment, can survive. This study aims to clarify the pasteurization effect of the combination of MHHP treatment with post-/pre-heating treatment on Bacillus subtilis spores suspended in soy milk as a food model. Regarding the results, the D value, as a known heat resistance indicator of the MHHP-treated spore, decreased in comparison with the untreated spore. However, the activation energies required for killing both the untreated and the MHHP-treated spores were equivalent, which indicated that the heat conductivity of the ungerminated spores might be increased by MHHP treatment. When the spore was subjected to pre-heating treatment and subsequently to MHHP treatment, the pasteurization effect of MHHP treatment differed with the pre-heating temperature. Pre-heating treatment at 80 °C could promote pasteurization, while that at 90–100 °C could suppress it, which might be caused by the heat activation/inactivation of germination receptors. From these results, the presence of post-/pre-heat treatment could be an important factor for the pasteurization of B. subtilis spores via MHHP treatment. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 2917 KiB  
Review
HIF-1α: A Key Factor Mediating Tumor Cells from Digestive System to Evade NK Cell Killing via Activating Metalloproteinases to Hydrolyze MICA/B
by Quan Zhu, Shuyi Tang, Ting Huang, Chunjing Chen, Biyuan Liu, Chuyu Xiao, Liugu Chen, Wang Wang and Fangguo Lu
Biomolecules 2025, 15(6), 899; https://doi.org/10.3390/biom15060899 - 19 Jun 2025
Viewed by 677
Abstract
Malignant tumors of the digestive system are widespread and pose a serious threat to humans. Immune escape is an important factor promoting the deterioration of malignant tumors in the digestive system. Natural killer cells (NK cells) are key members of the anti-tumor and [...] Read more.
Malignant tumors of the digestive system are widespread and pose a serious threat to humans. Immune escape is an important factor promoting the deterioration of malignant tumors in the digestive system. Natural killer cells (NK cells) are key members of the anti-tumor and immune surveillance system, mainly exerting cytotoxic effects by binding to the activating receptor natural killer cell group 2D (NKG2D) on their cell surface with the corresponding ligands (major histocompatibility complex class I chain-related protein A/B, MICA/B) on the surface of tumor cells. Malignant tumors of epithelial origin usually highly express NKG2D ligands such as MICA, which can attract NK cells to kill tumor cells and also serve as an important basis for NK cell-based immunotherapy. Tumor cells highly express hypoxia-inducible factor-1α (HIF-1α), which promotes the expression of matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). These metalloproteinases hydrolyze MICA and other ligands on the surface of tumor cells to generate soluble molecules. These soluble ligands, when binding to NKG2D, cannot activate NK cells and also block the binding of NKG2D to MICA on the surface of tumor cells, enabling tumor cells to evade the killing effect of NK cells. Almost all organs in the digestive system originate from epithelial tissue, so the soluble ligands generated by the HIF-1α/MMPs or HIF-1α/ADAMs signaling pathways play a crucial role in evading NK cell killing. A comprehensive understanding of this immune escape process is helpful for a deeper understanding of the molecular mechanism of NK cell anti-tumor activity. This article reviews the molecular mechanisms of common digestive system malignancies evading NK cell killing, providing new insights into the mechanism of tumor immune escape. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 3036 KiB  
Article
Synthesis and Characterization of Transferrin Receptor-Targeted Peptide Combination SN-38 and Rucaparib Conjugate for the Treatment of Glioblastoma
by Perpetue Bataille Backer and Simeon Kolawole Adesina
Pharmaceutics 2025, 17(6), 732; https://doi.org/10.3390/pharmaceutics17060732 - 2 Jun 2025
Viewed by 831
Abstract
Background/Objectives: Glioblastoma represents a particularly aggressive and fatal type of brain tumor. Peptide-drug conjugates, which offer the promise of traversing the blood-brain barrier to selectively accumulate in tumor tissues and precisely target cancer cells, are an active area of research. We present the [...] Read more.
Background/Objectives: Glioblastoma represents a particularly aggressive and fatal type of brain tumor. Peptide-drug conjugates, which offer the promise of traversing the blood-brain barrier to selectively accumulate in tumor tissues and precisely target cancer cells, are an active area of research. We present the synthesis and characterization of the T7 peptide (HAIYPRH) as a targeting ligand for the transferrin receptor, which is highly expressed on both the blood-brain barrier and glioma cells. Methods: Using the T7 peptide, the synthesis, characterization, and biological evaluation of a transferrin receptor-targeted, combination SN-38 and rucaparib peptide drug conjugate (T7-SN-38-rucaparib) are described. Results: The T7 peptide drug conjugate readily cleaved in the presence of exogenous cathepsin B, releasing the active drug payloads. In vitro experiments demonstrated potent cytotoxic effects of the T7 peptide drug conjugate on glioblastoma cells (IC50 = 22.27 nM), with reduced toxicity to non-cancerous HEK 293 cells (IC50 = 115.78 nM), indicating selective toxicity toward cancer cells. Further investigations revealed that blocking transferrin receptors with drug-free T7 peptide significantly reduced the conjugate’s cytotoxicity, an effect that could be reversed by introducing exogenous cathepsin B to the cells. Conclusions: These findings highlight the potential of glioblastoma-targeted delivery of SN-38 and rucaparib based on specific recognition of the transferrin receptor for transport across the blood-brain barrier, offering the prospect of reduced toxicity and selective killing of cancer cells. Additionally, since rucaparib does not cross the blood-brain barrier, this work is significant to facilitate the use of rucaparib for the treatment of brain tumors. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

21 pages, 2149 KiB  
Article
The Efficacy of Targeted Monoclonal IgA Antibodies Against Pancreatic Ductal Adenocarcinoma
by Léon Raymakers, Elsemieke M. Passchier, Meggy E. L. Verdonschot, Mitchell Evers, Chilam Chan, Karel C. Kuijpers, G. Mihaela Raicu, I. Quintus Molenaar, Hjalmar C. van Santvoort, Karin Strijbis, Martijn P. W. Intven, Lois A. Daamen, Jeanette H. W. Leusen and Patricia A. Olofsen
Cells 2025, 14(9), 632; https://doi.org/10.3390/cells14090632 - 24 Apr 2025
Viewed by 1089
Abstract
The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this [...] Read more.
The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this can be further enhanced by blocking the myeloid immune checkpoint CD47. In this study, we investigated the potential of this therapeutic strategy for PDAC. We determined the expression of tumor-associated antigens (TAAs) on PDAC cell lines and fresh patient samples, and the results showed that the TAAs epithelial cell adhesion molecule (EpCAM), trophoblast cell surface antigen 2 (TROP2) and mucin-1 (MUC1), as well as CD47 were consistently expressed on PDAC. In line with this, we showed that IgA mAbs against EpCAM can activate neutrophils to lyse various PDAC cell lines and tumor cells, which can be augmented by addition of CD47 blockade. In addition, we observed that neutrophils were present in patient tumors and expressed the receptor for IgA. In conclusion, our results indicate that a combination of IgA mAb with CD47 blockade is a promising preclinical treatment strategy for PDAC, which merits further investigation. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

17 pages, 2493 KiB  
Article
Adenosine 2B Receptor Signaling Impairs Vaccine-Mediated Protection Against Pneumococcal Infection in Young Hosts by Blunting Neutrophil Killing of Antibody-Opsonized Bacteria
by Shaunna R. Simmons, Alexsandra P. Lenhard, Michael C. Battaglia and Elsa N. Bou Ghanem
Vaccines 2025, 13(4), 414; https://doi.org/10.3390/vaccines13040414 - 15 Apr 2025
Viewed by 597
Abstract
Background/Objective: Neutrophils are essential for vaccine-mediated protection against pneumococcal infection and impairment in their antibacterial function contributes to reduced vaccine efficacy during aging. However, the signaling pathways that control the neutrophil responses in vaccinated hosts are not fully understood. The extracellular adenosine pathway [...] Read more.
Background/Objective: Neutrophils are essential for vaccine-mediated protection against pneumococcal infection and impairment in their antibacterial function contributes to reduced vaccine efficacy during aging. However, the signaling pathways that control the neutrophil responses in vaccinated hosts are not fully understood. The extracellular adenosine pathway is a known regulator of neutrophils in naïve hosts. The aim of this study was to test the role of this pathway in the function of neutrophils and their protection against infection upon vaccination as a function of the host’s age. Methods: To test the role of adenosine in the antimicrobial activity of neutrophils against antibody-opsonized pneumococci, we used bone marrow-derived neutrophils isolated from wild-type or specific-adenosine-receptors knock-out mice. To measure the effect of adenosine receptor signaling in vivo, we treated vaccinated mice with agonists or antagonists that were specific to the different adenosine receptors prior to pulmonary challenge with pneumococci and assessed the bacterial burden and clinical score post-infection. Results: We found that signaling via the adenosine 2B (A2BR) receptor but not the A2A or A1 receptors diminished the intracellular pneumococcal killing following antibody-mediated uptake in young hosts. In vivo, the agonism of the A2BR receptor significantly worsened the pneumococcal infection outcomes in young, vaccinated mice. In contrast, A2BR signaling had no effect on the intracellular bacterial killing by neutrophils from aged mice. Further, in vivo A2BR inhibition had no effect on the pneumococcal disease progression in aged, vaccinated mice. Conclusions: A2BR signaling reduced pneumococcal vaccine-mediated protection by impairing the antimicrobial activity of neutrophils against antibody-opsonized bacteria in young hosts. However, inhibiting this pathway was not sufficient to boost responses in aged hosts. Full article
(This article belongs to the Section Pathogens-Host Immune Boundaries)
Show Figures

Figure 1

18 pages, 3222 KiB  
Article
Regulatory T Cell Mimicry by a Subset of Mesenchymal GBM Stem Cells Suppresses CD4 and CD8 Cells
by Amanda L. Johnson, Harmon S. Khela, Jack Korleski, Sophie Sall, Yunqing Li, Weiqiang Zhou, Karen Smith-Connor, John Laterra and Hernando Lopez-Bertoni
Cells 2025, 14(8), 592; https://doi.org/10.3390/cells14080592 - 14 Apr 2025
Cited by 1 | Viewed by 899
Abstract
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are [...] Read more.
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and the molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs). We showed that this immunosuppressive Treg-like (ITL) GSC state is specific to the mesenchymal GSC subset and is associated with and driven specifically by TGFβ type II receptor (TGFBR2) in contrast to TGFBR1. Transgenic TGFBR2 expression in patient-derived GBM neurospheres promoted a mesenchymal transition and induced a six-gene ITL signature consisting of CD274 (PD-L1), NT5E (CD73), ENTPD1 (CD39), LGALS1 (galectin-1), PDCD1LG2 (PD-L2), and TGFB1. This TGFBR2-driven ITL signature was identified in clinical GBM specimens, patient-derived GSCs, and systemic mesenchymal malignancies. TGFBR2high GSCs inhibited CD4+ and CD8+ T cell viability and their capacity to kill GBM cells, effects reversed by pharmacologic and shRNA-based TGFBR2 inhibition. Collectively, our data identify an immunosuppressive GSC state that is TGFBR2-dependent and susceptible to TGFBR2-targeted therapeutics. Full article
(This article belongs to the Special Issue The Pivotal Role of Tumor Stem Cells in Glioblastoma)
Show Figures

Figure 1

32 pages, 7660 KiB  
Article
Inducing Targeted, Caspase-Independent Apoptosis with New Chimeric Proteins for Treatment of Solid Cancers
by Orly Melloul, Samar Zabit, Michal Lichtenstein, Deborah Duran, Myriam Grunewald and Haya Lorberboum-Galski
Cancers 2025, 17(7), 1179; https://doi.org/10.3390/cancers17071179 - 31 Mar 2025
Cited by 1 | Viewed by 955
Abstract
Background: Most newly developed anticancer treatments trigger tumor cell death through apoptosis, for which involvement of caspases activity is essential. However, numerous mutations in apoptotic pathways that lead to cancer and favor resistance to apoptosis are known; most are related to caspase-dependent apoptosis [...] Read more.
Background: Most newly developed anticancer treatments trigger tumor cell death through apoptosis, for which involvement of caspases activity is essential. However, numerous mutations in apoptotic pathways that lead to cancer and favor resistance to apoptosis are known; most are related to caspase-dependent apoptosis pathways and thus have low efficacy. To overcome these limitations, we constructed a novel chimeric protein, GnRH-AIF, using a gonadotropin-releasing hormone (GnRH) analog as a targeting moiety and the apoptosis-inducing factor (AIF) in its cleaved form as a killing moiety, fused at the cDNA level. AIF has a crucial role in the caspase-independent apoptotic pathway. A wide variety of solid tumors overexpress GnRH-receptors (GnRH-R) that are targeted by the new GnRH-AIF chimeric protein. Methods and Results: In this study, we constructed, expressed, and highly purified GnRH-AIF chimeric proteins. We demonstrated the ability of the chimera to enter and specifically and very efficiently kill solid cancer cell lines overexpressing GnRH-R. Most importantly, upon its entry, GnRH-AIFs translocate to the nucleus where it causes DNA fragmentation leading to a direct caspase-independent apoptotic death. As AIFs lack nuclease activity, our findings also emphasize that cell death induced by GnRH-AIF is dependent on the presence of the ENDOG and PPIA proteins, known to participate in the formation of a DNA–degradosome complex. Finally, we demonstrated the high anti-tumor efficacy of the GnRH-AIF ex vivo, in a human, colon cancer organoid model. Conclusions: Our study shows the potential of using a GnRH-AIF chimeric protein as a novel approach to treat solid cancers that overexpress GnRH-R, via a caspase-independent apoptotic pathway. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

24 pages, 4975 KiB  
Article
Enhancement of NK Cell Cytotoxic Activity and Immunoregulatory Effects of a Natural Product Supplement Across a Wide Age Span: A 30-Day In Vivo Human Study
by Sergei Boichuk, Aigul Galembikova and David Vollmer
Int. J. Mol. Sci. 2025, 26(7), 2897; https://doi.org/10.3390/ijms26072897 - 22 Mar 2025
Viewed by 1784
Abstract
The purpose of this study was to examine whether supplementation of ultra- and nanofiltered colostrum-based products, combined with egg yolk extract, nicotinamide mononucleotide (NMN), quercetin, alpha-ketoglutarate, white button mushroom, and celery seed extracts (the formula was patented by 4Life Research Company, USA and [...] Read more.
The purpose of this study was to examine whether supplementation of ultra- and nanofiltered colostrum-based products, combined with egg yolk extract, nicotinamide mononucleotide (NMN), quercetin, alpha-ketoglutarate, white button mushroom, and celery seed extracts (the formula was patented by 4Life Research Company, USA and named as AgePro), modulate the functional activity of natural killer (NK) cells in vivo. We found that this supplement, taken orally in two capsules twice a day for 30 days, significantly enhanced the cytotoxic activity of NK cells. This was evidenced by the increased NK cell-mediated killing of carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled K562 human myeloid leukemia cells. As expected, this effect was dependent on the ratio between the effector (E) (e.g., peripheral blood mononuclear cells (PBMCs)) and target (T) (e.g., K562) cells, illustrating maximal killing of K562 cells at a 50:1 E/T ratio. Of note, increased NK-mediated killing of K562 cells after taking AgePro correlated with increased perforin release, evidenced by the CD107a degranulation assay. In concordance with these findings, taking of AgePro for 1 month increased production of several cytokines and chemokines, including IL-1β, IL-1Rα, IL-6, IL-8, IL-10, IFN-γ, TNF-α, G-CSF, PDGF-AA, PDGF-AB/BB, GRO, MCP-1, MCP-3, and MIP-1α, in PBMCs co-cultured with K562 cells. Of note, increased production of the cytokines correlated with the activation state of PBMCs, as evidenced by increased expression of the surface activation markers (e.g., the interleukin-2 receptor alpha chain—CD25). A strong correlation was found between NK-based cytotoxic activity and the production of IL-1β, IL-6, TNF-α, and MIP-1α. Importantly, no increase in the aforementioned soluble factors and activation markers was detected in PBMCs cultured alone, thereby illustrating the potent immunoregulatory activity of AgePro only in the presence of the harmful target cells. Hematological parameters also remained unchanged over the entire study period. Collectively, we show herein the significant enhancement of the cytotoxic activity of NK cells against target tumor cells after taking AgePro for 1 month. Notably, this effect was observed for all age groups, including young, adult, and elderly participants. Moreover, a significant improvement in NK cytotoxic activity was also detected for participants with low basal (e.g., before taking AgePro) numbers of NK-mediated killing. The enhancement of NK-based cytotoxicity was associated with an increased release of several cytokines and chemokines involved in regulating a broad spectrum of mechanisms outside the cell-mediated cytotoxicity and killing of target cells. Of note, spontaneous activation of PBMCs, particularly NK cells, was not detected after taking AgePro. Given that spontaneous activation of autoreactive lymphocytes is a feature associated with autoimmunity and taking into account our data illustrating the AgePro-induced activation of NK cells detected only in the presence of the potentially harmful cells, we conclude that our innovative product exhibits potent immunoregulatory activity and high safety profile. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds: 3rd Edition)
Show Figures

Figure 1

18 pages, 2597 KiB  
Review
The Role of PI3k-Gamma Modulation in Bacterial Infection: A Review of the Literature and Selected Experimental Observations
by Daniel Sun, Alexandria Hoffman, Fatemeh Askarian, Elisabet Bjånes, Eric X. Lin, Judith Varner and Victor Nizet
Antibiotics 2025, 14(3), 315; https://doi.org/10.3390/antibiotics14030315 - 18 Mar 2025
Viewed by 1136
Abstract
Background: Phosphoinositide 3-kinase is a potent target for cancer therapy due to its significant role in the regulation of cellular growth and proliferation. Dysregulation of the PI3k signaling cascade can constitutively activate growth pathways to trigger the progression of cancer, resulting in the [...] Read more.
Background: Phosphoinositide 3-kinase is a potent target for cancer therapy due to its significant role in the regulation of cellular growth and proliferation. Dysregulation of the PI3k signaling cascade can constitutively activate growth pathways to trigger the progression of cancer, resulting in the development of multiple inhibitors as cancer therapeutics. Objectives: The wide array of cells expressing PI3k also include immune cells, and the inhibition of these receptors has shown promise in combating inflammation and infectious disease, a relationship we sought to examine further. Methods: We infected wild-type and PI3kγ knockout murine macrophages as well as PI3kγ inhibitor-treated THP-1 human macrophage-like cells with Staphylococcus aureus and quantified inflammation through gene expression analysis, protein secretion assays, and immunofluorescence imaging. Results: We observed that knockout of PI3kγ in murine macrophages alongside pharmacological inhibition through IPI549 treatment in THP-1 cells led to an NF-κB-driven suppression in transcription and release of inflammatory cytokines upon infection with methicillin-resistant Staphylococcus aureus. We were also able to confirm that this suppression of NF-κB translocation and subsequent decrease in inflammatory cytokine release did not compromise and even slightly boosted the bacterial killing ability. Conclusion: PI3k is primarily targeted for cancer therapies, but further exploration can also be carried out on its potential roles in treating bacterial infection. Full article
(This article belongs to the Special Issue Sepsis Management and Antibiotic Therapy)
Show Figures

Figure 1

18 pages, 3040 KiB  
Article
Preclinical Characterization of Efficacy and Pharmacodynamic Properties of Finotonlimab, a Humanized Anti-PD-1 Monoclonal Antibody
by Yunqi Yao, Xiaoning Yang, Jing Li, Erhong Guo, Huiyu Wang, Chunyun Sun, Zhangyong Hong, Xiao Zhang, Jilei Jia, Rui Wang, Juan Ma, Yaqi Dai, Mingjing Deng, Chulin Yu, Lingling Sun and Liangzhi Xie
Pharmaceuticals 2025, 18(3), 395; https://doi.org/10.3390/ph18030395 - 12 Mar 2025
Viewed by 1346
Abstract
Background/Objectives: Finotonlimab (SCTI10A) is a humanized anti-PD-1 antibody tested in Phase III trials for several solid tumor types. Methods: This study characterized the in vitro and in vivo efficacy, Fc-mediated effector function, and non-clinical PK/PD properties of finotonlimab. Results: The results [...] Read more.
Background/Objectives: Finotonlimab (SCTI10A) is a humanized anti-PD-1 antibody tested in Phase III trials for several solid tumor types. Methods: This study characterized the in vitro and in vivo efficacy, Fc-mediated effector function, and non-clinical PK/PD properties of finotonlimab. Results: The results demonstrated that finotonlimab is effective in stimulating human T cell function in vitro and exhibits marked antitumor efficacy in vivo using both PD-1-humanized and PBMC-reconstructed mouse models. Additionally, finotonlimab exhibited minimal impact on the activation of effector cells via Fc receptor-dependent pathways, potentially facilitating PD-1+ T cell killing. In cynomolgus monkeys, finotonlimab exhibited a nonlinear pharmacokinetic (PK) profile in a dose-dependent manner, and a receptor occupancy rate of approximately 90% was observed at 168 h following a single administration of 1 mg/kg. Finotonlimab’s PK profile (especially Cmax) was better than that of marketed antibodies. Following a 13-week successive administration of finotonlimab, a pharmacodynamic analysis revealed that a sustained mean receptor occupancy of PD-1 molecules on circulating T cells remained at or above 93% for up to 8 weeks, even at a dose of 3 mg/kg, and that there were higher antibody accumulations in different dose groups. Conclusions: Taken together, the preclinical findings are promising and provide the groundwork for evaluating the efficacy and pharmacodynamic characteristics of finotonlimab in clinical trials. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

Back to TopTop