HIF-1α: A Key Factor Mediating Tumor Cells from Digestive System to Evade NK Cell Killing via Activating Metalloproteinases to Hydrolyze MICA/B
Abstract
1. Introduction
2. MICA/B and NKG2D Are Imbalanced in Expression in Tumor Tissues of the Digestive System
3. Abnormal Activation of Metalloproteinases Leads to the Shedding of MICA/B on the Tumor Cell Surface to Form Soluble Ligands
3.1. Metalloproteinases Are Generally Highly Expressed in Digestive System Tumors
3.2. Metalloproteinases Promote the Generation of sMICA and sMICB to Mediate Tumor Immune Escape Against NK Cells
4. Soluble MICA and MICB Impair NKG2D Signaling, Which Is a Key Mechanism for Tumor Evasion of NK Cell-Mediated Cytotoxicity
5. The Key Factor for Digestive System Tumors to Evade Killing by NK Cells Is That the HIF-1α Promotes the Expression of METALLOPROTEINASE
5.1. HIF-1α Is Highly Expressed in Tumor Tissues and Negatively Correlated with the Survival Time of Patients
5.2. Activation of Multiple Metalloproteinases by HIF-1α Is an Important Cause of Soluble MICA/B Generation
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, T.; Peng, T.; Li, J.; Jiang, Y.; Liu, K.; Yu, W.; Yao, N.; Hu, Y.; Cao, M.; Liang, J. A novel prognostic biomarker: GINS3 is correlated with methylation and immune escape in liver hepatocellular carcinoma. Transl. Cancer Res. 2023, 12, 1145–1164. [Google Scholar] [CrossRef]
- Dong, G.; Wang, Q.; Wen, M.; Xia, Z.; Zhang, S.; Gao, W.; Wang, H.; Wei, G.; Wang, Y. DDX18 drives tumor immune escape through transcription-activated STAT1 expression in pancreatic cancer. Oncogene 2023, 42, 3000–3014. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, L.; Zhao, K.; Li, Y.; Givens, N.T.; Heslin, A.J.; Deng, Z.; Cao, L.; Fang, Y. CTHRC1 Is Associated with Immune Escape and Poor Prognosis in Gastric Cancer. Anticancer Res. 2023, 43, 115–126. [Google Scholar] [CrossRef]
- Peng, L.; Sferruzza, G.; Yang, L.; Zhou, L.; Chen, S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol. Immunol. 2024, 21, 1089–1108. [Google Scholar] [CrossRef]
- Xiao, R.; Tian, Y.; Zhang, J.; Li, N.; Qi, M.; Liu, L.; Wang, J.; Li, Z.; Zhang, J.; Zhao, F.; et al. Increased Siglec-9/Siglec-9L interactions on NK cells predict poor HCC prognosis and present a targetable checkpoint for immunotherapy. J. Hepatol. 2024, 80, 792–804. [Google Scholar] [CrossRef]
- Calabrò, A.; Drommi, F.; Sidoti Migliore, G.; Pezzino, G.; Vento, G.; Freni, J.; Costa, G.; Cavaliere, R.; Bonaccorsi, I.; Sionne, M.; et al. Neutrophil-like Monocytes Increase in Patients with Colon Cancer and Induce Dysfunctional TIGIT+ NK Cells. Int. J. Mol. Sci. 2024, 25, 8470. [Google Scholar] [CrossRef]
- Morinaga, T.; Iwatsuki, M.; Yamashita, K.; Yasuda-Yoshihara, N.; Yamane, T.; Matsumoto, C.; Harada, K.; Eto, K.; Kurashige, J.; Ishimoto, T.; et al. Dynamic Alteration in HLA-E Expression and Soluble HLA-E via Interaction with Natural Killer Cells in Gastric Cancer. Ann. Surg. Oncol. 2023, 30, 1240–1252. [Google Scholar] [CrossRef]
- Oliviero, B.; Varchetta, S.; Mele, D.; Pessino, G.; Maiello, R.; Falleni, M.; Tosi, D.; Donadon, M.; Soldani, C.; Franceschini, B.; et al. MICA/B-targeted antibody promotes NK cell-driven tumor immunity in patients with intrahepatic cholangiocarcinoma. Oncoimmunology 2022, 11, 2035919. [Google Scholar] [CrossRef]
- Seo, D.; Byun, H.; Cho, M.; Lee, S.H.; Youn, S.; Lee, J.; Jung, I.; Cho, H.; Kang, H. Dihydrotestosterone Enhances MICA-Mediated Immune Responses to Epstein-Barr Virus-Associated Gastric Carcinoma. Cancers 2024, 16, 3219. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Q.; Chen, T.; Su, R.; Pan, C.; Qian, J.; Huang, H.; Yin, S.; Xie, H.; Zhou, L.; et al. Blocking CD47 promotes antitumour immunity through CD103(+) dendritic cell-NK cell axis in murine hepatocellular carcinoma model. J. Hepatol. 2022, 77, 467–478. [Google Scholar] [CrossRef]
- Li, M.; Song, J.; Wang, L.; Wang, Q.; Huang, Q.; Mo, D. Natural killer cell-related prognosis signature predicts immune response in colon cancer patients. Front. Pharmacol. 2023, 14, 1253169. [Google Scholar] [CrossRef]
- Le Bert, N.; Gasser, S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol. Cell Biol. 2014, 92, 230–236. [Google Scholar] [CrossRef]
- Verhaar, E.R.; van Keizerswaard, W.J.C.; Knoflook, A.; Balligand, T.; Ploegh, H.L. Nanobody-based CAR NK cells for possible immunotherapy of MICA(+) tumors. PNAS Nexus 2024, 3, 184. [Google Scholar] [CrossRef]
- Harris, R.; Mammadli, M.; Hiner, S.; Suo, L.; Yang, Q.; Sen, J.M.; Karimi, M. TCF-1 regulates NKG2D expression on CD8 T cells during anti-tumor responses. Cancer Immunol. Immunother. 2023, 72, 1581–1601. [Google Scholar] [CrossRef]
- Curio, S.; Edwards, S.C.; Suzuki, T.; McGovern, J.; Triulzi, C.; Yoshida, N.; Jonsson, G.; Glauner, T.; Rami, D.; Wiesheu, R.; et al. NKG2D signaling regulates IL-17A-producing γδT cells in mice to promote cancer progression. Discov. Immunol. 2022, 1, kyac002. [Google Scholar] [CrossRef]
- Ribeiro, C.H.; Kramm, K.; Gálvez-Jirón, F.; Pola, V.; Bustamante, M.; Contreras, H.R.; Sabag, A.; Garrido-Tapia, M.; Hernández, C.J.; Zúñiga, R.; et al. Clinical significance of tumor expression of major histocompatibility complex class I-related chains A and B (MICA/B) in gastric cancer patients. Oncol. Rep. 2016, 35, 1309–1317. [Google Scholar] [CrossRef]
- Kim, S.J.; Ha, G.H.; Bae, J.H.; Kim, G.R.; Son, C.H.; Park, Y.S.; Yang, K.; Oh, S.O.; Kim, S.H.; Kang, C.D. COX-2- and endoplasmic reticulum stress-independent induction of ULBP-1 and enhancement of sensitivity to NK cell-mediated cytotoxicity by celecoxib in colon cancer cells. Exp. Cell Res. 2015, 330, 451–459. [Google Scholar] [CrossRef]
- Toledo-Stuardo, K.; Ribeiro, C.H.; Canals, A.; Morales, M.; Gárate, V.; Rodríguez-Siza, J.; Tello, S.; Bustamante, M.; Armisen, R.; Matthies, D.J.; et al. Major Histocompatibility Complex Class I-Related Chain A (MICA) Allelic Variants Associate with Susceptibility and Prognosis of Gastric Cancer. Front. Immunol. 2021, 12, 645528. [Google Scholar] [CrossRef]
- Espinoza, I.; Agarwal, S.; Sakiyama, M.; Shenoy, V.; Orr, W.S.; Diffalha, S.A.; Prizment, A.; Varambally, S.; Manne, U.; Gomez, C.R. Expression of MHC class I polypeptide-related sequence A (MICA) in colorectal cancer. Front. Biosci. 2021, 26, 765–776. [Google Scholar] [CrossRef]
- Kimura, Y.; Tsunedomi, R.; Yoshimura, K.; Matsukuma, S.; Shindo, Y.; Matsui, H.; Tokumitsu, Y.; Yoshida, S.; Iida, M.; Suzuki, N.; et al. Immune Evasion of Hepatoma Cancer Stem-Like Cells from Natural Killer Cells. Ann. Surg. Oncol. 2022, 29, 7423–7433. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.A.; Farag, M.A.H.; Naguib, M.; Abdelsameea, E.; Abdel-Bary, H.M. Study of the association between a MICA gene polymorphism and cholangiocarcinoma in Egyptian patients. Clin. Exp. Hepatol. 2022, 8, 293–299. [Google Scholar] [CrossRef]
- Shi, P.; Yin, T.; Zhou, F.; Cui, P.; Gou, S.; Wang, C. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer 2014, 14, 370. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, G.; Xu, T.; Ma, J.; Wang, J.; Liu, S.; Tang, Y.; Jin, S.; Li, J.; Xing, N. High and selective cytotoxicity of ex vivo expanded allogeneic human natural killer cells from peripheral blood against bladder cancer: Implications for natural killer cell instillation after transurethral resection of bladder tumor. J. Exp. Clin. Cancer Res. 2024, 43, 24. [Google Scholar] [CrossRef]
- Osaki, T.; Saito, H.; Yoshikawa, T.; Matsumoto, S.; Tatebe, S.; Tsujitani, S.; Ikeguchi, M. Decreased NKG2D expression on CD8+ T cell is involved in immune evasion in patients with gastric cancer. Clin. Cancer Res. 2007, 13, 382–387. [Google Scholar] [CrossRef]
- Kegasawa, T.; Tatsumi, T.; Yoshioka, T.; Suda, T.; Ikezawa, K.; Nakabori, T.; Yamada, R.; Kodama, T.; Shigekawa, M.; Hikita, H.; et al. Soluble UL16-binding protein 2 is associated with a poor prognosis in pancreatic cancer patients. Biochem. Biophys. Res. Commun. 2019, 517, 84–88. [Google Scholar] [CrossRef]
- Matusali, G.; Tchidjou, H.K.; Pontrelli, G.; Bernardi, S.; D’Ettorre, G.; Vullo, V.; Buonomini, A.R.; Andreoni, M.; Santoni, A.; Cerboni, C.; et al. Soluble ligands for the NKG2D receptor are released during HIV-1 infection and impair NKG2D expression and cytotoxicity of NK cells. FASEB J. 2013, 27, 2440–2450. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Cao, W.; Li, L.; Liu, K.; Zhu, H.; Balcha, F.; Fang, Y. Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 inhibit HIF-1α-mediated glycolysis of colon cancer. Future Microbiol. 2024, 19, 227–239. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, M.; Chen, J.; Zhao, J.; Su, J.; Zhang, X. Ginsenoside Compound K Regulates HIF-1α-Mediated Glycolysis Through Bclaf1 to Inhibit the Proliferation of Human Liver Cancer Cells. Front. Pharmacol. 2020, 11, 583334. [Google Scholar] [CrossRef]
- Barsoum, I.B.; Hamilton, T.K.; Li, X.; Cotechini, T.; Miles, E.A.; Siemens, D.R.; Graham, C.H. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: Role of nitric oxide. Cancer Res. 2011, 71, 7433–7441. [Google Scholar] [CrossRef]
- Yamada, N.; Yamanegi, K.; Ohyama, H.; Hata, M.; Nakasho, K.; Futani, H.; Okamura, H.; Terada, N. Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cells in a HIF-1α-dependent manner. Int. J. Oncol. 2012, 41, 2005–2012. [Google Scholar] [CrossRef]
- Schilling, D.; Tetzlaff, F.; Konrad, S.; Li, W.; Multhoff, G. A hypoxia-induced decrease of either MICA/B or Hsp70 on the membrane of tumor cells mediates immune escape from NK cells. Cell Stress. Chaperones 2015, 20, 139–147. [Google Scholar] [CrossRef]
- Bahamin, N.; Rafieian-Kopaei, M.; Ahmadian, S.; Karimi, I.; Doustimotlagh, A.H.; Mobini, G.; Bijad, E.; Shafiezadeh, M. Combined treatment with Alhagi maurorum and docetaxel inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vivo. Heliyon 2023, 9, e16292. [Google Scholar] [CrossRef]
- Yang, L.; Fu, Q.; Yang, L.; Zhang, Y. HIF-1α/MMP-9 promotes spinal cord central sensitization in rats with bone cancer pain. Eur. J. Pharmacol. 2023, 954, 175858. [Google Scholar] [CrossRef]
- Marín-Ramos, N.I.; Thein, T.Z.; Ghaghada, K.B.; Chen, T.C.; Giannotta, S.L.; Hofman, F.M. miR-18a Inhibits BMP4 and HIF-1α Normalizing Brain Arteriovenous Malformations. Circ. Res. 2020, 127, e210–e231. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, F.; Dong, K. Soluble NKG2D ligands impair CD8(+) T cell antitumor function dependent of NKG2D downregulation in neuroblastoma. Oncol. Lett. 2023, 26, 297. [Google Scholar] [CrossRef]
- Lopez-Montaño, M.; Jimenez-Ortega, L.; Cruz-Hernandez, T.R.; Hernandez-Chavez, V.G.; Montiel-Cervantes, L.A.; Reyes-Maldonado, E.; Vela-Ojeda, J. Significant increase in MIC-A and MIC-B and soluble MIC-A and MIC-B in canine lymphomas. Vet. Immunol. Immunopathol. 2023, 264, 110647. [Google Scholar] [CrossRef]
- Ribeiro Vitorino, T.; Ferraz do Prado, A.; Bruno de Assis Cau, S.; Rizzi, E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem. Pharmacol. 2023, 215, 115684. [Google Scholar] [CrossRef]
- Jonsson, A.; Falk, P.; Angenete, E.; Hjalmarsson, C.; Ivarsson, M.L. Plasma MMP-1 Expression as a Prognostic Factor in Colon Cancer. J. Surg. Res. 2021, 266, 254–260. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Mo, Y.; Zhang, Y.; Yuan, J.; Zhang, Q. MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis. J. Nanobiotechnol. 2024, 22, 428. [Google Scholar] [CrossRef]
- Alisjahbana, B.; Sulastri, N.; Livia, R.; Apriani, L.; Verrall, A.J.; Sahiratmadja, E. Neutrophils and lymphocytes in relation to MMP-8 and MMP-9 levels in pulmonary tuberculosis and HIV co-infection. J. Clin. Tuberc. Other Mycobact. Dis. 2022, 27, 100308. [Google Scholar] [CrossRef]
- Suryono, S.; Rohman, M.S.; Widjajanto, E.; Prayitnaningsih, S.; Wihastuti, T.A.; Oktaviono, Y.H. Effect of Colchicine in reducing MMP-9, NOX2, and TGF- β1 after myocardial infarction. BMC Cardiovasc. Disord. 2023, 23, 449. [Google Scholar] [CrossRef]
- Hosseini, M.; Rose, A.Y.; Song, K.; Bohan, C.; Alexander, J.P.; Kelley, M.J.; Acott, T.S. IL-1 and TNF induction of matrix metalloproteinase-3 by c-Jun N-terminal kinase in trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1469–1476. [Google Scholar] [CrossRef]
- Chambers, M.; Kirkpatrick, G.; Evans, M.; Gorski, G.; Foster, S.; Borghaei, R.C. IL-4 inhibition of IL-1 induced Matrix metalloproteinase-3 (MMP-3) expression in human fibroblasts involves decreased AP-1 activation via negative crosstalk involving of Jun N-terminal kinase (JNK). Exp. Cell Res. 2013, 319, 1398–1408. [Google Scholar] [CrossRef]
- Zergoun, A.A.; Zebboudj, A.; Sellam, S.L.; Kariche, N.; Djennaoui, D.; Ouraghi, S.; Kerboua, E.; Amir-Tidadini, Z.C.; Chilla, D.; Asselah, F.; et al. IL-6/NOS2 inflammatory signals regulate MMP-9 and MMP-2 activity and disease outcome in nasopharyngeal carcinoma patients. Tumour Biol. 2016, 37, 3505–3514. [Google Scholar] [CrossRef]
- Huang, C.Y.; Yang, J.L.; Chen, J.J.; Tai, S.B.; Yeh, Y.H.; Liu, P.F.; Lin, M.W.; Chung, C.L.; Chen, C.L. Fluoroquinolones Suppress TGF-β and PMA-Induced MMP-9 Production in Cancer Cells: Implications in Repurposing Quinolone Antibiotics for Cancer Treatment. Int. J. Mol. Sci. 2021, 22, 11602. [Google Scholar] [CrossRef]
- Takamune, Y.; Ikebe, T.; Nagano, O.; Nakayama, H.; Ota, K.; Obayashi, T.; Saya, H.; Shinohara, M. ADAM-17 associated with CD44 cleavage and metastasis in oral squamous cell carcinoma. Virchows Arch. 2007, 450, 169–177. [Google Scholar] [CrossRef]
- Mao, D.; Zhou, Z.; Chen, H.; Liu, X.; Li, D.; Chen, X.; He, Y.; Liu, M.; Zhang, C. Pleckstrin-2 promotes tumour immune escape from NK cells by activating the MT1-MMP-MICA signalling axis in gastric cancer. Cancer Lett. 2023, 572, 216351. [Google Scholar] [CrossRef]
- Sconocchia, G.; Eppenberger, S.; Spagnoli, G.C.; Tornillo, L.; Droeser, R.; Caratelli, S.; Ferrelli, F.; Coppola, A.; Arriga, R.; Lauro, D.; et al. NK cells and T cells cooperate during the clinical course of colorectal cancer. Oncoimmunology 2014, 3, e952197. [Google Scholar] [CrossRef]
- AmeliMojarad, M.; AmeliMojarad, M.; Wang, J.; Tavakolpour, V.; Shariati, P. A pan-cancer study of ADAM9’s immunological function and prognostic value particularly in liver cancer. Sci. Rep. 2024, 14, 26862. [Google Scholar] [CrossRef]
- Xing, S.; Ferrari de Andrade, L. NKG2D and MICA/B shedding: A ‘tag game’ between NK cells and malignant cells. Clin. Transl. Immunol. 2020, 9, e1230. [Google Scholar] [CrossRef]
- Cheung, P.F.; Yip, C.W.; Wong, N.C.; Fong, D.Y.; Ng, L.W.; Wan, A.M.; Wong, C.K.; Cheung, T.T.; Ng, I.O.; Poon, R.T.; et al. Granulin-epithelin precursor renders hepatocellular carcinoma cells resistant to natural killer cytotoxicity. Cancer Immunol. Res. 2014, 2, 1209–1219. [Google Scholar] [CrossRef]
- Kohga, K.; Tatsumi, T.; Takehara, T.; Tsunematsu, H.; Shimizu, S.; Yamamoto, M.; Sasakawa, A.; Miyagi, T.; Hayashi, N. Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma. J. Hepatol. 2010, 52, 872–879. [Google Scholar] [CrossRef]
- Wu, Q.; Li, X.; Yang, Y.; Huang, J.; Yao, M.; Li, J.; Huang, Y.; Cai, X.; Geller, D.A.; Yan, Y. MICA+ Tumor Cell Upregulated Macrophage-Secreted MMP9 via PROS1-AXL Axis to Induce Tumor Immune Escape in Advanced Hepatocellular Carcinoma (HCC). Cancers 2024, 16, 269. [Google Scholar] [CrossRef]
- Otoyama, Y.; Arai, J.; Goto, K.; Nozawa, H.; Nakagawa, R.; Muroyama, R.; Sugiura, I.; Nakajima, Y.; Kajiwara, A.; Tojo, M.; et al. Retinoids Decrease Soluble MICA Concentration by Inhibiting the Enzymatic Activity of ADAM9 and ADAM10. Anticancer Res. 2021, 41, 2307–2320. [Google Scholar] [CrossRef]
- Ke, M.; Wang, H.; Zhou, Y.; Li, J.; Liu, Y.; Zhang, M.; Dou, J.; Xi, T.; Shen, B.; Zhou, C. SEP enhanced the antitumor activity of 5-fluorouracil by up-regulating NKG2D/MICA and reversed immune suppression via inhibiting ROS and caspase-3 in mice. Oncotarget 2016, 7, 49509–49526. [Google Scholar] [CrossRef]
- Goto, K.; Arai, J.; Stephanou, A.; Kato, N. Novel therapeutic features of disulfiram against hepatocellular carcinoma cells with inhibitory effects on a disintegrin and metalloproteinase 10. Oncotarget 2018, 9, 18821–18831. [Google Scholar] [CrossRef]
- Shiraishi, K.; Mimura, K.; Kua, L.F.; Koh, V.; Siang, L.K.; Nakajima, S.; Fujii, H.; Shabbir, A.; Yong, W.P.; So, J.; et al. Inhibition of MMP activity can restore NKG2D ligand expression in gastric cancer, leading to improved NK cell susceptibility. J. Gastroenterol. 2016, 51, 1101–1111. [Google Scholar] [CrossRef]
- Ou, Z.L.; Luo, Z.; Wei, W.; Liang, S.; Gao, T.L.; Lu, Y.B. Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: Role of circ_0000977/miR-153 axis. RNA Biol. 2019, 16, 1592–1603. [Google Scholar] [CrossRef]
- Luo, Q.; Luo, W.; Zhu, Q.; Huang, H.; Peng, H.; Liu, R.; Xie, M.; Li, S.; Li, M.; Hu, X.; et al. Tumor-Derived Soluble MICA Obstructs the NKG2D Pathway to Restrain NK Cytotoxicity. Aging Dis. 2020, 11, 118–128. [Google Scholar]
- Mantovani, S.; Varchetta, S.; Mele, D.; Donadon, M.; Torzilli, G.; Soldani, C.; Franceschini, B.; Porta, C.; Chiellino, S.; Pedrazzoli, P.; et al. An Anti-MICA/B Antibody and IL-15 Rescue Altered NKG2D-Dependent NK Cell Responses in Hepatocellular Carcinoma. Cancers 2020, 12, 3583. [Google Scholar] [CrossRef]
- Kohga, K.; Takehara, T.; Tatsumi, T.; Ohkawa, K.; Miyagi, T.; Hiramatsu, N.; Kanto, T.; Kasugai, T.; Katayama, K.; Kato, M.; et al. Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma. Cancer Sci. 2008, 99, 1643–1649. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, H.; Nie, Y.; Mi, Q.; Chen, X.; Hou, Y. Midkine upregulates MICA/B expression in human gastric cancer cells and decreases natural killer cell cytotoxicity. Cancer Immunol. Immunother. 2012, 61, 1745–1753. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, B.; Yang, T.; Xiao, W.; Qian, L.; Ding, Y.; Ji, M.; Ge, X.; Gong, W. Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells. Cell Mol. Immunol. 2017, 14, 293–307. [Google Scholar] [CrossRef]
- Duan, X.; Deng, L.; Chen, X.; Lu, Y.; Zhang, Q.; Zhang, K.; Hu, Y.; Zeng, J.; Sun, W. Clinical significance of the immunostimulatory MHC class I chain-related molecule A and NKG2D receptor on NK cells in pancreatic cancer. Med. Oncol. 2011, 28, 466–474. [Google Scholar] [CrossRef]
- Morisaki, T.; Hirano, T.; Koya, N.; Kiyota, A.; Tanaka, H.; Umebayashi, M.; Onishi, H.; Katano, M. NKG2D-directed cytokine-activated killer lymphocyte therapy combined with gemcitabine for patients with chemoresistant metastatic solid tumors. Anticancer Res. 2014, 34, 4529–4538. [Google Scholar]
- Zhang, Z.; Su, T.; He, L.; Wang, H.; Ji, G.; Liu, X.; Zhang, Y.; Dong, G. Identification and functional analysis of ligands for natural killer cell activating receptors in colon carcinoma. Tohoku J. Exp. Med. 2012, 226, 59–68. [Google Scholar] [CrossRef]
- Lin, Z.; Song, J.; Gao, Y.; Huang, S.; Dou, R.; Zhong, P.; Huang, G.; Han, L.; Zheng, J.; Zhang, X.; et al. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol. 2022, 52, 102312. [Google Scholar] [CrossRef]
- Bakand, A.; Moghaddam, S.V.; Naseroleslami, M.; André, H.; Mousavi-Niri, N.; Alizadeh, E. Efficient targeting of HIF-1α mediated by YC-1 and PX-12 encapsulated niosomes: Potential application in colon cancer therapy. J. Biol. Eng. 2023, 17, 58. [Google Scholar] [CrossRef]
- Nelson, J.K.; Thin, M.Z.; Evan, T.; Howell, S.; Wu, M.; Almeida, B.; Legrave, N.; Koenis, D.S.; Koifman, G.; Sugimoto, Y.; et al. USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat. Commun. 2022, 13, 2070. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Miao, Z.M.; Chen, Y.P.; Song, Z.B.; Li, Y.Y.; Liu, Z.W.; Zhou, G.C.; Li, J.; Shi, L.L.; Chen, Y.; et al. Ononin promotes radiosensitivity in lung cancer by inhibiting HIF-1α/VEGF pathway. Phytomedicine 2024, 125, 155290. [Google Scholar] [CrossRef]
- Ji, L.; Chai, Y.; Tong, C.; Hu, Y.; Li, J.; Lu, B.; Yu, J. Morusin Reverses Epithelial-Mesenchymal Transition in Gallbladder Cancer Cells by Regulating STAT3/HIF-1α Signaling. Chem. Biol. Drug Des. 2025, 105, e70054. [Google Scholar] [CrossRef]
- Ohta, S.; Morine, Y.; Imura, S.; Ikemoto, T.; Arakawa, Y.; Iwahashi, S.; Saito, Y.U.; Yamada, S.; Wada, Y.; Yamashita, S.; et al. Carbohydrate Antigen 19-9 Is a Prognostic Factor Which Correlates with HDAC1 and HIF-1α for Intrahepatic Cholangiocarcinoma. Anticancer Res. 2019, 39, 6025–6033. [Google Scholar] [CrossRef]
- Dong, S.; Liang, S.; Cheng, Z.; Zhang, X.; Luo, L.; Li, L.; Zhang, W.; Li, S.; Xu, Q.; Zhong, M.; et al. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J. Exp. Clin. Cancer Res. 2022, 41, 15. [Google Scholar] [CrossRef]
- Hu, Q.; Qin, Y.; Ji, S.; Xu, W.; Liu, W.; Sun, Q.; Zhang, Z.; Liu, M.; Ni, Q.; Yu, X.; et al. UHRF1 promotes aerobic glycolysis and proliferation via suppression of SIRT4 in pancreatic cancer. Cancer Lett. 2019, 452, 226–236. [Google Scholar] [CrossRef]
- Zong, S.; Tang, Y.; Li, W.; Han, S.; Shi, Q.; Ruan, X.; Hou, F. A Chinese Herbal Formula Suppresses Colorectal Cancer Migration and Vasculogenic Mimicry Through ROS/HIF-1α/MMP2 Pathway in Hypoxic Microenvironment. Front. Pharmacol. 2020, 11, 705. [Google Scholar] [CrossRef]
- Rassouli, F.B.; Matin, M.M.; Hadizadeh, F.; Nejabat, M.; Allahverdizadeh, H.; Jamali, H.; Gharedaghi, S.; Hassanzadeh, H. Exploring the anti-metastatic potential of sunitinib and novel analogs in colorectal cancer: Insights into HIF-1α mediated metastasis. Front. Pharmacol. 2025, 16, 1520881. [Google Scholar] [CrossRef]
- Zeng, D.; Zhou, P.; Jiang, R.; Li, X.P.; Huang, S.Y.; Li, D.Y.; Li, G.L.; Li, L.S.; Zhao, S.; Hu, L.; et al. Evodiamine inhibits vasculogenic mimicry in HCT116 cells by suppressing hypoxia-inducible factor 1-alpha-mediated angiogenesis. Anticancer Drugs 2021, 32, 314–322. [Google Scholar] [CrossRef]
- Kawamoto, M.; Onishi, H.; Ozono, K.; Yamasaki, A.; Imaizumi, A.; Kamakura, S.; Nakano, K.; Oda, Y.; Sumimoto, H.; Nakamura, M. Tropomyosin-related kinase B mediated signaling contributes to the induction of malignant phenotype of gallbladder cancer. Oncotarget 2017, 8, 36211–36224. [Google Scholar] [CrossRef]
- Chen, K.; Ye, J.; Qi, L.; Liao, Y.; Li, R.; Song, S.; Zhou, C.; Feng, R.; Zhai, W. Oridonin inhibits hypoxia-induced epithelial-mesenchymal transition and cell migration by the hypoxia-inducible factor-1α/matrix metallopeptidase-9 signal pathway in gallbladder cancer. Anticancer Drugs 2019, 30, 925–932. [Google Scholar] [CrossRef]
- Huang, Y.N.; Xu, Y.Y.; Ma, Q.; Li, M.Q.; Guo, J.X.; Wang, X.; Jin, X.; Shang, J.; Jiao, L.X. Dextran Sulfate Effects EMT of Human Gastric Cancer Cells by Reducing HIF-1α/ TGF-β. J. Cancer 2021, 12, 3367–3377. [Google Scholar] [CrossRef]
- Han, J.M.; Choi, Y.S.; Dhakal, D.; Sohng, J.K.; Jung, H.J. Novel Nargenicin A1 Analog Inhibits Angiogenesis by Downregulating the Endothelial VEGF/VEGFR2 Signaling and Tumoral HIF-1α/VEGF Pathway. Biomedicines 2020, 8, 252. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Wang, C.S.; Tsai, M.M.; Chi, H.C.; Cheng, W.L.; Tseng, Y.H.; Chen, C.Y.; Lin, C.D.; Wu, J.I.; Wang, L.H.; et al. Interleukin-32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clin. Cancer Res. 2014, 20, 2276–2288. [Google Scholar] [CrossRef]
- Song, G.; Ouyang, G.; Mao, Y.; Ming, Y.; Bao, S.; Hu, T. Osteopontin promotes gastric cancer metastasis by augmenting cell survival and invasion through Akt-mediated HIF-1alpha up-regulation and MMP9 activation. J. Cell Mol. Med. 2009, 13, 1706–1718. [Google Scholar] [CrossRef]
- Han, J.M.; Sohng, J.K.; Lee, W.H.; Oh, T.J.; Jung, H.J. Identification of Cyclophilin A as a Potential Anticancer Target of Novel Nargenicin A1 Analog in AGS Gastric Cancer Cells. Int. J. Mol. Sci. 2021, 22, 2473. [Google Scholar] [CrossRef]
- You, M.; Fu, J.; Lv, X.; Wang, L.; Wang, H.; Li, R. Saikosaponin b2 inhibits tumor angiogenesis in liver cancer via down-regulation of VEGF/ERK/HIF-1α signaling. Oncol. Rep. 2023, 50, 136. [Google Scholar] [CrossRef]
- Wu, R.; Chen, X.; Chen, H.; Li, M.; Liang, Y. Plasmodium infection downregulates hypoxia-inducible factor 1α expression to suppress the vascularization and tumorigenesis of liver cancer. Oncol. Lett. 2024, 28, 604. [Google Scholar] [CrossRef]
- Ning, X.; Wang, Y.; Yan, W.; Li, G.; Sang, N. Chitin synthesis inhibitors promote liver cancer cell metastasis via interfering with hypoxia-inducible factor 1α. Chemosphere 2018, 206, 231–237. [Google Scholar] [CrossRef]
- Zheng, P.; Huang, Z.; Tong, D.C.; Zhou, Q.; Tian, S.; Chen, B.W.; Ning, D.M.; Guo, Y.M.; Zhu, W.H.; Long, Y.; et al. Frankincense myrrh attenuates hepatocellular carcinoma by regulating tumor blood vessel development through multiple epidermal growth factor receptor-mediated signaling pathways. World J. Gastrointest. Oncol. 2022, 14, 450–477. [Google Scholar] [CrossRef]
- Chen, X.; Kou, Y.; Lu, Y.; Pu, Y. Salidroside ameliorated hypoxia-induced tumorigenesis of BxPC-3 cells via downregulating hypoxia-inducible factor (HIF)-1α and LOXL2. J. Cell Biochem. 2020, 121, 165–173. [Google Scholar] [CrossRef]
- Shan, T.; Ma, J.; Ma, Q.; Guo, K.; Guo, J.; Li, X.; Li, W.; Liu, J.; Huang, C.; Wang, F.; et al. β2-AR-HIF-1α: A novel regulatory axis for stress-induced pancreatic tumor growth and angiogenesis. Curr. Mol. Med. 2013, 13, 1023–1034. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, Z.; Li, Y.; Wang, K.; Chen, X.; Liu, G. Downregulation of miR-21 inhibits the malignant phenotype of pancreatic cancer cells by targeting VHL. Onco Targets Ther. 2019, 12, 7215–7226. [Google Scholar] [CrossRef]
- Wang, T.; Sun, F.; Xie, W.; Tang, M.; He, H.; Jia, X.; Tian, X.; Wang, M.; Zhang, J. A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett. 2016, 372, 166–178. [Google Scholar] [CrossRef]
- Liu, R.; Luo, Q.; Luo, W.; Wan, L.; Zhu, Q.; Yin, X.; Lu, X.; Song, Z.; Wei, L.; Xiang, Z.; et al. A Soluble NK-CAR Mediates the Specific Cytotoxicity of NK Cells toward the Target CD20(+) Lymphoma Cells. Aging Dis. 2022, 13, 1576–1588. [Google Scholar] [CrossRef]
- Fuller, E.S.; Shu, C.; Smith, M.M.; Little, C.B.; Melrose, J. Hyaluronan oligosaccharides stimulate matrix metalloproteinase and anabolic gene expression in vitro by intervertebral disc cells and annular repair in vivo. J. Tissue Eng. Regen. Med. 2018, 12, e216–e226. [Google Scholar] [CrossRef]
- Generali, D.; Berruti, A.; Cappelletti, M.R.; Zanotti, L.; Brugnoli, G.; Forti, M.; Bedussi, F.; Vailati, M.E.; Milani, M.; Strina, C.; et al. Effect of Primary Letrozole Treatment on Tumor Expression of mTOR and HIF-1α and Relation to Clinical Response. J. Natl. Cancer Inst. Monogr. 2015, 2015, 64–66. [Google Scholar] [CrossRef]
- Fallah, J.; Rini, B.I. HIF Inhibitors: Status of Current Clinical Development. Curr. Oncol. Rep. 2019, 21, 6. [Google Scholar] [CrossRef]
- Ferrari de Andrade, L.; Tay, R.E.; Pan, D.; Luoma, A.M.; Ito, Y.; Badrinath, S.; Tsoucas, D.; Franz, B.; May, K.F., Jr.; Harvey, C.J.; et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018, 359, 1537–1542. [Google Scholar] [CrossRef]
- Du, C.; Bevers, J., 3rd; Cook, R.; Lombana, T.N.; Rajasekaran, K.; Matsumoto, M.; Spiess, C.; Kim, J.M.; Ye, Z. MICA immune complex formed with alpha 3 domain-specific antibody activates human NK cells in a Fc-dependent manner. J. Immunother. Cancer 2019, 7, 207. [Google Scholar] [CrossRef]
- Whalen, K.A.; Henry, C.C.; Mehta, N.K.; Rakhra, K.; Yalcin, S.; Meetze, K.; Gibson, N.W.; Baeuerle, P.A.; Michaelson, J.S. CLN-619, a MICA/B monoclonal antibody that promotes innate immune cell-mediated antitumor activity. J. Immunother. Cancer 2025, 13, e008987. [Google Scholar] [CrossRef]
- Tang, X.; He, L.; Wang, X.; Liu, S.; Liu, X.; Shen, X.; Shu, Y.; Yang, K.; Zhou, Q.; Shan, Z.; et al. Isolation of anti-tumor monoclonal antibodies targeting on MICA/B α3 domain by single B cell technology for colon cancer therapy. Heliyon 2024, 10, e35697. [Google Scholar] [CrossRef]
Cancer Types | Expression Level of HIF-1α | Correlation of Survival Time |
---|---|---|
STAD [67] | high | negative |
COAD [68] | high | negative |
PAAD [69] | high | negative |
LIHC [70] | high | negative |
GBC [71] | high | negative |
CHOL [72] | high | negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Tang, S.; Huang, T.; Chen, C.; Liu, B.; Xiao, C.; Chen, L.; Wang, W.; Lu, F. HIF-1α: A Key Factor Mediating Tumor Cells from Digestive System to Evade NK Cell Killing via Activating Metalloproteinases to Hydrolyze MICA/B. Biomolecules 2025, 15, 899. https://doi.org/10.3390/biom15060899
Zhu Q, Tang S, Huang T, Chen C, Liu B, Xiao C, Chen L, Wang W, Lu F. HIF-1α: A Key Factor Mediating Tumor Cells from Digestive System to Evade NK Cell Killing via Activating Metalloproteinases to Hydrolyze MICA/B. Biomolecules. 2025; 15(6):899. https://doi.org/10.3390/biom15060899
Chicago/Turabian StyleZhu, Quan, Shuyi Tang, Ting Huang, Chunjing Chen, Biyuan Liu, Chuyu Xiao, Liugu Chen, Wang Wang, and Fangguo Lu. 2025. "HIF-1α: A Key Factor Mediating Tumor Cells from Digestive System to Evade NK Cell Killing via Activating Metalloproteinases to Hydrolyze MICA/B" Biomolecules 15, no. 6: 899. https://doi.org/10.3390/biom15060899
APA StyleZhu, Q., Tang, S., Huang, T., Chen, C., Liu, B., Xiao, C., Chen, L., Wang, W., & Lu, F. (2025). HIF-1α: A Key Factor Mediating Tumor Cells from Digestive System to Evade NK Cell Killing via Activating Metalloproteinases to Hydrolyze MICA/B. Biomolecules, 15(6), 899. https://doi.org/10.3390/biom15060899