Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = kallikrein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 787 KiB  
Review
Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review
by Jéssica Branquinho, Raquel Leão Neves, Michael Bader and João Bosco Pesquero
Drugs Drug Candidates 2025, 4(3), 37; https://doi.org/10.3390/ddc4030037 - 5 Aug 2025
Abstract
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the [...] Read more.
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the metabolic level. The kinin B2 receptor (B2R) is involved in blood pressure regulation and glucose metabolism, promoting glucose uptake in skeletal muscle via bradykinin. Studies in B2R-KO mice demonstrate that the absence of this receptor predisposes animals to glucose intolerance under a high-fat diet and impairs adaptive thermogenesis, indicating a protective role for B2R in metabolic homeostasis and insulin sensitivity. In contrast, the kinin B1 receptor (B1R) is inducible under pathological conditions and is activated by kinin metabolites. Mouse models lacking B1R exhibit improved metabolic profiles, including protection against high-fat diet-induced obesity and insulin resistance, enhanced energy expenditure, and increased leptin sensitivity. B1R inactivation in adipocytes enhances insulin responsiveness and glucose tolerance, supporting its role in the development of insulin resistance. Moreover, B1R deficiency improves energy metabolism and thermogenic responses to adrenergic and cold stimuli, promoting the activation of brown adipose tissue and the browning of white adipose tissue. Collectively, these findings suggest that B1R and B2R represent promising therapeutic targets for the treatment of metabolic disorders. Full article
(This article belongs to the Special Issue Drugs of the Kallikrein-Kinin System)
Show Figures

Figure 1

23 pages, 8153 KiB  
Article
SARS-Cov-2 Replication in a Blood–Brain Barrier Model Established with Human Brain Microvascular Endothelial Cells Induces Permeability and Disables ACE2-Dependent Regulation of Bradykinin B1 Receptor
by Sharton Vinicius Antunes Coelho, Gabriela Lisboa e Souza, Bruno Braz Bezerra, Luan Rocha Lima, Isadora Alonso Correa, Dalziza Victalina de Almeida, Rodrigo Pacheco da Silva-Aguiar, Ana Acácia S. Pinheiro, Pierre Sirois, Celso Caruso-Neves, Luciana Jesus da Costa, Julio Scharfstein and Luciana Barros de Arruda
Int. J. Mol. Sci. 2025, 26(12), 5540; https://doi.org/10.3390/ijms26125540 - 10 Jun 2025
Viewed by 764
Abstract
Endothelial dysfunction plays a central role in COVID-19 pathogenesis, by affecting vascular homeostasis and worsening thromboinflammation. This imbalance may contribute to blood–brain barrier (BBB) disruption, which has been reported in long COVID-19 patients with neurological sequelae. The kallikrein–kinin system (KKS) generates bradykinin (BK), [...] Read more.
Endothelial dysfunction plays a central role in COVID-19 pathogenesis, by affecting vascular homeostasis and worsening thromboinflammation. This imbalance may contribute to blood–brain barrier (BBB) disruption, which has been reported in long COVID-19 patients with neurological sequelae. The kallikrein–kinin system (KKS) generates bradykinin (BK), a proinflammatory peptide that induces microvascular leakage via B2R. Under inflammatory conditions, BK is converted to Des-Arg-BK (DABK), which activates B1R, a receptor upregulated in inflamed tissues. DABK is degraded by ACE2, the main SARS-CoV-2 receptor; thus, viral binding and ACE2 downregulation may lead to DABK/B1R imbalance. Here, we investigated these interactions using human brain microvascular endothelial cells (HBMECs), as a model of the BBB. Since endothelial cell lines express low levels of ACE2, HBMECs were modified with an ACE2-carrying pseudovirus. SARS-CoV-2 replication was confirmed by RNA, protein expression, and infectious particles release. Infection upregulated cytokines and endothelial permeability, enhancing viral and leukocyte transmigration. Additionally, viral replication impaired ACE2 function in HBMECs, amplifying the response to DABK, increasing nitric oxide (NO) production, and further disrupting endothelial integrity. Our findings reveal a mechanism by which SARS-CoV-2 impacts the BBB and highlights the ACE2/KKS/B1R axis as a potential contributor to long COVID-19 neurological symptoms. Full article
Show Figures

Figure 1

13 pages, 1026 KiB  
Article
A Clinical Validation of a Diagnostic Test for Esophageal Adenocarcinoma Based on a Novel Serum Glycoprotein Biomarker Panel: PromarkerEso
by Jordana Sheahan, Iris Wang, Peter Galettis, David I. Watson, Virendra Joshi, Michelle M. Hill, Richard Lipscombe, Kirsten Peters and Scott Bringans
Proteomes 2025, 13(2), 23; https://doi.org/10.3390/proteomes13020023 - 4 Jun 2025
Viewed by 654
Abstract
Background: Esophageal adenocarcinoma (EAC) diagnosis involves invasive and expensive endoscopy with biopsy, but rising EAC incidence has not been reduced by increased surveillance. This study aimed to develop and clinically validate a novel glycoprotein biomarker blood test for EAC, named PromarkerEso. Methods: Serum [...] Read more.
Background: Esophageal adenocarcinoma (EAC) diagnosis involves invasive and expensive endoscopy with biopsy, but rising EAC incidence has not been reduced by increased surveillance. This study aimed to develop and clinically validate a novel glycoprotein biomarker blood test for EAC, named PromarkerEso. Methods: Serum glycoprotein relative concentrations were measured using a lectin-based magnetic bead array pulldown method, with multiple reaction monitoring mass spectrometry in 259 samples across three independent cohorts. A panel of glycoproteins: alpha-1-antitrypsin, alpha-1-antichymotrypsin, complement C9 and plasma kallikrein, were combined with clinical factors (age, sex and BMI) in an algorithm to categorize the samples by the risk of EAC. Results: PromarkerEso demonstrated a strong discrimination of EAC from the controls (area under the curve (AUC) of 0.91 in the development cohort and 0.82 and 0.98 in the validation cohorts). The test exhibited a high sensitivity for EAC (98% in the development cohort, and 99.9% and 91% in the validation cohorts) and a high specificity (88% in the development cohort, and 86% and 99% in the validation cohorts). PromarkerEso identified individuals with and without EAC (96% and 95% positive and negative predictive values). Conclusions: This less invasive approach for EAC detection with the novel combination of these glycoprotein biomarkers and clinical factors coalesces in a potential step toward improved diagnosis. Full article
Show Figures

Figure 1

13 pages, 6399 KiB  
Article
Pathophysiology of COVID-19: A Post Hoc Analysis of the ICAT-COVID Clinical Trial of the Bradykinin Antagonist Icatibant
by Pierre Malchair, Jordi Giol, Javier Jacob, Jesús Villoria, Thiago Carnaval and Sebastián Videla
Pathogens 2025, 14(6), 533; https://doi.org/10.3390/pathogens14060533 - 27 May 2025
Viewed by 578
Abstract
We used the data from a successful therapeutic assay that used icatibant in patients with hypoxemic COVID-19 pneumonia (the ICAT·COVID trial) to explore pathophysiological mechanisms. We performed concurrent-type, criterion-related validity analyses to assess the discriminative ability of a panel of nine potential serum [...] Read more.
We used the data from a successful therapeutic assay that used icatibant in patients with hypoxemic COVID-19 pneumonia (the ICAT·COVID trial) to explore pathophysiological mechanisms. We performed concurrent-type, criterion-related validity analyses to assess the discriminative ability of a panel of nine potential serum markers (interleukin 6, ferritin, lactate dehydrogenase, C reactive protein, fibrin fragment D (D-dimer), complement 1 esterase inhibitor (antigenic and functional), complement 4 factor, and lymphocyte count) to predict the clinical milestones. Consistent with previous research, we evidenced a significant relationship between interleukin 6, lactate dehydrogenase and the lymphocyte count, and the clinical events. Furthermore, exposure to icatibant, a bradykinin B2 receptor antagonist (which improved pneumonia and mortality in the aforementioned randomised trial), attenuated this relationship, although this effect faded over time. The results reinforce the key role that the angiotensin-converting enzyme 2 has on COVID-19 pathophysiology as a point of convergence between the renin–angiotensin and kallikrein–kinin systems. This was shown clinically by the successful blocking of inflammatory pathways by icatibant at the bradykinin effector loop level early during the acute hyperinflammatory stage of the disease. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

25 pages, 28238 KiB  
Article
Analysis of Kallikrein 6, Acetyl-α-Tubulin, and Aquaporin 1 and 2 Expression Patterns During Normal Human Nephrogenesis and in Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)
by Nela Kelam, Marin Ogorevc, Ivona Gotovac, Ivana Kuzmić Prusac, Katarina Vukojević, Mirna Saraga-Babić and Snježana Mardešić
Genes 2025, 16(5), 499; https://doi.org/10.3390/genes16050499 - 27 Apr 2025
Viewed by 493
Abstract
Background/Objectives: The human kallikrein-related peptidase 6 (KLK6), a serine protease with trypsin-like properties, belongs to the 15-member kallikrein (KLK) gene family and is predominantly recognized for its role in oncogenesis, neurodegenerative disorders, and skin conditions. Aquaporins (AQPs) are integral membrane [...] Read more.
Background/Objectives: The human kallikrein-related peptidase 6 (KLK6), a serine protease with trypsin-like properties, belongs to the 15-member kallikrein (KLK) gene family and is predominantly recognized for its role in oncogenesis, neurodegenerative disorders, and skin conditions. Aquaporins (AQPs) are integral membrane proteins that facilitate water transport across cell membranes. AQP1 is constitutively active in the kidneys and plays a crucial role in reabsorbing filtered water, while AQP2 is regulated by vasopressin and is essential for maintaining body fluid homeostasis. The primary objective of the present study is to investigate the spatio-temporal expression patterns of KLK6, AQP1, and AQP2 throughout normal human nephrogenesis and congenital kidney and urinary tract (CAKUT) abnormalities: duplex kidneys, horseshoe kidneys, and dysplastic kidneys. Methods: An immunofluorescence analysis of KLK6, AQP1, and AQP2 was performed on 37 paraffin-embedded fetal kidney samples. The area percentage of KLK6 in the kidney cortex was calculated in normal developing samples during developmental phases 2, 3, and 4 and compared with CAKUT samples. Results: KLK6 exhibits distinct spatiotemporal expression patterns during human kidney development, with consistent localization in proximal tubules. Its subcellular positioning shifts from the basolateral cytoplasm in early phases to the apical cytoplasm in later stages, which may be strategically positioned to act on its substrate in either the peritubular space or the tubular fluid. KLK6 expression followed a quadratic trajectory, peaking at Ph4. This marked increase in the final developmental phase aligns with its strong expression in mature kidneys, suggesting a potential role in proximal tubule differentiation and functional maturation through facilitating extracellular matrix remodeling and activating proteinase-activated receptors, modulating the signaling pathways that are essential for tubular development. In duplex kidneys, structural abnormalities such as ureteral obstruction and hydronephrosis may upregulate KLK6 as part of a reparative response, while its downregulation could impair epithelial remodeling and cytoskeletal integrity, exacerbating dysplastic phenotypes. Conclusions: These findings highlight the potential of KLK6 involvement in normal kidney development and the pathology of CAKUT. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 788 KiB  
Review
Omega-3 Fatty Acids and Exercise in Obesity Management: Independent and Synergistic Benefits in Metabolism and Knowledge Gaps
by Viviana Sandoval, Álvaro Vergara-Nieto, Amanda Bentes, Saulo Silva, Carolina Núñez and Sergio Martínez-Huenchullán
Biology 2025, 14(5), 463; https://doi.org/10.3390/biology14050463 - 24 Apr 2025
Viewed by 3426
Abstract
Obesity is a significant global health issue, profoundly affecting metabolic and cardiovascular health and other related chronic conditions. In Chile, the prevalence of obesity is among the highest within the Organisation for Economic Cooperation and Development (OECD) countries, highlighting a critical public health [...] Read more.
Obesity is a significant global health issue, profoundly affecting metabolic and cardiovascular health and other related chronic conditions. In Chile, the prevalence of obesity is among the highest within the Organisation for Economic Cooperation and Development (OECD) countries, highlighting a critical public health challenge. This narrative review examines current evidence on the independent and potential synergistic roles of omega-3 fatty acids and exercise in managing obesity-related metabolic dysfunction. Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA), have been shown to lower triglyceride levels, enhance lipid metabolism, and modulate inflammation via pathways involving peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding protein-1c (SREBP-1c). Exercise interventions, such as moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT), provide distinct yet complementary metabolic benefits. Specifically, MICT improves body fat distribution and mitochondrial efficiency, whereas HIIT has notable effects on metabolic adaptability and insulin signaling. Additionally, emerging evidence points toward a potential role of the kinin-kallikrein system, particularly kallikrein 7 (KLK7), in obesity-associated insulin resistance. Despite these promising findings, several knowledge gaps persist regarding optimal dosing, intervention timing, population-specific effects, and the exact mechanisms behind the potential synergistic interactions between omega-3 supplementation and structured exercise. This review emphasizes the importance of conducting further research, particularly controlled clinical trials, to clarify these combined interventions’ effectiveness and establish targeted therapeutic strategies tailored to individual metabolic profiles. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

16 pages, 603 KiB  
Review
Biomarkers and Mechanisms in the Early Assessment of Childhood Obesity from a Multidisciplinary Perspective—A Narrative Review
by Dana Elena Mindru, Laura Iulia Bozomitu, Dana Teodora Anton Păduraru, Elena Țarcă, Antoanela Curici, Eva Maria Elkan, Lăcrămioara Ionela Butnariu, Dan Cristian Moraru, Cosmin Diaconescu and Alina Costina Luca
Medicina 2025, 61(4), 607; https://doi.org/10.3390/medicina61040607 - 27 Mar 2025
Viewed by 1053
Abstract
Obesity has been the subject of research focused on preventive policies among the young population due to epidemiological studies which have shown devastating figures in recent years in terms of the incidence and prevalence of this condition. A number of previously known biomarkers [...] Read more.
Obesity has been the subject of research focused on preventive policies among the young population due to epidemiological studies which have shown devastating figures in recent years in terms of the incidence and prevalence of this condition. A number of previously known biomarkers have proven useful in the early diagnosis of complications associated with obesity, while others remain in the study stage. The intestinal microbiota are also relevant in the secondary prevention of obesity complications, another area that has turned into a hot topic of current research. The primary goal of this review is to highlight markers and mechanisms that can enhance specialists’ understanding of obesity assessment and its systemic complications. Salivary markers have been proven useful in the evaluation of obesity, with the advantage of being low-cost and easy to sample. Another interesting topic is the role of the renin–angiotensin and the kallikrein–kinin systems in obesity-related systemic complications. One well-known fact is the connection between obesity and high blood pressure, which is closely related to these systems. This paper also explores the link between gut microbiota and adiposity, particularly the potential of the Firmicutes/Bacteroidetes ratio as a useful biomarker. Full article
(This article belongs to the Section Endocrinology)
Show Figures

Figure 1

16 pages, 4679 KiB  
Article
Real-World Outcomes and Healthcare Utilization of Lanadelumab in Spain: Insights from First Cohort of Difficult-to-Treat Hereditary Angioedema Cases
by Inmaculada Sánchez-Machín, Ruperto González-Pérez, Elena Mederos-Luis, Sara García-Gil and Paloma Poza-Guedes
Allergies 2025, 5(1), 3; https://doi.org/10.3390/allergies5010003 - 11 Feb 2025
Viewed by 1377
Abstract
Background/Objectives: Hereditary angioedema (HAE) is a rare genetic condition marked by recurring episodes of intense swelling that affect the skin, gastrointestinal system, and airways. Lanadelumab, a monoclonal antibody that inhibits plasma kallikrein, is approved for long-term prophylaxis (LTP) in HAE patients, and has [...] Read more.
Background/Objectives: Hereditary angioedema (HAE) is a rare genetic condition marked by recurring episodes of intense swelling that affect the skin, gastrointestinal system, and airways. Lanadelumab, a monoclonal antibody that inhibits plasma kallikrein, is approved for long-term prophylaxis (LTP) in HAE patients, and has shown substantial efficacy in reducing disease symptoms. This single-center, retrospective study analyzed the real-world impact of lanadelumab on healthcare resource utilization, angioedema episode frequency, and quality of life (QoL) among adult HAE patients treated at the allergy department of Hospital Universitario de Canarias, Tenerife, Spain. Methods: This study included patients with a confirmed diagnosis of bradykinin-mediated HAE type 1 who were receiving lanadelumab 300 mg subcutaneously every two weeks, meeting specific inclusion criteria. A retrospective review of medical records from March 2021 to June 2024 assessed clinical outcomes under lanadelumab therapy, compared to prior clinical status. Key metrics included angioedema attack frequency, use of on-demand icatibant treatment, hospital visits, and QoL using the HAE-QoL questionnaire, alongside any adverse reactions associated with lanadelumab. Results: The investigation revealed a 75.3% reduction in hospital visits and a 94.1% decrease in angioedema episodes among HAE patients. Additionally, use of on-demand rescue medication (icatibant) was reduced by 61% (p < 0.05), while quality of life (QoL) scores improved from 62.2 to 99.5, with no significant adverse effects reported. Conclusions: Lanadelumab significantly reduced healthcare resource use and angioedema episodes, with marked improvements in quality of life. The reduced need for on-demand medication and hospital visits highlights lanadelumab’s value as an effective long-term prophylactic treatment with minimal adverse effects for HAE patients in real-world settings. Full article
(This article belongs to the Section Diagnosis and Therapeutics)
Show Figures

Figure 1

13 pages, 4502 KiB  
Article
In Vitro Investigation of Novel Peptide Hydrogels for Enamel Remineralization
by Codruta Sarosi, Alexandrina Muntean, Stanca Cuc, Ioan Petean, Sonia Balint, Marioara Moldovan and Aurel George Mohan
Gels 2025, 11(1), 11; https://doi.org/10.3390/gels11010011 - 27 Dec 2024
Viewed by 1474
Abstract
This study investigates the microstructure of dental enamel following demineralization and re-mineralization processes, using DIAGNOdent scores and images obtained via scanning electron microscopy (SEM), atomic force microscopy (AFM), and microhardness (Vickers). The research evaluates the effects of two experimental hydrogels, Anti-Amelogenin isoform X [...] Read more.
This study investigates the microstructure of dental enamel following demineralization and re-mineralization processes, using DIAGNOdent scores and images obtained via scanning electron microscopy (SEM), atomic force microscopy (AFM), and microhardness (Vickers). The research evaluates the effects of two experimental hydrogels, Anti-Amelogenin isoform X (ABT260, S1) and Anti-Kallikrein L1 (K3014, S2), applied to demineralized enamel surfaces over periods of 14 and 21 days. The study involved 60 extracted teeth, free from cavities or other lesions, divided into four groups: a positive group (+), a negative group (−) and groups S1 and S2. The last three groups underwent demineralization with 37% phosphoric acid for 20 min. The negative group (−) was without remineralization treatment. The DIAGNOdent scores indicate that the S1 group treated with Anti-Amelogenin is more effective in remineralizing the enamel surface compared to the S2 group treated with Anti-Kallikrein. These findings were corroborated by SEM and AFM images, which revealed elongated hydroxyapatite (HAP) nanoparticles integrated into the demineralized structures. Demineralization reduced enamel microhardness to about 1/3 of a healthy one. Both tested hydrogels restored enamel hardness, with S1 being more effective than S2. Both peptides facilitated the interaction between the newly added minerals and residual protein binders on the enamel surface, thereby contributing to effective enamel restoration. Full article
Show Figures

Figure 1

15 pages, 2976 KiB  
Review
Alzheimer’s Disease: In Vitro and In Vivo Evidence of Activation of the Plasma Bradykinin-Forming Cascade and Implications for Therapy
by Allen P. Kaplan, Berhane Ghebrehiwet and Kusumam Joseph
Cells 2024, 13(24), 2039; https://doi.org/10.3390/cells13242039 - 10 Dec 2024
Viewed by 1274
Abstract
The plaques associated with Alzheimer’s disease are formed as a result of the aggregation of Aβ peptides, which vary in length from 38 to 43 amino acids. The 1-40 peptide is the most abundant, while the 1-42 peptide appears to be the most [...] Read more.
The plaques associated with Alzheimer’s disease are formed as a result of the aggregation of Aβ peptides, which vary in length from 38 to 43 amino acids. The 1-40 peptide is the most abundant, while the 1-42 peptide appears to be the most destructive to neurons and/or glial cells in a variety of assays. We have demonstrated that aggregated Aβ, a state prior to plaque formation, will activate the plasma bradykinin-forming pathway when tested in vitro. Aggregation is zinc-dependent, optimal at 25–50 µM, and the rate of aggregation is paralleled by the rate of activation of the bradykinin-forming pathway as assessed by plasma kallikrein formation. The aggregation of Aβ 1-38, 1-40, and 1-42 is optimal after incubation for 3 days, 3 h, and under 1 min, respectively. The cascade is initiated by the autoactivation of factor XII upon binding to aggregated Aβ; then, prekallikrein is converted to kallikrein, which cleaves high-molecular-weight kininogen (HK) to release bradykinin. Studies by a variety of other researchers have demonstrated the presence of each “activation-step” in either the plasma or spinal fluid of patients with Alzheimer’s disease, including activated factor XII, kallikrein, and bradykinin itself. There is also evidence that activation is more prominent as dementia worsens. We now have medications that can block each step of the bradykinin-forming pathway as currently employed for the therapy of hereditary angioedema. Given the current state of therapy for Alzheimer’s disease, which includes monoclonal antibodies that retard the rate of progression by 30% at most and have significant side effects, it seems imperative to explore prophylaxis using one of the long-acting agents that target plasma kallikrein or factor XIIa. There is a long-acting bradykinin antagonist in development, and techniques to target kallikrein mRNA to lower levels or knock out the prekallikrein gene are being developed. Full article
Show Figures

Figure 1

20 pages, 2879 KiB  
Article
Activation of Bradykinin B2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling
by Ying Lu, Yishan Gu, Anthony S. L. Chan, Ying Yung and Yung H. Wong
Int. J. Mol. Sci. 2024, 25(23), 13079; https://doi.org/10.3390/ijms252313079 - 5 Dec 2024
Viewed by 1268
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we [...] Read more.
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF. Full article
Show Figures

Figure 1

15 pages, 7972 KiB  
Article
PM2.5 Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner
by Hao Wang, Li Ma, Yuqiong Guo, Lingyu Ren, Guangke Li and Nan Sang
Toxics 2024, 12(12), 878; https://doi.org/10.3390/toxics12120878 - 1 Dec 2024
Viewed by 7853
Abstract
As one of the most common air pollutants, fine particulate matter (PM2.5) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM2.5 for 8 weeks. [...] Read more.
As one of the most common air pollutants, fine particulate matter (PM2.5) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM2.5 for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration. Meanwhile, pathological staining showed that the kidneys of female mice exhibited enlarged glomerulus that filled the entire Bowman’s capsule in the female mice. Afterward, we explored the potential causes and mechanisms of glomerular hyperfiltration. Variations in mRNA levels of key genes involved in the renin–angiotensin system (RAS) and kallikrein–kinin system (KKS) demonstrated that PM2.5 led to elevated glomerular capillary hydrostatic pressure in female mice by disturbing the balance between the RAS and KKS, which in turn increased the glomerular filtration rate (GFR). In addition, we found that PM2.5 increased blood glucose levels in the females, which enhanced tubular reabsorption of glucose, attenuated macular dense sensory signaling, induced renal hypoxia, and affected adenosine triphosphate (ATP) synthesis, thus attenuating tubuloglomerular feedback (TGF)-induced afferent arteriolar constriction and leading to glomerular hyperfiltration. In conclusion, this study indicated that PM2.5 induced glomerular hyperfiltration in female mice by affecting RAS/KKS imbalances, as well as the regulation of TGF; innovatively unveiled the association between PM2.5 subchronic exposure and early kidney injury and its gender dependence; enriched the toxicological evidence of PM2.5 and confirmed the importance of reducing ambient PM2.5 concentrations. Full article
(This article belongs to the Special Issue Toxicity and Human Health Assessment of Air Pollutants)
Show Figures

Graphical abstract

19 pages, 7270 KiB  
Article
Mucosal Exosome Proteomics of Hybrid Grouper Epinephelus fuscoguttatus♀ × E. lanceolatus♂ Infected by Pseudomonas plecoglossicida
by Dong Yang, Xiaowan Ma, Shengping Zhong, Jiasen Guo, Dewei Cheng, Xuyang Chen, Teng Huang, Lixing Huang, Ying Qiao and Theerakamol Pengsakul
Animals 2024, 14(23), 3401; https://doi.org/10.3390/ani14233401 - 25 Nov 2024
Cited by 1 | Viewed by 1059
Abstract
Pseudomonas plecoglossicida infection, which causes visceral white spot disease, is a significant and economically devastating disease in aquaculture. In this study, we investigated the impact of bacterial infection on the protein composition of exosomes derived from the surface mucus of the hybrid grouper [...] Read more.
Pseudomonas plecoglossicida infection, which causes visceral white spot disease, is a significant and economically devastating disease in aquaculture. In this study, we investigated the impact of bacterial infection on the protein composition of exosomes derived from the surface mucus of the hybrid grouper Epinephelus fuscoguttatus♀ × E. lanceolatus♂. Two hundred healthy fish were randomly separated into challenge and control groups. Fish from the challenge group received 103 CFU/g of the bacterial pathogen P. plecoglossicida via intraperitoneal injection, while sterile PBS was used as a negative control. After injection, the mucus was collected and the exosomes were extracted for proteomic analysis. The results of proteomic analysis revealed that P. plecoglossicida infection significantly increased the levels of innate immune proteins, including lysosomal and peroxisomal proteins, within the exosomes. Furthermore, the CAD protein was found to play a pivotal role in the protein interaction networks involved in the response to P. plecoglossicida infection. Intriguingly, we also observed a significant increase in the levels of metal-binding proteins within the exosomes, providing important evidence of nutritional immunity on the surfaces of the fish hosts. Notably, several proteins, such as plasma kallikrein, Annexin A5, eukaryotic translation initiation factor 3 subunit M, and S-methyl-5-thioadenosine phosphorylase, exhibited a remarkable increase in abundance in exosomes after infection. These proteins show promising potential as noninvasive biomarkers for the diagnosis of visceral white spot disease. The study contributes to the understanding of the host response to P. plecoglossicida infection and may aid policymakers in implementing appropriate intervention measures for effective risk management of this devastating disease. Full article
(This article belongs to the Special Issue Bacterial Aquaculture Pathology)
Show Figures

Figure 1

15 pages, 1079 KiB  
Article
Patterns of C1-Inhibitor Plasma Levels and Kinin–Kallikrein System Activation in Relation to COVID-19 Severity
by Silvia Berra, Debora Parolin, Chiara Suffritti, Andrea Folcia, Andrea Zanichelli, Luca Gusso, Chiara Cogliati, Agostino Riva, Antonio Gidaro and Sonia Caccia
Life 2024, 14(12), 1525; https://doi.org/10.3390/life14121525 - 21 Nov 2024
Viewed by 1381
Abstract
Background: Although more than four years have passed since the pandemic began, SARS-CoV-2 continues to be of concern. Therefore, research into the underlying mechanisms that contribute to the development of the disease, especially in more severe forms, remains a priority. Sustained activation of [...] Read more.
Background: Although more than four years have passed since the pandemic began, SARS-CoV-2 continues to be of concern. Therefore, research into the underlying mechanisms that contribute to the development of the disease, especially in more severe forms, remains a priority. Sustained activation of the complement (CS), contact (CAS), and fibrinolytic and kinin–kallikrein systems (KKS) has been shown to play a central role in the pathogenesis of the disease. Since the C1 esterase inhibitor (C1-INH) is a potent inhibitor of all these systems, its role in the disease has been investigated, but some issues remained unresolved. Methods: We evaluated the impact of C1-INH and KKS on disease progression in a cohort of 45 COVID-19 patients divided into groups according to disease severity. We measured plasma levels of total and functional C1-INH and its complexes with kallikrein (PKa), reflecting KKS activation and kallikrein spontaneous activity. Results: We observed increased total and functional plasma concentrations of C1-INH in COVID-19 patients. A direct correlation (positive Spearman’s r) was observed between C1-INH levels, especially functional C1-INH, and the severity of the disease. Moreover, a significant reduction in the ratio of functional over total C1-INH was evident in patients exhibiting mild to intermediate clinical severity but not in critically ill patients. Accordingly, activation of the KKS, assessed as an increase in PKa:C1-INH complexes, was explicitly observed in the mild categories. Conclusions: Our study’s findings on the consumption of C1-INH and the activation of the KKS in the less severe stages of COVID-19 but not in the critical stage suggest a potential role for C1-INH in containing disease severity. These results underscore the importance of C1-INH in the early phases of the disease and its potential implications in COVID-19 progression and/or long-term effects. Full article
(This article belongs to the Special Issue Human Health Before, During, and After COVID-19)
Show Figures

Figure 1

26 pages, 8277 KiB  
Article
Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene
by Teodora G. Georgieva, Dalila Darmoul, Hwudaurw Chen, Haiyan Cui, Photini F. S. Rice, Jennifer K. Barton, David G. Besselsen and Natalia A. Ignatenko
Cancers 2024, 16(22), 3842; https://doi.org/10.3390/cancers16223842 - 15 Nov 2024
Viewed by 1387
Abstract
Background/Objectives: The objective of this study was to assess the role of a secreted serine protease, kallikrein-related peptidase 6 (KLK6), during colorectal tumorigenesis driven by a mutant Adenomatous polyposis coli (APC) tumor suppressor gene. A first analysis of KLK6 expression in the intestinal [...] Read more.
Background/Objectives: The objective of this study was to assess the role of a secreted serine protease, kallikrein-related peptidase 6 (KLK6), during colorectal tumorigenesis driven by a mutant Adenomatous polyposis coli (APC) tumor suppressor gene. A first analysis of KLK6 expression in the intestinal tract of Apc-mutant multiple intestinal neoplasia (ApcMin/+) mice revealed up to four-fold induction of Klk6 mRNA levels in adenomas relative to its level in the adjacent mucosa. Methods and Results: The presence of KLK6 protein in the adenomatous areas was confirmed by immunohistochemistry and optical coherence tomography/laser-induced fluorescence (OCT/LIF) imaging. To assess the contribution of the KLK6 expression on the Apc-mutant intestinal and colon tumorigenesis, we engineered a mouse with floxed alleles of the Klk6 gene (Klk6lox/lox) and crossed it with a mouse expressing the truncated APC protein under control of the intestinal tract-specific human CDX2P9.5-NLS Cre transgene (CPC;Apcfl/fl;Klk6+/+). We found that CPC;Apcfl/fl mice with disrupted Klk6 gene expression (CPC;Apcfl/fl;Klk6fl/fl) had a significantly smaller average size of the small intestinal and colon crypts (p < 0.001 and p = 0.04, respectively) and developed a significantly fewer adenomas (p = 0.01). Moreover, a decrease in high-grade adenomas (p = 0.03) and adenomas with a diameter above 2 mm (p < 0.0001) was noted in CPC;Apcfl/fl;Klk6fl/fl mice. Further molecular analysis showed that Klk6 gene inactivation in the small intestine and colon tissues of CPC;Apcfl/fl;Klk6fl/fl mice resulted in a significant suppression of transforming growth factor β2 (TGF-β2) protein (p ≤ 0.02) and mitogen-activated protein kinase (MAPK) phosphorylation (p ≤ 0.01). Conclusions: These findings demonstrate the oncogenic role of KLK6 in the mutant Apc-mediated intestinal tumorigenesis and suggest the utility of KLK6 for early diagnosis of colorectal tumors. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

Back to TopTop