PM2.5 Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Physicochemical Properties of PM2.5
2.2. Animals and Exposure Experiments
2.3. Kidney Function Tests
2.4. Measurements of ATP Content
2.5. Histological Analyses
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Quantitative RT-PCR
2.8. Data Analysis
3. Results and Discussion
3.1. PM2.5 Exposure Causes Early Renal Injury in Female Mice
3.2. PM2.5 Exposure Alters Renal Pathomorphology in Female Mice
3.3. PM2.5 Exposure Causes Early Kidney Damage by Inducing the Imbalance of the Renin–Angiotensin System (RAS) and the Kallikrein–Kinin System (KKS)
3.4. PM2.5 Exposure Causes Early Kidney Damage by Impacting TGF
3.4.1. PM2.5 Exposure Influences TGF by Enhancing Renal Tubule Reabsorption of Glucose
3.4.2. PM2.5 Exposure Influences TGF by Inducing Renal Hypoxia and Decreased ATP Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, R.; Ma, D.; Liu, Y.; Wang, R.; Fan, L.; Yan, Q.; Chen, C.; Wang, W.; Ren, Z.; Ku, T.; et al. Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. Toxics 2024, 12, 274. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Peng, Y.; Yang, X.; Yu, J.; Yu, F.; Yuan, J.; Zha, Y. PM2.5 Exposure Aggravates Kidney Damage by Facilitating the Lipid Metabolism Disorder in Diabetic Mice. PeerJ 2023, 11, e15856. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Chu, C.; Zhang, T.; Chen, H.; Yang, X. The Global Burden of Disease Attributable to Ambient Fine Particulate Matter in 204 Countries and Territories, 1990–2019: A Systematic Analysis of the Global Burden of Disease Study 2019. Ecotoxicol. Environ. Saf. 2022, 238, 113588. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, E.; George, F.; Saji, A.; Dey, S.; Ghosh, S.; Thomas, T.; Kurpad, A.V.; Sharma, S.; Singh, N.; Agarwal, S.; et al. Cumulative Effect of PM2.5 Components Is Larger than the Effect of PM2.5 Mass on Child Health in India. Nat. Commun. 2023, 14, 6955. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A. Neurological Disorders from Ambient (Urban) Air Pollution Emphasizing UFPM and PM2.5. Curr. Pollut. Rep. 2016, 2, 203–211. [Google Scholar] [CrossRef]
- Yan, R.; Ji, S.; Ku, T.; Sang, N. Cross-Omics Analyses Reveal the Effects of Ambient PM2.5 Exposure on Hepatic Metabolism in Female Mice. Toxics 2024, 12, 587. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Ju, S.-W.; Lin, C.L.; Hsu, W.-H.; Lin, C.-C.; Ting, I.-W.; Kao, C.-H. Air Pollutants and Subsequent Risk of Chronic Kidney Disease and End-Stage Renal Disease: A Population-Based Cohort Study. Environ. Pollut. 2020, 261, 114154. [Google Scholar] [CrossRef]
- An, Y.; Liu, Z.-H. Air Pollution and Kidney Diseases: PM2.5 as an Emerging Culprit. Contrib. Nephrol. 2021, 199, 274–284. [Google Scholar] [CrossRef]
- Seltenrich, N. PM2.5 and Kidney Function: Long-Term Exposures May Lead to Modest Declines. Environ. Health Perspect. 2016, 124, A168. [Google Scholar] [CrossRef]
- Xu, W.; Wang, S.; Jiang, L.; Sun, X.; Wang, N.; Liu, X.; Yao, X.; Qiu, T.; Zhang, C.; Li, J.; et al. The Influence of PM2.5 Exposure on Kidney Diseases. Hum. Exp. Toxicol. 2022, 41, 9603271211069982. [Google Scholar] [CrossRef]
- Aztatzi-Aguilar, O.G.; Pardo-Osorio, G.A.; Uribe-Ramírez, M.; Narváez-Morales, J.; De Vizcaya-Ruiz, A.; Barbier, O.C. Acute Kidney Damage by PM2.5 Exposure in a Rat Model. Environ. Toxicol. Pharmacol. 2021, 83, 103587. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Wan, C.; Liu, W.-S.; Wang, H.-H. PM2.5 Induces Early Epithelial Mesenchymal Transition in Human Proximal Tubular Epithelial Cells through Activation of IL-6/STAT3 Pathway. Int. J. Mol. Sci. 2021, 22, 12734. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Dai, X.; He, Z.; Tang, Z.; Zhu, Y.; Du, R. PM2.5 Exposure Promotes the Progression of Acute Kidney Injury by Activating NLRP3-Mediated Macrophage Inflammatory Response. Ecotoxicol. Environ. Saf. 2024, 278, 116454. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, K.; Zeng, J.; Ren, H.; Zeng, C. Abstract 281: Long-Term Exposure of PM2.5 Causes Hypertension by Impaired Renal D1 Receptor Mediated Sodium Excretion via Up-Regulation of GRK4 Expression in SD Rats. Hypertension 2014, 64, A281. [Google Scholar] [CrossRef]
- Lash, L.H. Environmental and Genetic Factors Influencing Kidney Toxicity. Semin. Nephrol. 2019, 39, 132–140. [Google Scholar] [CrossRef]
- Kelly, D.M.; Anders, H.-J.; Bello, A.K.; Choukroun, G.; Coppo, R.; Dreyer, G.; Eckardt, K.-U.; Johnson, D.W.; Jha, V.; Harris, D.C.H.; et al. International Society of Nephrology Global Kidney Health Atlas: Structures, Organization, and Services for the Management of Kidney Failure in Western Europe. Kidney Int. Suppl. 2021, 11, e106–e118. [Google Scholar] [CrossRef]
- Harnois, T.; Brishoual, S.; Vincent-Tassin, E.; Paris, I.; Bourmeyster, N.; Hadjadj, S. O46 Les Fluctuations Du Glucose Induisent Une Activation de La Fibrose Rénale Par Des Voies de Signalisation P38-MAP Kinase et Rho/Rock. Diabetes Metab. 2012, 38, A12. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, J.; Guo, H.; Cui, H.; Deng, J.; Yu, S.; Gou, L.; Wang, F.; Ma, X.; Ren, Z.; et al. Notch3-Mediated mTOR Signaling Pathway Is Involved in High Glucose-Induced Autophagy in Bovine Kidney Epithelial Cells. Molecules 2022, 27, 3121. [Google Scholar] [CrossRef]
- Ji, S.; Guo, Y.; Yan, W.; Wei, F.; Ding, J.; Hong, W.; Wu, X.; Ku, T.; Yue, H.; Sang, N. PM2.5 Exposure Contributes to Anxiety and Depression-like Behaviors via Phenyl-Containing Compounds Interfering with Dopamine Receptor. Proc. Natl. Acad. Sci. USA 2024, 121, e2319595121. [Google Scholar] [CrossRef] [PubMed]
- Takasato, M.; Er, P.X.; Chiu, H.S.; Maier, B.; Baillie, G.J.; Ferguson, C.; Parton, R.G.; Wolvetang, E.J.; Roost, M.S.; Chuva de Sousa Lopes, S.M.; et al. Kidney Organoids from Human iPS Cells Contain Multiple Lineages and Model Human Nephrogenesis. Nature 2015, 526, 564–568. [Google Scholar] [CrossRef]
- Gupta, N.; Morizane, R. Kidney Development to Kidney Organoids and Back Again. Semin. Cell Dev. Biol. 2022, 127, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Tekguc, M.; Gaal, R.C.V.; Uzel, S.G.M.; Gupta, N.; Riella, L.V.; Lewis, J.A.; Morizane, R. Kidney Organoids: A Pioneering Model for Kidney Diseases. Transl. Res. 2022, 250, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Liu, Y.; Liu, L.; Wang, X.; Wang, D.; Song, Y.; Shen, L.; Liu, Y.; Liu, Y.; Peng, Y.; et al. Dynamic Changes in the Real-Time Glomerular Filtration Rate and Kidney Injury Markers in Different Acute Kidney Injury Models. J. Transl. Med. 2024, 22, 857. [Google Scholar] [CrossRef]
- Sancho-Martínez, S.M.; Blanco-Gozalo, V.; Quiros, Y.; Prieto-García, L.; Montero-Gómez, M.J.; Docherty, N.G.; Martínez-Salgado, C.; Morales, A.I.; López-Novoa, J.M.; López-Hernández, F.J. Impaired Tubular Reabsorption Is the Main Mechanism Explaining Increases in Urinary NGAL Excretion Following Acute Kidney Injury in Rats. Toxicol. Sci. 2020, 175, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.; Li, B.; Gao, R.; Zhang, Y.; Yan, W.; Ji, X.; Li, G.; Sang, N. NF-κB-Regulated microRNA-574-5p Underlies Synaptic and Cognitive Impairment in Response to Atmospheric PM2.5 Aspiration. Part. Fibre Toxicol. 2017, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Wu, M.; Chen, R.; Liang, G.; Duan, H.; Li, S.; Wang, Y.; Wang, L.; An, C.; Qin, G.; et al. Comparative Studies on Regional Variations in PM2.5 in the Induction of Myocardial Hypertrophy in Mice. Sci. Total. Environ. 2021, 775, 145179. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yan, W.; Guo, L.; Li, G.; Sang, N. Prenatal PM2.5 Exposure Impairs Spatial Learning and Memory in Male Mice Offspring: From Transcriptional Regulation to Neuronal Morphogenesis. Part. Fibre Toxicol. 2023, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Caravaca, J.M.; Ruiz-Nodar, J.M.; Tello-Montoliu, A.; Esteve-Pastor, M.A.; Quintana-Giner, M.; Véliz-Martínez, A.; Orenes-Piñero, E.; Romero-Aniorte, A.I.; Vicente-Ibarra, N.; Pernias-Escrig, V.; et al. Disparities in the Estimation of Glomerular Filtration Rate According to Cockcroft-Gault, Modification of Diet in Renal Disease-4, and Chronic Kidney Disease Epidemiology Collaboration Equations and Relation With Outcomes in Patients With Acute Coronary Syndrome. J. Am. Heart Assoc. 2018, 7, e008725. [Google Scholar] [CrossRef]
- Kumar, B.V.; Mohan, T. Retrospective Comparison of Estimated GFR Using 2006 MDRD, 2009 CKD-EPI and Cockcroft-Gault with 24 Hour Urine Creatinine Clearance. J. Clin Diagn. Res. 2017, 11, BC09–BC12. [Google Scholar] [CrossRef]
- Guo, Y.; Ji, S.; Rong, S.; Hong, W.; Ding, J.; Yan, W.; Qin, G.; Li, G.; Sang, N. Screening Organic Components and Toxicogenic Structures from Regional Fine Particulate Matters Responsible for Myocardial Fibrosis in Male Mice. Environ. Sci. Technol. 2024, 58, 11268–11279. [Google Scholar] [CrossRef] [PubMed]
- Shekoufeh, A.; Hassanali, A.; Nazanin, S.J.; Mohammad Aref, B.; Jamileh, S.; Amirashkan, M.; Hossein, K.J. Effect of High Doses of Salep Aqueous Extract on Serum Levels of Urea Nitrogen, Creatinine, Uric Acid, and Kidney Histopathological Changes in Adult Male Wistar Rats. Arch. Razi. Inst. 2023, 78, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Mirsharif, E.S.; Heidary, F.; Vaez Mahdavi, M.R.; Gharebaghi, R.; Pourfarzam, S.; Ghazanfari, T. Sulfur Mustard-Induced Changes in Blood Urea Nitrogen, Uric Acid and Creatinine Levels of Civilian Victims, and Their Correlation with Spirometric Values. Iran. J. Public. Health 2018, 47, 1725–1733. [Google Scholar] [PubMed]
- Paoin, K.; Ueda, K.; Vathesatogkit, P.; Ingviya, T.; Buya, S.; Dejchanchaiwong, R.; Phosri, A.; Seposo, X.T.; Kitiyakara, C.; Thongmung, N.; et al. Long-Term Air Pollution Exposure and Decreased Kidney Function: A Longitudinal Cohort Study in Bangkok Metropolitan Region, Thailand from 2002 to 2012. Chemosphere 2022, 287, 132117. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-H.; Wu, C.-D.; Chung, M.-C.; Chen, C.-H.; Wu, L.-Y.; Chung, C.-J.; Hsu, H.-T. Long-Term Exposure to Fine Particulate Matter and the Deterioration of Estimated Glomerular Filtration Rate: A Cohort Study in Patients With Pre-End-Stage Renal Disease. Front. Public Health 2022, 10, 858655. [Google Scholar] [CrossRef]
- Nolin, T.D.; Himmelfarb, J. Mechanisms of Drug-Induced Nephrotoxicity. In Adverse Drug Reactions, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 111–130. [Google Scholar] [CrossRef]
- Kanbay, M.; Copur, S.; Bakir, C.N.; Covic, A.; Ortiz, A.; Tuttle, K.R. Glomerular Hyperfiltration as a Therapeutic Target for CKD. Nephrol Dial Transpl. 2024, 39, 1228–1238. [Google Scholar] [CrossRef]
- Oz-Sig, O.; Kara, O.; Erdogan, H. Microalbuminuria and Serum Cystatin C in Prediction of Early-Renal Insufficiency in Children with Obesity. Indian. J. Pediatr. 2020, 87, 1009–1013. [Google Scholar] [CrossRef]
- Chiarelli, F.; Verrotti, A.; Morgese, G. Glomerular Hyperfiltration Increases the Risk of Developing Microalbuminuria in Diabetic Children. Pediatr. Nephrol. 1995, 9, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gomez, A.; Diaz-Tocados, J.M.; Coral, J.D.D.; Enriquez, M.C.; García-Carrasco, A.; Bardaji, A.M.; Revilla, J.M.V. #5799 Compensatory Hypertrophy of The Kidney Contributes to Loss of Klotho Kidney Through Pakt Signaling. Nephrol. Dial. Transplant. 2023, 38, gfad063d_5799. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 872918. [Google Scholar] [CrossRef]
- Kataoka, H.; Mochizuki, T.; Nitta, K. Large Renal Corpuscle: Clinical Significance of Evaluation of the Largest Renal Corpuscle in Kidney Biopsy Specimens. Contrib. Nephrol. 2018, 195, 20–30. [Google Scholar] [CrossRef]
- Toyota, E.; Ogasawara, Y.; Fujimoto, K.; Kajita, T.; Shigeto, F.; Asano, T.; Watanabe, N.; Kajiya, F. Global Heterogeneity of Glomerular Volume Distribution in Early Diabetic Nephropathy. Kidney Int. 2004, 66, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Stackhouse, S.; Miller, P.L.; Park, S.K.; Meyer, T.W. Reversal of Glomerular Hyperfiltration and Renal Hypertrophy by Blood Glucose Normalization in Diabetic Rats. Diabetes 1990, 39, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Daehn, I.S. Glomerular Endothelial Cell Stress and Cross-Talk With Podocytes in Early [Corrected] Diabetic Kidney Disease. Front. Med. 2018, 5, 76. [Google Scholar] [CrossRef]
- Aztatzi-Aguilar, O.G.; Uribe-Ramírez, M.; Narváez-Morales, J.; De Vizcaya-Ruiz, A.; Barbier, O. Early Kidney Damage Induced by Subchronic Exposure to PM2.5 in Rats. Part. Fibre Toxicol. 2016, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-I.; Tsai, C.-H.; Sun, Y.-L.; Hsieh, W.-Y.; Lin, Y.-C.; Chen, C.-Y.; Lin, C.-S. Instillation of Particulate Matter 2.5 Induced Acute Lung Injury and Attenuated the Injury Recovery in ACE2 Knockout Mice. Int. J. Biol. Sci. 2018, 14, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Yue, H.; Ku, T.; Zhang, Y.; Yun, Y.; Li, G.; Sang, N. Histone Modification in the Lung Injury and Recovery of Mice in Response to PM2.5 Exposure. Chemosphere 2019, 220, 127–136. [Google Scholar] [CrossRef]
- da Costa, P.L.N.; Wynne, D.; Fifis, T.; Nguyen, L.; Perini, M.; Christophi, C. The Kallikrein-Kinin System Modulates the Progression of Colorectal Liver Metastases in a Mouse Model. BMC Cancer 2018, 18, 382. [Google Scholar] [CrossRef]
- Koumallos, N.; Sigala, E.; Milas, T.; Baikoussis, N.G.; Aragiannis, D.; Sideris, S.; Tsioufis, K. Angiotensin Regulation of Vascular Homeostasis: Exploring the Role of ROS and RAS Blockers. Int. J. Mol. Sci. 2023, 24, 12111. [Google Scholar] [CrossRef]
- Regoli, D.; Gobeil, F. Critical Insights into the Beneficial and Protective Actions of the Kallikrein-Kinin System. Vascul. Pharmacol. 2015, 64, 1–10. [Google Scholar] [CrossRef]
- Hornig, B.; Kohler, C.; Drexler, H. Role of Bradykinin in Mediating Vascular Effects of Angiotensin-Converting Enzyme Inhibitors in Humans. Circulation 1997, 95, 1115–1118. [Google Scholar] [CrossRef]
- Aztatzi-Aguilar, O.G.; Uribe-Ramírez, M.; Arias-Montaño, J.A.; Barbier, O.; De Vizcaya-Ruiz, A. Acute and Subchronic Exposure to Air Particulate Matter Induces Expression of Angiotensin and Bradykinin-Related Genes in the Lungs and Heart: Angiotensin-II Type-I Receptor as a Molecular Target of Particulate Matter Exposure. Part. Fibre Toxicol. 2015, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Yim, H.E.; Nam, Y.J.; Jeong, S.H.; Kim, J.-A.; Lee, J.-H.; Son, M.H.; Yoo, K.H. Exposure to Airborne Particulate Matter Induces Renal Tubular Cell Injury in Vitro: The Role of Vitamin D Signaling and Renin-Angiotensin System. Heliyon 2022, 8, e10184. [Google Scholar] [CrossRef] [PubMed]
- Pahlitzsch, T.; Liu, Z.Z.; Al-Masri, A.; Braun, D.; Dietze, S.; Persson, P.B.; Schunck, W.-H.; Blum, M.; Kupsch, E.; Ludwig, M.; et al. Hypoxia-Reoxygenation Enhances Murine Afferent Arteriolar Vasoconstriction by Angiotensin II. Am. J. Physiol. Renal. Physiol. 2018, 314, F430–F438. [Google Scholar] [CrossRef] [PubMed]
- Königshausen, E.; Zierhut, U.M.; Ruetze, M.; Potthoff, S.A.; Stegbauer, J.; Woznowski, M.; Quack, I.; Rump, L.C.; Sellin, L. Angiotensin II Increases Glomerular Permeability by β-Arrestin Mediated Nephrin Endocytosis. Sci. Rep. 2016, 6, 39513. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, J.; Rippe, A.; Oberg, C.M.; Rippe, B. Rapid, Dynamic Changes in Glomerular Permeability to Macromolecules during Systemic Angiotensin II (ANG II) Infusion in Rats. Am. J. Physiol. Renal. Physiol. 2012, 303, F790–F799. [Google Scholar] [CrossRef] [PubMed]
- Castrop, H. Mediators of Tubuloglomerular Feedback Regulation of Glomerular Filtration: ATP and Adenosine. Acta Physiol. 2007, 189, 3–14. [Google Scholar] [CrossRef]
- Osswald, H.; Mühlbauer, B.; Vallon, V. Adenosine and Tubuloglomerular Feedback. Blood Purif. 2008, 15, 243–252. [Google Scholar] [CrossRef]
- Yu, W.; Sulistyoningrum, D.C.; Gasevic, D.; Xu, R.; Julia, M.; Murni, I.K.; Chen, Z.; Lu, P.; Guo, Y.; Li, S. Long-Term Exposure to PM2.5 and Fasting Plasma Glucose in Non-Diabetic Adolescents in Yogyakarta, Indonesia. Environ. Pollut. 2020, 257, 113423. [Google Scholar] [CrossRef]
- Li, R.; Sun, Q.; Lam, S.M.; Chen, R.; Zhu, J.; Gu, W.; Zhang, L.; Tian, H.; Zhang, K.; Chen, L.-C.; et al. Sex-Dependent Effects of Ambient PM2.5 Pollution on Insulin Sensitivity and Hepatic Lipid Metabolism in Mice. Part. Fibre Toxicol. 2020, 17, 14. [Google Scholar] [CrossRef]
- Lang, F.; Görlach, A.; Vallon, V. Targeting SGK1 in Diabetes. Expert Opin. Ther. Targets 2009, 13, 1303–1311. [Google Scholar] [CrossRef]
- Freitas, H.S.; Anhê, G.F.; Melo, K.F.S.; Okamoto, M.M.; Oliveira-Souza, M.; Bordin, S.; Machado, U.F. Na(+) -Glucose Transporter-2 Messenger Ribonucleic Acid Expression in Kidney of Diabetic Rats Correlates with Glycemic Levels: Involvement of Hepatocyte Nuclear Factor-1alpha Expression and Activity. Endocrinology 2008, 149, 717–724. [Google Scholar] [CrossRef]
- Santer, R.; Calado, J. Familial Renal Glucosuria and SGLT2: From a Mendelian Trait to a Therapeutic Target. Clin. J. Am. Soc. Nephrol. 2010, 5, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Persson, P.; Hansell, P.; Palm, F. Tubular Reabsorption and Diabetes-Induced Glomerular Hyperfiltration. Acta Physiol. 2010, 200, 3–10. [Google Scholar] [CrossRef]
- Vallon, V.; Thomson, S.C. The Tubular Hypothesis of Nephron Filtration and Diabetic Kidney Disease. Nat. Rev. Nephrol 2020, 16, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.E.; Foresto, R.D.; Ribeiro, A.B. SGLT-2 Inhibitors in Diabetes: A Focus on Renoprotection. Rev. Assoc. Med. Bras. 2020, 66 (Suppl. 1), s17–s24. [Google Scholar] [CrossRef] [PubMed]
- Schnermann, J. Juxtaglomerular Cell Complex in the Regulation of Renal Salt Excretion. Am. J. Physiol. 1998, 274, R263–R279. [Google Scholar] [CrossRef]
- Vallon, V. The Proximal Tubule in the Pathophysiology of the Diabetic Kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1009–R1022. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; Castro-Puyana, M.; García-Pastor, C.; Lucio-Cazaña, F.J.; Marina, M.L. Time-Series Proteomic Study of the Response of HK-2 Cells to Hyperglycemic, Hypoxic Diabetic-like Milieu. PLoS ONE 2020, 15, e0235118. [Google Scholar] [CrossRef]
- Kious, K.W.; Savage, K.A.; Twohey, S.C.E.; Highum, A.F.; Philipose, A.; Díaz, H.S.; Del Rio, R.; Lang, J.A.; Clayton, S.C.; Marcus, N.J. Chronic Intermittent Hypoxia Promotes Glomerular Hyperfiltration and Potentiates Hypoxia-Evoked Decreases in Renal Perfusion and PO2. Front. Physiol. 2023, 14, 1235289. [Google Scholar] [CrossRef]
- Packer, M. Mechanisms Leading to Differential Hypoxia-Inducible Factor Signaling in the Diabetic Kidney: Modulation by SGLT2 Inhibitors and Hypoxia Mimetics. Am. J. Kidney Dis. 2021, 77, 280–286. [Google Scholar] [CrossRef]
Full Name | Abbreviations |
---|---|
fine particulate matter | PM2.5 |
polycyclic aromatic hydrocarbons | PAHs |
carbonaceous particles | CP |
disability-adjusted life years | DALYs |
end-stage renal disease | ESRD |
glomerular filtration rate | GFR |
creatinine | CRE |
blood urea nitrogen | BUN |
and uric acid | UA |
Estimated glomerular filtration rate | e-GFR |
adenosine triphosphate | ATP |
hematoxylin and eosin | H&E |
Enzyme-Linked Immunosorbent Assay | ELISA |
angiotensin II | Ang II |
mean ± standard error | SEM |
renin–angiotensin system | RAS |
kallikrein–kinin system | KKS |
angiotensin I | Ang I |
angiotensin-converting enzyme | Ace |
angiotensin II type 1 receptor | At1r |
Human Kidney-2 | HK-2 |
kallikrein 1 | Klk-1 |
bradykinin 1 receptor | B1r |
bradykinin 2 receptor | B2r |
interleukin 6 | Il-6 |
tumor necrosis factor-α | Tnf-α |
sodium-dependent glucose transporters | Sglts |
glucose transporters | Gluts |
serum- and glucocorticoid-inducible kinase 1 | Sgk-1 |
hepatocyte nuclear factor -1α | Hnf-1α |
tubuloglomerular feedback | TGF |
A1 adenosine receptor | A1ar |
Hypoxia-inducible factor 1α | Hif-1α |
Gene | Primer Sequence (5′-3′) |
---|---|
Ace | F: CTCCGCTCTTGATGCTGTC |
R: TTCTCCTCCGTGATGTTGGT | |
At1r | F: ATGTTTCTTGGTGGCTTGGTT |
R: CAGCAGCGTCTGATGATGAG | |
Klk-1 | F: CAATGTGGGGGTATCCTGCTG |
R: GGGTATTCATATTTGACGGGTGT | |
B1r | F: TCCTTCTGCGTTCCGTCAA |
R: TTCAACTCCACCATCCTTACAA | |
B2r | F: AGGTGCTGAGGAACAACGA |
R: AGGAAGGTGCTGATCTGGAA | |
Il-6 | F: TGATGGATGCTACCAAACTGGA |
R: TGTGACTCCAGCTTATCTCTTGG | |
Tnf-α | F: CCACGCTCTTCTGTCTACTGA |
R: GTTTGTGAGTGTGAGGGTCTG | |
Sgk-1 | F: GGCACAAGGCAGAAGAAGTATT |
R: GGTCTGGAATGAGAAGTGAAGG | |
Hnf-1α | F: GACCTGACCGAGTTGCCTAAT |
R: CCGGCTCTTTCAGAATGGGT | |
Sglt1 | F: CTCTTCGTCATCAGCGTCATC |
R: TCCTCCTCCTCCTTAGTCATCT | |
Sglt2 | F: TCAGAACCAATAGAGGCACAGT |
R: CGGACAGGTAGAGGCGAATA | |
Glut2 | F: GTCACACCAGCATACACAACA |
R: ACTTCGTCCAGCAATGATGAG | |
A1ar | F: ATCCTGGCTCTGCTTGCTATT |
R: GGCTTGTTCCACCTCACTCA | |
Hif-1α | F: ACCTTCATCGGAAACTCCAAAG |
R: CTCTTAGGCTGGGAAAAGTTAGG | |
Gapdh | F: AGAAGGTGGTGAAGCAGGCATC |
R: GATGGACTTCGGGAACGGACAG | |
β-Actin | F: GCTTCTTTGCAGCTCCTTCGT |
R: ATATCGTCATCCATGGCGAAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ma, L.; Guo, Y.; Ren, L.; Li, G.; Sang, N. PM2.5 Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner. Toxics 2024, 12, 878. https://doi.org/10.3390/toxics12120878
Wang H, Ma L, Guo Y, Ren L, Li G, Sang N. PM2.5 Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner. Toxics. 2024; 12(12):878. https://doi.org/10.3390/toxics12120878
Chicago/Turabian StyleWang, Hao, Li Ma, Yuqiong Guo, Lingyu Ren, Guangke Li, and Nan Sang. 2024. "PM2.5 Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner" Toxics 12, no. 12: 878. https://doi.org/10.3390/toxics12120878
APA StyleWang, H., Ma, L., Guo, Y., Ren, L., Li, G., & Sang, N. (2024). PM2.5 Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner. Toxics, 12(12), 878. https://doi.org/10.3390/toxics12120878