Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = jute fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 10730 KB  
Article
Development and Mechanical Characterization of a Jute Fiber-Reinforced Polyester Composite Helmet Produced by Vacuum Infusion
by Robson Luis Baleeiro Cardoso, Maurício Maia Ribeiro, Douglas Santos Silva, Raí Felipe Pereira Junio, Elza Monteiro Leão Filha, Sergio Neves Monteiro and Jean da Silva Rodrigues
Polymers 2026, 18(2), 235; https://doi.org/10.3390/polym18020235 - 16 Jan 2026
Viewed by 227
Abstract
This study presents the development and mechanical characterization of a full-scale helmet manufactured from a polyester matrix composite reinforced with woven jute fabric using vacuum infusion. Laminates with two and four reinforcement layers were produced and assembled using four joining configurations: seamless, stitched, [...] Read more.
This study presents the development and mechanical characterization of a full-scale helmet manufactured from a polyester matrix composite reinforced with woven jute fabric using vacuum infusion. Laminates with two and four reinforcement layers were produced and assembled using four joining configurations: seamless, stitched, bonded, and hybrid (bonded + stitched). Tensile tests were performed according to ASTM D3039, while frontal and lateral compression tests followed ABNT NBR 7471, aiming to evaluate the influence of laminate thickness and joining strategy on mechanical performance. In tension, the seamless configuration reached maximum loads of 0.80 kN (two layers) and 1.60 kN (four layers), while the hybrid configuration achieved 0.79 kN and 1.43 kN, respectively. Stitched and bonded joints showed lower strength. Under compression, increasing the laminate thickness from two to four layers reduced frontal elongation from 15.09 mm to 9.97 mm and lateral elongation from 13.73 mm to 7.24 mm, corresponding to stiffness gains of 50.3% and 87.3%, respectively. Statistical analysis (ANOVA/Tukey, α = 0.05) confirmed significant effects of thickness and joint configuration. Although vacuum infusion is a well-established process, the novelty of this work lies in its application to a full-scale natural-fiber helmet, combined with a systematic evaluation of joining strategies and a direct correlation between standardized tensile behavior and structural compression performance. The four-layer hybrid laminate exhibited the best balance between strength, stiffness, and deformation capacity. Full article
(This article belongs to the Special Issue Advances in Fatigue and Fracture of Fiber-Reinforced Polymers)
Show Figures

Graphical abstract

24 pages, 14994 KB  
Article
Comparative Analyses of Drilling Force, Temperature, and Damage in Natural and Glass Fiber-Reinforced Al–Epoxy Composites
by Muammer Kına, Uğur Köklü, Sezer Morkavuk, Mustafa Ay, Yalçın Boztoprak, Barkın Bakır and Murat Demiral
Polymers 2026, 18(2), 229; https://doi.org/10.3390/polym18020229 - 15 Jan 2026
Viewed by 172
Abstract
This study examined the drilling performance of five polymer composite systems: three natural fiber (jute, flax, hemp) composites with aluminum particle-reinforced epoxy, one glass fiber-reinforced composite with the same matrix, and an unreinforced aluminum particle-filled epoxy (Al–epoxy). Drilling experiments were performed at spindle [...] Read more.
This study examined the drilling performance of five polymer composite systems: three natural fiber (jute, flax, hemp) composites with aluminum particle-reinforced epoxy, one glass fiber-reinforced composite with the same matrix, and an unreinforced aluminum particle-filled epoxy (Al–epoxy). Drilling experiments were performed at spindle speeds of 1500 and 3000 rpm with feed rates of 50, 75, and 100 mm/min in order to evaluate the effect of cutting parameters on the drilling performance. Cutting zone temperatures were measured using thermocouples embedded within the drill bit’s cooling channels, while thrust forces were recorded with a dynamometer. Additionally, hole exit damage and inner hole surface roughness were evaluated to assess machining quality. The results showed that increasing spindle speed reduces thrust forces due to thermal softening of the matrix, whereas natural fiber-reinforced composites generally exhibit higher thrust forces and slightly rougher inner hole surfaces compared to synthetic counterparts. During drilling, the measured thrust forces ranged from 320 to 693 N for the glass fiber-reinforced specimen and from 335 to 702 N for the Al–epoxy specimen, while for natural fiber-reinforced composites the thrust force values were 352–679 N for hemp, 241–719 N for jute, and 571–732 N for flax specimens. Synthetic specimens (glass fiber and Al–epoxy) exhibited comparable cutting temperature ranges (288–371 °C and 248–327 °C, respectively), whereas natural fiber-reinforced composites showed higher and broader temperature ranges of 311–389 °C for hemp, 368–374 °C for jute, and 307–379 °C for flax specimens. The overall results indicated that lower forces were generated during the drilling of synthetic glass fiber-reinforced composites, while among natural fiber-reinforced plastics, flax fiber-reinforced composites stood out by exhibiting a balanced machining response. Full article
(This article belongs to the Special Issue Advanced Polymer Composites with High Mechanical Properties)
Show Figures

Figure 1

16 pages, 2243 KB  
Article
Assessment of Solid Biomass Combustion in Natural Fiber Packages
by Michał Chabiński, Andrzej Szlęk, Sławomir Sładek and Agnieszka Korus
Energies 2026, 19(2), 391; https://doi.org/10.3390/en19020391 - 13 Jan 2026
Viewed by 170
Abstract
Urban tree-management operations generate substantial amounts of woody biomass that often remain underutilized despite their potential value as a local renewable fuel. This study investigates the possibility of using woodchips and sawdust delivered from municipal tree-cutting activities as boiler fuel, with a specific [...] Read more.
Urban tree-management operations generate substantial amounts of woody biomass that often remain underutilized despite their potential value as a local renewable fuel. This study investigates the possibility of using woodchips and sawdust delivered from municipal tree-cutting activities as boiler fuel, with a specific focus on how fuel moisture, particle size, and natural-fiber packaging influence combustion performance and emission characteristics. In collaboration with a municipal greenery-cutting company, representative batches of biomass were collected, characterized through proximate and ultimate analyses, and combusted in a small-scale boiler. Unlike conventional densification routes (pelletization/briquetting), the proposed approach uses combustible natural-fiber packaging to create modular ‘macro-pellets’ from minimally processed urban residues. The study quantifies how this low-energy packaging concept affects emissions and boiler efficiency relative to loose chips/sawdust at two moisture levels. The results demonstrate that packaging the fuel in jute bags markedly improved performance for both woodchips and sawdust by stabilizing the fuel bed, enhancing air distribution, and reducing emissions of incomplete combustion products. Boiler efficiency increased from approximately 60% for raw unpackaged fuels to 71–75% for the dried and jute-packaged variants. The findings highlight that simple preprocessing steps—drying and packaging in natural-fiber bags—can substantially enhance the energy recovery potential of urban green waste, offering a practical pathway for integrating municipal biomass residues into a sustainable fuel. Full article
(This article belongs to the Special Issue Recent Advances in Biomass Combustion)
Show Figures

Figure 1

28 pages, 5849 KB  
Article
A New Modified CDP Constitutive Model for Jute Fiber-Reinforced Recycled Aggregate Concrete and Its Sustainable Application in Precast Cable Trench Joints
by Luying Ju, Jianfeng Zhu, Weijun Zhong, Mingfang Ba, Kai Shu, Xinying Fang, Jiayu Jin and Yucheng Zou
Sustainability 2026, 18(2), 707; https://doi.org/10.3390/su18020707 - 9 Jan 2026
Viewed by 241
Abstract
To address the dual challenges of improving precast cable trench joint performance and promoting solid waste recycling for carbon neutrality, this study developed a jute fiber-reinforced recycled aggregate concrete (JFRAC) and established a complete technical chain via experiments and numerical simulations. Compressive strength [...] Read more.
To address the dual challenges of improving precast cable trench joint performance and promoting solid waste recycling for carbon neutrality, this study developed a jute fiber-reinforced recycled aggregate concrete (JFRAC) and established a complete technical chain via experiments and numerical simulations. Compressive strength tests were conducted on JFRAC with varying jute fiber volume content and recycled coarse aggregate (RCA) replacement ratio to obtain their influence on the stress–strain relationship. A modified Concrete Damaged Plasticity (CDP) model was proposed by introducing correction coefficients for compressive strength and elastic modulus, achieving over 95% agreement with experimental data. Finite element simulations of cable trench joints showed that JFRAC outperforms C30 concrete, with the same compressive strength, in ultimate bearing capacity (↑4.17%), peak displacement (↑18.78%), and ductility (↑14.66%). JFRAC provides substantial environmental and economic advantages by reducing carbon emissions by 2.29% and saving costs of CNY 62.43 per meter of precast cable trench. Parametric studies indicated bolt grade and number are the primary performance influencers. Bolt grade’s impact diminishes as it increases from 8.8 to 10.9, while bolt number linearly enhances load-bearing capacity. This study provides a feasible path for JFRAC to replace conventional concrete in cable trenches, realizing both economic and environmental benefits. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

22 pages, 1625 KB  
Review
Recycled Electric and Electronic Waste in Concrete: A Review of Mechanical Performance and Sustainability Potential with a Case Study in Romania
by Cristian Georgeoi, Ioan Petran, Camelia Maria Negrutiu and Pavel Ioan Sosa
CivilEng 2026, 7(1), 2; https://doi.org/10.3390/civileng7010002 - 31 Dec 2025
Viewed by 301
Abstract
This study examines the use of electronic waste (e-waste) as an alternative material in concrete for sustainability and natural resource conservation. Various e-wastes, such as Polyvinyl Chloride (PVC), Glass-Reinforced Plastic (GRP), Glass Fiber-Reinforced Polymer (GFRP), cross-linked polyethylene (XLPE), polyethylene (PE), electronic cable waste [...] Read more.
This study examines the use of electronic waste (e-waste) as an alternative material in concrete for sustainability and natural resource conservation. Various e-wastes, such as Polyvinyl Chloride (PVC), Glass-Reinforced Plastic (GRP), Glass Fiber-Reinforced Polymer (GFRP), cross-linked polyethylene (XLPE), polyethylene (PE), electronic cable waste (ECW), Waste Electrical Cable Rubber (WECR), copper fiber (Cu Fib.), aluminum Fibers (Al fib.), steel fibers, basalt fibers, glass fibers, aramid−carbon fibers, Kevlar fibers, jute fibers, and optical fibers, were tested for influence on compressive, flexural, tensile strength, modulus of elasticity, and water absorption. Outcomes show that fine particle waste at low levels (0.2–1.5%) can improve mechanical performance, while higher levels of replacement or coarse particles generally reduce performance. Mechanical and physical properties are highly sensitive to material type, particle size, and dose. Life cycle assessment (LCA) and predictive modeling are recommended as validation for sustainability benefits. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

25 pages, 5342 KB  
Article
Evaluation of Jute–Glass Ratio Effects on the Mechanical, Thermal, and Morphological Properties of PP Hybrid Composites for Sustainable Automotive Applications
by Tunahan Özyer and Emre Demirci
Polymers 2025, 17(24), 3335; https://doi.org/10.3390/polym17243335 - 17 Dec 2025
Viewed by 474
Abstract
This study investigates polypropylene (PP)–based biocomposites reinforced with systematically varied jute and glass fiber ratios as sustainable, lightweight alternatives for semi-structural automotive parts. Four formulations (J20/G0, J15/G5, J10/G10, J5/G15) with a constant 20 wt% total fiber were produced by injection molding and characterized [...] Read more.
This study investigates polypropylene (PP)–based biocomposites reinforced with systematically varied jute and glass fiber ratios as sustainable, lightweight alternatives for semi-structural automotive parts. Four formulations (J20/G0, J15/G5, J10/G10, J5/G15) with a constant 20 wt% total fiber were produced by injection molding and characterized through mechanical, thermal, and morphological analyses. Tensile, flexural, and Charpy impact tests showed progressive improvements in strength, stiffness, and energy absorption with increasing glass fiber content, while ductility was maintained or slightly enhanced. SEM revealed a transition from fiber pull-out in jute-rich systems to fiber rupture and stronger matrix adhesion in glass-rich hybrids. Thermal analyses confirmed the benefits of hybridization: heat deflection temperature increased from 75 °C (J20/G0) to 103 °C (J5/G15), and thermogravimetry indicated improved stability and higher char residue. DSC showed negligible changes in crystallization and melting, confirming that fiber partitioning does not significantly affect PP crystallinity. Benchmarking demonstrated mechanical and thermal performance comparable to acrylonitrile–butadiene–styrene (ABS) and acrylonitrile–styrene–acrylate (ASA), widely used in automotive components. Finally, successful molding of a prototype exterior mirror cap from J20/G0 validated industrial processability. These findings highlight jute–glass hybrid PP composites as promising, sustainable alternatives to conventional engineering plastics for automotive engineering applications. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

20 pages, 4102 KB  
Article
Dynamic Mechanical Performance of 3D Woven Auxetic Reinforced Thermoplastic Composites
by Muhammad Umair, Tehseen Ullah, Adeel Abbas, Yasir Nawab and Abdel-Fattah M. Seyam
J. Compos. Sci. 2025, 9(12), 649; https://doi.org/10.3390/jcs9120649 - 1 Dec 2025
Viewed by 498
Abstract
The assessment of the dynamic mechanical performance of fiber-reinforced composites has gained importance in specific high-tech applications like aerospace and automobiles. However, three dimensional (3D) auxetic reinforcements offering viable performance have remained unexplored. Hence, this study investigates the energy absorption capabilities and high [...] Read more.
The assessment of the dynamic mechanical performance of fiber-reinforced composites has gained importance in specific high-tech applications like aerospace and automobiles. However, three dimensional (3D) auxetic reinforcements offering viable performance have remained unexplored. Hence, this study investigates the energy absorption capabilities and high strain impact behaviors of 3D woven fabric-reinforced composites. Three different types of 3D woven reinforcements i.e., warp interlock (Wp), weft interlock (Wt), and bidirectional interlock (Bi) were developed from jute yarn, and their corresponding composites were fabricated using polycarbonate (PC) and polyvinyl butyral (PVB). Out-of-plane auxeticity was measured for reinforcements while composites were analyzed under dynamic tests. Wp exhibited the highest auxeticity with a value of −1.29, Bi showed the least auxeticity with a value of −0.31, while Wt entailed an intermediate value of −0.46 owing to variable interlacement patterns. The dynamic mechanical analysis (DMA) results revealed that composite samples developed with PC resin showed a higher storage modulus with the least tan delta values less than 0.2, while PVB-based samples exhibited higher loss modulus with tan delta values of 0.6. Split Hopkinson pressure bar (SHPB) results showed that, under 2 and 4 bar pressure tests, PVB-based composites exhibited the highest maximum load while PC-based composites exhibited the least. Warp interlock-based composites with higher auxeticity showed better energy absorption when compared with the bidirectional interlock reinforcement based (with lower auxeticity) composites that exhibited lower peak load and energy dissipation. Full article
Show Figures

Figure 1

14 pages, 1845 KB  
Brief Report
Natural Fiber Composites for Sustainable Model Rocketry: Bamboo and Jute as Alternatives to Fiberglass
by Lais Alves, Tabata Barreto, Nordine Leklou and Silvio de Barros
Fibers 2025, 13(12), 159; https://doi.org/10.3390/fib13120159 - 26 Nov 2025
Viewed by 549
Abstract
The search for sustainable alternatives to synthetic composites has become increasingly relevant in aerospace engineering education and student rocketry. Fiberglass is widely used for rocket fuselages due to its favorable balance of performance and cost, but it is energy-intensive, non-biodegradable, and environmentally burdensome. [...] Read more.
The search for sustainable alternatives to synthetic composites has become increasingly relevant in aerospace engineering education and student rocketry. Fiberglass is widely used for rocket fuselages due to its favorable balance of performance and cost, but it is energy-intensive, non-biodegradable, and environmentally burdensome. This study provides the first demonstration of natural fiber composites applied to student rocket fuselages, evaluating bamboo and jute as sustainable alternatives to fiberglass. Fiberglass, bamboo, and jute laminates were fabricated following the procedures of the RocketWolf team at CEFET/RJ. The fuselages were characterized by parachute ejection tests, surface roughness analysis, and flight simulations using OpenRocket software. Additional data such as laminate mass, wall thickness, fiber–resin ratio, and cost analysis were incorporated to provide a comprehensive assessment. Results revealed contrasting behaviors: untreated bamboo composites showed poor resin impregnation, brittle behavior, and lack of structural stability, confirming their unsuitability without chemical treatment. Jute composites, in contrast, achieved adequate impregnation, cylindrical geometry, and superior surface roughness (Ra = 37 µm) compared to fiberglass with paint (62 µm) or envelopes (52 µm). Both fiberglass and jute fuselages successfully passed parachute ejection tests, while simulations indicated apogees close to 1 km, fulfilling competition requirements. The jute fuselage also presented slightly improved stability margins. Economically, jute was ~492% cheaper than fiberglass in fiber-only comparison but absorbed more resin; nevertheless, real purchase prices favored jute. These findings confirm that jute composites are a technically feasible, cost-effective, and sustainable substitute for fiberglass in student rocket fuselages. Beyond technical validation, this work demonstrates the educational and environmental benefits of integrating natural fibers into academic rocketry, bridging sustainability, performance, and innovation. Full article
Show Figures

Figure 1

33 pages, 2265 KB  
Article
System Dynamics Modeling of the Jute Stick Charcoal (JSC) Supply Chain: Logistics and Policy Strategies for Sustainable Rural Industrialization in Bangladesh
by Mohammad Shamsuddoha, Ahamed Ismail Hossain, Irma Dewan and Kazi Farzana Nur
Logistics 2025, 9(4), 171; https://doi.org/10.3390/logistics9040171 - 25 Nov 2025
Viewed by 1322
Abstract
Background: Jute, recognized as the ‘golden fiber’ of Bangladesh, produces a substantial amount of stick left over (waste), a byproduct of the fiber. Usually, unused jute sticks (JS) are thrown away or burned, since they are treated as landfill or unusable waste. [...] Read more.
Background: Jute, recognized as the ‘golden fiber’ of Bangladesh, produces a substantial amount of stick left over (waste), a byproduct of the fiber. Usually, unused jute sticks (JS) are thrown away or burned, since they are treated as landfill or unusable waste. Noteworthy research gaps exist in the farming process, infrastructure, [supply chains], unfavorable policies, government interference, and insufficient farmers’ knowledge of the export market. This research examines the potential of jute stick charcoal (JSC) as a sustainable and value-added product within the circular economy framework. Methods: This study employs a system dynamics (SD) modeling approach to examine how various factors, including agricultural output, supply chain process efficiency, trade flows, and relevant variables, influence JSC supply chain performance. Considering technologies, logistics, and policy variables, this study constructed a simulation model with three scenarios: current, worst-case, and improved, using Vensim DSS to identify system behavior under changing conditions. Results: The simulation indicates that optimizing idle jute resources, enhancing supply chain processes, and expanding markets can increase economic returns, reduce waste, and create more rural jobs, particularly for women. Conclusions: Enhanced coordination, technologies, and logistics can reduce carbon emissions, benefit farmers, support rural industries, and contribute to SDGs 8, 12, and 13. Full article
Show Figures

Figure 1

45 pages, 27537 KB  
Review
Enhancing the Performance of FFF-Printed Parts: A Review of Reinforcement and Modification Strategies for Thermoplastic Polymers
by Jakub Leśniowski, Adam Stawiarski and Marek Barski
Materials 2025, 18(22), 5185; https://doi.org/10.3390/ma18225185 - 14 Nov 2025
Viewed by 1079
Abstract
The technology of 3D printing has become one of the most effective methods of creating various parts, such as those used for fast prototyping. The most important aspect of 3D printing is the selection and application of the appropriate material, also known as [...] Read more.
The technology of 3D printing has become one of the most effective methods of creating various parts, such as those used for fast prototyping. The most important aspect of 3D printing is the selection and application of the appropriate material, also known as filament. The current review concerns mainly the description of the mechanical and physical properties of the different filaments and the possibilities of improving those properties. The review begins with a short description of the development of 3D printing technology. Next, the basic characteristics of thermoplastics used in the fused filament fabrication (FFF) are discussed, namely polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polyethylene terephthalate glycol (PETG). According to modern concepts, the printed parts can be reinforced with the use of different kinds of fibers, namely synthetic fibers (carbon, glass, aramid) or natural fibers (wood, flax, hemp, jute). Thus, the impact of such a reinforcement on the performance of FFF composites is also presented. The current review, unlike other works, primarily addresses the problem of the aging of parts made from the thermoplastics above. Environmental conditions, including UV radiation, can drastically reduce the physical and mechanical properties of printed elements. Moreover, the current review contains a detailed discussion about the influence of the different fibers on the final mechanical properties of the printed elements. Generally, the synthetic fibers improve the mechanical performance, with documented increases in tensile modulus reaching, for instance, 700% for carbon-fiber-reinforced ABS or over 15-fold for continuous aramid composites, enabling their use in functional, load-bearing components. In contrast, the natural ones could even decrease the stiffness and strength (e.g., wood–plastic composites), or, as in the case of flax, significantly increase stiffness (by 88–121%) while offering a sustainable, lightweight alternative for non-structural applications. Full article
Show Figures

Figure 1

22 pages, 3450 KB  
Article
Reducing Material Footprint Through Hybrid Bio-Synthetic Polymer Composites: Advanced Testing and Predictive Modeling Approaches
by Wasurat Bunpheng, Ratchagaraja Dhairiyasamy, Deekshant Varshney, Subhav Singh and Choon Kit Chan
J. Compos. Sci. 2025, 9(11), 584; https://doi.org/10.3390/jcs9110584 - 1 Nov 2025
Viewed by 642
Abstract
Hybrid natural/synthetic fiber laminates were examined as a practical process to cut mass, reduce material footprint, and meet structural demands while addressing sustainability targets. Yet direct, like-for-like comparisons generated under a single process and accompanied by durability measurements were limited, leaving design choices [...] Read more.
Hybrid natural/synthetic fiber laminates were examined as a practical process to cut mass, reduce material footprint, and meet structural demands while addressing sustainability targets. Yet direct, like-for-like comparisons generated under a single process and accompanied by durability measurements were limited, leaving design choices uncertain. This study aimed to fabricate and benchmark five representative laminates—C1: flax/epoxy, C2: jute/glass/epoxy, C3: hemp/carbon/epoxy, C4: flax/glass/bio-epoxy, and C5: kenaf/basalt/polyester—under a controlled hot-press schedule with a fixed cavity and verified fiber volume fraction. Panels were characterized using ASTM D3039 tension, ASTM D790 flexure, instrumented impact, 168 h water immersion, and thermogravimetric mass retention. The results were normalized to enable direct multi-criteria comparison, and a model was calibrated to predict tensile strength. C3 delivered the highest strengths (tension ≈ 120 MPa; flexure ≈ 126 MPa), while C5 showed the greatest impact capacity (≈60 kJ/m2). End-of-test water uptake at 168 h was C1 ≈ 3.4%, C2 ≈ 2.6%, C3 ≈ 1.4%, C4 ≈ 2.1%, and C5 ≈ 2.3%. The tensile predictor was fitted to panel means, with an R2 of 0.988, and maintained an R2 of 0.96 under leave-one-configuration-out testing. These results indicated that carbon-containing hybrids played the most critical roles in terms of stiffness, with kenaf/basalt being most suitable for stiffness-critical components at a similar density, and flax/glass with a bio-resin maximized the sustainability score while maintaining adequate strength. Future research should focus on enhancing specific strength at high renewable content through interface treatments, and extended modeling to improve flexure and impact responses. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

43 pages, 4854 KB  
Review
The Role of Natural Fibers in the Building Industry—The Perspective of Sustainable Development
by Agnieszka Przybek
Materials 2025, 18(16), 3803; https://doi.org/10.3390/ma18163803 - 13 Aug 2025
Cited by 7 | Viewed by 3384
Abstract
Contemporary construction faces the need to reduce its negative impact on the environment, prompting designers, investors, and contractors to seek more sustainable materials and technologies. One area of dynamic development is the use of natural fibers as an alternative to conventional, often synthetic, [...] Read more.
Contemporary construction faces the need to reduce its negative impact on the environment, prompting designers, investors, and contractors to seek more sustainable materials and technologies. One area of dynamic development is the use of natural fibers as an alternative to conventional, often synthetic, building components. Plant- and animal-based fibers, such as hemp, flax, jute, straw, bamboo, and sheep’s wool, are characterized by low energy consumption in production, renewability, and biodegradability. Their use is in line with the concept of a circular economy and reduces the carbon footprint of buildings. Natural fibers offer a number of beneficial physical and functional properties, including good thermal and acoustic insulation parameters, as well as hygroscopicity, which allows for the regulation of indoor humidity, improving air quality and comfort of use. In recent years, there has also been a renaissance of traditional building techniques, such as straw construction, often combined with modern engineering standards. Their potential is particularly recognized in green and energy-efficient construction. The article provides an overview of the types of natural fibers available for use in construction and analyzes their technical, environmental, and economic properties. It also draws attention to current regulations, standards, and certifications (e.g., LEED, BREEAM) that promote the popularization of these solutions. In light of the analyzed data, the role of natural fibers as a viable alternative supporting the transformation of the construction sector towards sustainable development is considered. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

27 pages, 8810 KB  
Article
Natural Fiber TRM for Integrated Upgrading/Retrofitting
by Arnas Majumder, Monica Valdes, Andrea Frattolillo, Enzo Martinelli and Flavio Stochino
Buildings 2025, 15(16), 2852; https://doi.org/10.3390/buildings15162852 - 12 Aug 2025
Viewed by 1169
Abstract
Sustainability in the construction and building sector with the use of greener and more eco-friendly building materials can minimize carbon footprint, which is one of the prime goals of the twenty-first century. The use of natural fibers in ancient and traditional buildings and [...] Read more.
Sustainability in the construction and building sector with the use of greener and more eco-friendly building materials can minimize carbon footprint, which is one of the prime goals of the twenty-first century. The use of natural fibers in ancient and traditional buildings and structures is not new, but in the last fifty years, only man-made fibers have predominantly occupied the market for structural retrofitting or upgrading. This research investigated the potential of utilizing natural fibers, particularly jute fiber products, to enhance masonry’s thermal and structural characteristics. The study meticulously investigated the utilization of materials such as jute net (with a mesh size of 2.5 cm × 1.25 cm), jute fiber diatons, and jute fiber composite mortar (with 1% jute fiber with respect to the dry mortar mass) in the context of masonry upgrading. The research evaluated the structural and thermal performance of these upgraded walls. Notably, the implementation of natural fiber textile-reinforced mortar (NFTRM) resulted in an astounding increase of over 500% in the load-bearing capacity of the walls, while simultaneously enhancing insulation by more than 36%. Furthermore, the study involved a meticulous analysis of crack patterns during in-plane cyclic testing utilizing the advanced Digital Image Correlation (DIC) tool. The upgraded/retrofitted wall exhibited a maximum crack width of approximately 7.84 mm, primarily along the diagonal region. Full article
(This article belongs to the Collection Sustainable and Green Construction Materials)
Show Figures

Figure 1

19 pages, 5847 KB  
Article
Parametric Analysis of Rammed Earth Walls in the Context of the Thermal Protection of Environmentally Friendly Buildings
by Piotr Kosiński, Wojciech Jabłoński and Krystian Patyna
Sustainability 2025, 17(15), 6886; https://doi.org/10.3390/su17156886 - 29 Jul 2025
Viewed by 2022
Abstract
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response [...] Read more.
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response to the increasingly strict European Union (EU) regulations on carbon footprint, life cycle performance, and thermal efficiency. RE walls offer multiple benefits, including humidity regulation, thermal mass, plasticity, and structural strength. This study also draws attention to their often-overlooked ability to mitigate indoor overheating. To preserve these advantages while enhancing thermal performance, this study explores insulation strategies that maintain the vapor-permeable nature of RE walls. A parametric analysis using Delphin 6.1 software was conducted to simulate heat and moisture transfer in two main configurations: (a) a ventilated system insulated with mineral wool (MW), wood wool (WW), hemp shives (HS), and cellulose fiber (CF), protected by a jute mat wind barrier and finished with wooden cladding; (b) a closed system using MW and WW panels finished with lime plaster. In both cases, clay plaster was applied on the interior side. The results reveal distinct hygrothermal behavior among the insulation types and confirm the potential of natural, low-processed materials to support thermal comfort, moisture buffering, and the alignment with CE objectives in energy-efficient construction. Full article
Show Figures

Figure 1

27 pages, 4682 KB  
Article
DERIENet: A Deep Ensemble Learning Approach for High-Performance Detection of Jute Leaf Diseases
by Mst. Tanbin Yasmin Tanny, Tangina Sultana, Md. Emran Biswas, Chanchol Kumar Modok, Arjina Akter, Mohammad Shorif Uddin and Md. Delowar Hossain
Information 2025, 16(8), 638; https://doi.org/10.3390/info16080638 - 27 Jul 2025
Cited by 1 | Viewed by 1103
Abstract
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability [...] Read more.
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability across geographically distributed agrarian systems. To transcend these limitations, we propose DERIENet, a robust and scalable classification approach within a deep ensemble learning framework. It is meticulously engineered by integrating three high-performing convolutional neural networks—ResNet50, InceptionV3, and EfficientNetB0—along with regularization, batch normalization, and dropout strategies, to accurately classify jute leaf diseases such as Cercospora Leaf Spot, Golden Mosaic Virus, and healthy leaves. A key methodological contribution is the design of a novel augmentation pipeline, termed Geometric Localized Occlusion and Adaptive Rescaling (GLOAR), which dynamically modulates photometric and geometric distortions based on image entropy and luminance to synthetically upscale a limited dataset (920 images) into a significantly enriched and diverse dataset of 7800 samples, thereby mitigating overfitting and enhancing domain generalizability. Empirical evaluation, utilizing a comprehensive set of performance metrics—accuracy, precision, recall, F1-score, confusion matrices, and ROC curves—demonstrates that DERIENet achieves a state-of-the-art classification accuracy of 99.89%, with macro-averaged and weighted average precision, recall, and F1-score uniformly at 99.89%, and an AUC of 1.0 across all disease categories. The reliability of the model is validated by the confusion matrix, which shows that 899 out of 900 test images were correctly identified and that there was only one misclassification. Comparative evaluations of the various ensemble baselines, such as DenseNet201, MobileNetV2, and VGG16, and individual base learners demonstrate that DERIENet performs noticeably superior to all baseline models. It provides a highly interpretable, deployment-ready, and computationally efficient architecture that is ideal for integrating into edge or mobile platforms to facilitate in situ, real-time disease diagnostics in precision agriculture. Full article
Show Figures

Figure 1

Back to TopTop