Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (170)

Search Parameters:
Keywords = isoconversional kinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2008 KB  
Article
Backpropagation DNN and Thermokinetic Analysis of the Thermal Devolatilization of Dried Pulverized Musa sapientum (Banana) Peel
by Abdulrazak Jinadu Otaru
Polymers 2026, 18(1), 122; https://doi.org/10.3390/polym18010122 - 31 Dec 2025
Cited by 1 | Viewed by 341
Abstract
This study examined the thermal degradation of pulverized Musa sapientum (banana) peel waste through thermogravimetric measurements and thermokinetic modelling. For the first time, it also incorporated backpropagation deep learning to model pyrolysis traces, enabling the prediction and optimization of the process. Physicochemical characterization [...] Read more.
This study examined the thermal degradation of pulverized Musa sapientum (banana) peel waste through thermogravimetric measurements and thermokinetic modelling. For the first time, it also incorporated backpropagation deep learning to model pyrolysis traces, enabling the prediction and optimization of the process. Physicochemical characterization confirmed the material’s lignocellulosic composition. TGA was performed between 30 and 950 °C at heating rates of 5, 10, 20, and 40 °C min−1, identifying a primary devolatilization range of 190 to 660 °C. The application of a backpropagation machine learning technique to the processed TGA data enabled the estimation of arbitrary constants that accurately captured the characteristic behaviour of the experimental data (R2~0.99). This modelling and simulation approach achieved a significant reduction in training loss—decreasing from 35.9 to 0.07—over 47,688 epochs and 1.4 computational hours. Sensitivity analysis identified degradation temperature as the primary parameter influencing the thermochemical conversion of BP biomass. Furthermore, analyzing deconvoluted DTG traces via Criado master plots revealed that the 3D diffusion model (Jander [D3]) is the most suitable reaction model for the hemicellulose, cellulose, and lignin components, followed by the R2 and R3 geometrical contraction models. The estimated overall activation energy values obtained through the Starink (STK) and Friedman (FR) model-free isoconversional kinetic methods were 82.8 ± 3.3 kJ.mol−1 and 97.6 ± 3.9 kJ.mol−1, respectively. The thermodynamic parameters estimated for the pyrolysis of BP indicate that the formation of activated complexes is endothermic, endergonic, and characterized by reduced disorder, thereby establishing BP as a potential candidate material for bioenergy generation. Full article
Show Figures

Figure 1

19 pages, 15326 KB  
Article
A Comprehensive Kinetic Study on the Enhanced Thermal Stability of Silica Xerogels with the Addition of Organochlorinated Substituents
by Beatriz Rosales-Reina, Guillermo Cruz-Quesada, Pablo Pujol, Santiago Reinoso, César Elosúa, Gurutze Arzamendi, María Victoria López-Ramón and Julián J. Garrido
Gels 2026, 12(1), 2; https://doi.org/10.3390/gels12010002 - 19 Dec 2025
Viewed by 322
Abstract
Hybrid silica xerogels functionalised with chlorinated organosilanes combine tunable porosity and surface chemistry, rendering them attractive for applications in sensing, membrane technology, and photonics. This study quantitatively investigates the thermal decomposition kinetics of organochlorinated xerogels and correlates with volatile compounds previously identified via [...] Read more.
Hybrid silica xerogels functionalised with chlorinated organosilanes combine tunable porosity and surface chemistry, rendering them attractive for applications in sensing, membrane technology, and photonics. This study quantitatively investigates the thermal decomposition kinetics of organochlorinated xerogels and correlates with volatile compounds previously identified via Thermogravimetric Analysis (TGA) coupled to Fourier-Transform Infrared Spectroscopy (FT–IR) and Gas Chromatography coupled with Mass Spectrometry (GC–MS). The xerogels were synthesised via the sol–gel process using organochlorinated alkoxysilane precursors and yielded highly condensed nanostructures in which the precursor nature strongly influences the morphology and textural properties. In this study, the molar percentage of the organochlorinated compounds was fixed at 10%. Standard N2 adsorption-desorption isotherm at 77 K revealed that increasing the precursor content systematically decreased the specific surface area and pore volume of the materials while promoting the formation of periodic domains, which are observed even at low organosilane molar percentages. Thermal characterisation via TGA/FT–IR/GC–MS revealed at least two main decomposition stages, with thermal stability following the order of 4–chlorophenyl > chloromethyl > 3–chloropropyl > 2–chloroethyl. This study focuses on kinetic and mechanistic insights in the thermal decomposition process through the Flynn–Wall–Ozawa isoconversional method and Criado master plots, using TGA/Differential Scanning Calorimetry (DSC) measurements under nitrogen at multiple heating rates (5, 10, 20, 30, and 40 K min−1), which revealed activation energies ranging from 53 to 290 kJ mol−1. Demonstrating that the chlorinated organosilane precursor directly controls both the textural properties and thermal behaviour of the resulting silica materials, with aromatic groups providing superior thermal stability compared to aliphatic chains. These quantitative kinetic insights provide a predictive framework for designing thermally stable hybrid materials while ensuring safe processing conditions to prevent hazardous volatile release. Full article
(This article belongs to the Special Issue Xerogels: Preparation, Properties and Applications)
Show Figures

Graphical abstract

28 pages, 3613 KB  
Review
A Review of Lignocellulosic Biomass Alkaline Delignification: Feedstock Classification, Process Types, Modeling Approaches, and Applications
by Johnnys Bustillo-Maury, Alma Nouar, Andres Aldana, J. M. Mendoza-Fandiño and Antonio Bula
Processes 2025, 13(12), 4038; https://doi.org/10.3390/pr13124038 - 14 Dec 2025
Viewed by 632
Abstract
Alkaline delignification is a keystone pretreatment that governs carbohydrate accessibility, energy use, and yields across pulp and biorefinery value chains, yet its kinetic understanding remains fragmented and largely confined to bench-scale studies. This review provides an integrated assessment of the evolution and current [...] Read more.
Alkaline delignification is a keystone pretreatment that governs carbohydrate accessibility, energy use, and yields across pulp and biorefinery value chains, yet its kinetic understanding remains fragmented and largely confined to bench-scale studies. This review provides an integrated assessment of the evolution and current state of kinetic approaches applied to alkaline delignification of lignocellulosic biomass, aiming to bridge academic research and industrial application. A systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta Analyses) guidelines identified 74 peer-reviewed articles and 359 patents published between 1995 and 2025. Kinetic models were classified into conventional (nth-order and pseudo-first-order) and emerging categories (Avrami/Š–B, diffusion-based, mechanistic multistep, isoconversional, and ML/statistical). The results show that pseudo-first-order kinetics and batch-scale studies dominate the literature, while pilot-scale validation and hybrid mechanistic data-driven frameworks remain limited. Patent analysis revealed technological convergence within D21C and C08B IPC domains, reflecting growing industrial interest in alkaline pulping and cellulose valorization. Unlike previous reviews, this work uniquely integrates conventional and emerging kinetic models with a patent-based technological perspective, providing a unified view of academic and industrial progress. The insights presented here provide a foundation for advancing future research, particularly by encouraging the development of standardized experimental protocols and the validation of kinetic models across multiple scales. Moreover, this review provides a consolidated reference for both academic researchers and industrial practitioners seeking to enhance delignification efficiency, reduce reagent consumption, and improve the sustainability of biorefinery processes. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 8095 KB  
Article
Thermal Stability and Degradation of Three Similar-Structured Endogenous Estrogens
by Amalia Ridichie, Adriana Ledeţi, Cosmina Bengescu, Laura Sbârcea, Răzvan Adrian Bertici, Denisa Laura Ivan, Gabriela Vlase, Titus Vlase, Francisc Peter and Ionuţ Ledeţi
Analytica 2025, 6(4), 52; https://doi.org/10.3390/analytica6040052 - 21 Nov 2025
Viewed by 757
Abstract
Estrogens are cholesterol-derived hormones, with four endogenous estrogens being presented in the scientific literature, namely, estradiol, estrone, estriol, and estetrol. In this study, we aim to obtain a complete thermoanalytical profile for the three most important endogenous estrogens: estradiol, estriol, and estrone. To [...] Read more.
Estrogens are cholesterol-derived hormones, with four endogenous estrogens being presented in the scientific literature, namely, estradiol, estrone, estriol, and estetrol. In this study, we aim to obtain a complete thermoanalytical profile for the three most important endogenous estrogens: estradiol, estriol, and estrone. To achieve this, the TG/DTG were registered in non-isothermal conditions at five different heating rates (β = 2, 4, 6, 8, and 10 °C min−1). To describe the mechanisms of the degradation processes, a complex kinetic analysis was performed by applying a preliminary method (ASTM E698), two isoconversional methods (Flynn–Wall–Ozawa and Friedman), and the non-parametric kinetic method. The results indicate that estradiol undergoes a single-step degradation process, while estriol and estrone present a complex degradation process. The determination of the shelf life of pharmaceutical products represents a critical factor in ensuring their safety and efficacy. This parameter can be estimated from the activation energy derived from non-isothermal experiments through the application of the Arrhenius equation and appropriate kinetic models. Full article
(This article belongs to the Special Issue New Analytical Techniques and Methods in Pharmaceutical Science)
Show Figures

Figure 1

17 pages, 2234 KB  
Article
Sustainable Plastics: Effect of Bio-Based Plasticizer on Crystallization Kinetics of PLA
by David Alberto D’Amico, Liliana Beatriz Manfredi, Norma Esther Marcovich, Mirna Alejandra Mosiewicki and Viviana Paola Cyras
Polymers 2025, 17(21), 2935; https://doi.org/10.3390/polym17212935 - 1 Nov 2025
Viewed by 932
Abstract
This work investigates the effect of a bio-based plasticizer derived from used sunflower oil on the crystallization behavior of poly (lactic acid) (PLA), comparing it with that of the conventional plasticizer tributyrin. This study aims to explore biodegradable alternatives to petroleum-based materials and [...] Read more.
This work investigates the effect of a bio-based plasticizer derived from used sunflower oil on the crystallization behavior of poly (lactic acid) (PLA), comparing it with that of the conventional plasticizer tributyrin. This study aims to explore biodegradable alternatives to petroleum-based materials and to evaluate their potential in modulating PLA crystallization kinetics without altering the crystalline structure of the resulting sustainable material solutions with tailored performance. PLA-based films containing 5%, 10%, and 15% plasticizer were prepared and characterized by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X-Ray diffraction (XRD). DSC analysis showed a decrease in the glass transition temperatures upon plasticization, with tributyrin producing a more pronounced effect than the recycled sunflower oil plasticizer. XRD patterns confirmed that the crystalline form of PLA remained unchanged regardless of plasticizer type or content. POM revealed that both plasticizers influenced crystallization kinetics, with the bio-plasticizer promoting larger and more sparsely distributed spherulites than tributyrin, indicating differences in nucleation efficiency and crystal growth. Crystallization kinetics were further analyzed using the Avrami model, the Lauritzen-Hoffman theory, and the isoconversional method. Avrami analysis indicated that nucleation mechanisms were largely unaffected, although the overall crystallization rate increased upon plasticization. Lauritzen-Hoffman analysis confirmed crystallization in Regime III, controlled by nucleation, while isoconversional analysis showed reduced activation energy in plasticized PLA. These findings highlight the ability of bio-derived plasticizers to modulate PLA crystallization, promoting the valorization of a food industry residue as a sustainable plasticizer. This study hopes to contribute relevant knowledge to emerging areas of polymer processing, such as 3D printing, to develop sustainable and high-performance PLA-based materials. Full article
(This article belongs to the Special Issue Polymeric Materials in Food Science)
Show Figures

Graphical abstract

19 pages, 2888 KB  
Article
Pyrolysis Characteristics and Reaction Mechanism of Cement Fiberboard with Thermogravimetry/Fourier Transform Infrared Analysis
by Yuxiang Zhu, Longjiang Tang, Ying Hu, Chunlin Yang, Weijian Deng and Yanming Ding
Fire 2025, 8(11), 426; https://doi.org/10.3390/fire8110426 - 31 Oct 2025
Viewed by 724
Abstract
In this study, thermogravimetric analysis (TGA) was coupled with Fourier-transform infrared (FTIR) spectroscopy to systematically investigate the pyrolysis characteristics and mechanisms of cement fiberboard across varying heating rates. Experimental findings demonstrated that the thermal degradation process occurs in four distinct phases. Overlapping decomposition [...] Read more.
In this study, thermogravimetric analysis (TGA) was coupled with Fourier-transform infrared (FTIR) spectroscopy to systematically investigate the pyrolysis characteristics and mechanisms of cement fiberboard across varying heating rates. Experimental findings demonstrated that the thermal degradation process occurs in four distinct phases. Overlapping decomposition peaks in DTG curves were successfully resolved using a double-Gaussian deconvolution algorithm. A comprehensive kinetic analysis was conducted by integrating model-free iso-conversional methods (Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose analysis) with a model-fitting technique (Coats–Redfern approximation) to determine the activation energies for each degradation stage. A subsequent FTIR spectroscopic analysis revealed that the evolution of gaseous products follows the sequence CO2 > H2O > CH4. The CO2 release was found to originate from multiple pathways, including the decomposition of organic components and high-temperature inorganic reactions. Notably, while the heating rate had a negligible impact on product speciation, it exhibited a statistically significant influence on CO2 emission intensities. Finally, mechanistic interpretations integrating Arrhenius parameters with time-resolved infrared spectral features were proposed for each thermal decomposition stage. Full article
Show Figures

Figure 1

24 pages, 5285 KB  
Article
Thermosetting Resins Based on Poly(Ethylene Glycol Fumarate) and Acrylic Acid: Rheological and Thermal Analysis
by Gulsym Burkeyeva, Anna Kovaleva, Zhansaya Ibrayeva, David Havlicek, Yelena Minayeva, Aiman Omasheva, Elmira Zhakupbekova and Margarita Nurmaganbetova
Molecules 2025, 30(19), 4020; https://doi.org/10.3390/molecules30194020 - 8 Oct 2025
Viewed by 726
Abstract
The rheological behavior and low-temperature curing kinetics of poly(ethylene glycol fumarate)–acrylic acid systems initiated by benzoyl peroxide/N,N-dimethylaniline have been investigated for the first time with a focus on the development of thermosetting binders with controllable properties. It has been established that both composition [...] Read more.
The rheological behavior and low-temperature curing kinetics of poly(ethylene glycol fumarate)–acrylic acid systems initiated by benzoyl peroxide/N,N-dimethylaniline have been investigated for the first time with a focus on the development of thermosetting binders with controllable properties. It has been established that both composition and temperature have a significant effect on rheological behavior and kinetic parameters. Rheological studies revealed non-Newtonian flow behavior and thixotropic properties, while oscillatory tests demonstrated structural transformations during curing. Increasing the temperature was found to accelerate gelation, whereas a higher polyester content retarded the process, which is crucial for controlling the pot life of the reactive mixture. DSC analysis indicated that isothermal curing at 30–40 °C can be satisfactorily described by the Kamal autocatalytic model, whereas at 20 °C, at later stages, and at higher polyester contents, diffusion control becomes significant. The thermal behavior of cured systems was investigated using thermogravimetry. Calculations using the isoconversional Kissinger–Akahira–Sunose and Friedman methods confirmed an increase in the apparent activation energy for thermal decomposition, suggesting a stabilizing effect of poly(ethylene glycol fumarate) in the polymer structure. The studied systems are characterized by controllable kinetics, tunable viscosity, and high thermal stability, making them promising thermosetting binders for applications in composites, construction, paints and coatings, and adhesives. Full article
Show Figures

Figure 1

24 pages, 2455 KB  
Article
Impact of Glycerol and Heating Rate on the Thermal Decomposition of PVA Films
by Ganna Kovtun and Teresa Cuberes
Polymers 2025, 17(15), 2095; https://doi.org/10.3390/polym17152095 - 30 Jul 2025
Cited by 2 | Viewed by 2491
Abstract
This study analyzes the thermal degradation of PVA and PVA/glycerol films in air under varying heating rates. Thermogravimetric analysis (TGA) of pure PVA in both air and inert atmospheres confirmed that oxidative conditions significantly influence degradation, particularly at lower heating rates. For PVA/glycerol [...] Read more.
This study analyzes the thermal degradation of PVA and PVA/glycerol films in air under varying heating rates. Thermogravimetric analysis (TGA) of pure PVA in both air and inert atmospheres confirmed that oxidative conditions significantly influence degradation, particularly at lower heating rates. For PVA/glycerol films in air, deconvolution of the differential thermogravimetry (DTG) curves during the main degradation stage revealed distinct peaks attributable to the degradation of glycerol, PVA/glycerol complexes, and PVA itself. Isoconversional methods showed that, for pure PVA in air, the apparent activation energy (Ea) increased with conversion, suggesting the simultaneous occurrence of multiple degradation mechanisms, including oxidative reactions, whose contribution changes over the course of the degradation process. In contrast, under an inert atmosphere, Ea remained nearly constant, consistent with degradation proceeding through a single dominant mechanism, or through multiple steps with similar kinetic parameters. For glycerol-plasticized films in air, Ea exhibited reduced dependence on conversion compared with that of pure PVA in air, with values similar to those of pure PVA under inert conditions. These results indicate that glycerol influences the oxidative degradation pathways in PVA films. These findings are relevant to high-temperature processing of PVA-based materials and to the design of thermal treatments—such as sterilization or pyrolysis—where control over degradation mechanisms is essential. Full article
Show Figures

Graphical abstract

18 pages, 5270 KB  
Article
Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis
by Munir Hussain, Vikul Vasudev, Shri Ram, Sohail Yasin, Nouraiz Mushtaq, Menahil Saleem, Hafiz Tanveer Ashraf, Yanjun Duan, Muhammad Ali and Yu Bin
Polymers 2025, 17(15), 2063; https://doi.org/10.3390/polym17152063 - 29 Jul 2025
Cited by 2 | Viewed by 1234
Abstract
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal [...] Read more.
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal high crystallinity in the B25R75 blend (I/Ic = 13.39). Whereas, the polyethylene samples showed persistent ZrP2O7 and lazurite phases (I/Ic up to 3.12) attributed to additives introduced during the manufacturing of the commercial plastic feedstock. In addition, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy was performed to characterize the surface morphology and elemental composition of the feedstock. Moreover, thermogravimetric analysis (TGA) was employed at temperatures up to 700 °C at three different heating rates (5, 10, and 20 °C/min) under pyrolysis conditions. Kinetic analysis used TGA data to calculate activation energy via Friedman’s isoconversional method, and the blended samples exhibited a decrease in activation energy compared to the individual components. Furthermore, the study evaluated transient interaction effects among the components by assessing the deviation between experimental and theoretical weight loss. This revealed the presence of significant synergistic behavior in certain binary and ternary blends. The results demonstrate that co-pyrolysis of bamboo and rice straw with polyethylene enhances thermal decomposition efficiency and provides a more favorable energy recovery route. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

22 pages, 4935 KB  
Article
Material Optimization and Curing Characterization of Cold-Mix Epoxy Asphalt: Towards Asphalt Overlays for Airport Runways
by Chong Zhan, Ruochong Yang, Bingshen Chen, Yulou Fan, Yixuan Liu, Tao Hu and Jun Yang
Polymers 2025, 17(15), 2038; https://doi.org/10.3390/polym17152038 - 26 Jul 2025
Cited by 1 | Viewed by 873
Abstract
Currently, numerous conventional airport runways suffer from cracking distresses and cannot meet their structural and functional requirements. To address the urgent demand for rapid and durable maintenance of airport runways, this study investigates the material optimization and curing behavior of cold-mix epoxy asphalt [...] Read more.
Currently, numerous conventional airport runways suffer from cracking distresses and cannot meet their structural and functional requirements. To address the urgent demand for rapid and durable maintenance of airport runways, this study investigates the material optimization and curing behavior of cold-mix epoxy asphalt (CEA) for non-disruptive overlays. Eight commercial CEAs were examined through tensile and overlay tests to evaluate their strength, toughness, and reflective cracking resistance. Two high-performing formulations (CEA 1 and CEA 8) were selected for further curing characterization using differential scanning calorimetry (DSC) tests, and the non-isothermal curing kinetics were analyzed with different contents of Component C. The results reveal that CEA 1 and CEA 8 were selected as promising formulations with superior toughness and reflective cracking resistance across a wide temperature range. DSC-based curing kinetic analysis shows that the curing reactions follow an autocatalytic mechanism, and activation energy decreases with conversion, confirming a self-accelerating process of CEA. The addition of Component C effectively modified the curing behavior, and CEA 8 with 30% Component C reduced curing time by 60%, enabling traffic reopening within half a day. The curing times were accurately predicted for each type of CEA using curing kinetic models based on autocatalytic and iso-conversional approaches. These findings will provide theoretical and practical guidance for high-performance airport runway overlays, supporting rapid repair, extended service life, and environmental sustainability. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 1414 KB  
Article
Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products
by Andrey Galukhin, Roman Aleshin, Alexander Gerasimov, Alexander Klimovitskii, Roman Nosov, Liana Zubaidullina and Sergey Vyazovkin
Polymers 2025, 17(14), 1909; https://doi.org/10.3390/polym17141909 - 10 Jul 2025
Viewed by 963
Abstract
Non-isothermal calorimetry is performed to study the kinetics of metal-free A2/B2-type azide–alkyne polyaddition between the dipropargyl ether of bisphenol A with different organic diazides. The diazide structure is varied to probe the effect of the nature of a hydrocarbon [...] Read more.
Non-isothermal calorimetry is performed to study the kinetics of metal-free A2/B2-type azide–alkyne polyaddition between the dipropargyl ether of bisphenol A with different organic diazides. The diazide structure is varied to probe the effect of the nature of a hydrocarbon spacer between the azide groups on their reactivity. Isoconversional analysis demonstrates that the polymerization processes are characterized by the same activation energy of 84 kJ mol−1 for all studied diazides. It is found that diazides with aromatic spacers demonstrate ~1.6 times higher reactivity than that of diazides with the alkyl spacer. The difference in the reactivity is explained by the difference in the electronic effects of the hydrocarbon spacers on the azide groups as well as by the difference in their steric availability. The veracity of the obtained kinetic parameters is validated by a polymerization test at the time–temperature conditions predicted from the obtained kinetic data followed by independent assessment of the monomer conversion using FTIR. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

25 pages, 4887 KB  
Article
Thermogravimetric Assessment and Kinetic Analysis of Forestry Residues Combustion
by João Pedro Silva, Senhorinha Teixeira and José Carlos Teixeira
Energies 2025, 18(13), 3299; https://doi.org/10.3390/en18133299 - 24 Jun 2025
Cited by 2 | Viewed by 1687
Abstract
The development of combustion experiments in a controlled environment is essential for comparing different fuels and quantifying the influence of different key parameters. It is fundamental to understand the transport phenomena at the particle level to obtain reliable results and information for further [...] Read more.
The development of combustion experiments in a controlled environment is essential for comparing different fuels and quantifying the influence of different key parameters. It is fundamental to understand the transport phenomena at the particle level to obtain reliable results and information for further proper biomass combustion modeling of large-scale equipment. Hence, this paper presents a comprehensive analysis of the thermal decomposition and kinetic of eight samples of forest biomass fuels in terms of combustion behavior by using the thermogravimetric analysis (TGA) technique. The tests were carried out in an oxidizing atmosphere at a heating rate between 5 and 100 °C/min up to 900 °C. It was observed that, for all samples, fuel conversion follows a sequence of drying, devolatilization, and char combustion. Furthermore, differences in chemical and physical composition, as well as in structures and their thermal stability, justify the differences observed between the mass-loss curves of the different fuels. For this, the complexity of kinetic study is addressed in this paper by using different approaches: isoconversional and model-fitting methods. However, the use of isoconversional methods proved ineffective for determining reliable kinetic parameters, due to their sensitivity to particle conversion. A significant variation in activation energy was observed during the devolatilization stage, ranging from 47.92 to 101.30 kJ/mol. For the char oxidation stage, it ranged from 14.97 to 35.48 kJ/mol. These results highlight Eucalyptus as the most reactive species among those studied. Full article
Show Figures

Figure 1

21 pages, 3037 KB  
Article
A Comparative Study on the Carbonization of Chitin and Chitosan: Thermo-Kinetics, Thermodynamics and Artificial Neural Network Modeling
by Melis Alpaslan Takan and Gamzenur Özsin
Appl. Sci. 2025, 15(11), 6141; https://doi.org/10.3390/app15116141 - 29 May 2025
Cited by 3 | Viewed by 1651
Abstract
The carbonization of chitin and chitosan presents a sustainable approach to producing nitrogen-doped carbon materials for various applications, making kinetic and thermodynamic analyses crucial for assessing their viability. Meanwhile, artificial neural network (ANN)-driven modeling not only enhances the precision of thermo-kinetic and thermodynamic [...] Read more.
The carbonization of chitin and chitosan presents a sustainable approach to producing nitrogen-doped carbon materials for various applications, making kinetic and thermodynamic analyses crucial for assessing their viability. Meanwhile, artificial neural network (ANN)-driven modeling not only enhances the precision of thermo-kinetic and thermodynamic estimations but also facilitates the optimization of carbonization conditions, thereby advancing the development of high-performance carbon materials. In this work, we aim to develop an ANN model to estimate weight loss as a function of temperature and heating rate during the carbonization of chitin and chitosan. The experimental average activation energies of chitosan and chitin, determined by various iso-conversional methods, were found to be 128.1–152.2 kJ/mol and 157.2–160.0 kJ/mol, respectively. The best-performing ANN architectures—NN4 for chitin (R2 = 0.9995) and NN1 for chitosan (R2 = 0.9997)—swiftly predicted activation energy values with commendable accuracy (R2 > 0.92) without necessitating repetitive experiments. Furthermore, the estimation of thermodynamic parameters provided both a theoretical foundation and practical insights into the carbonization process of these biological macromolecules, while morpho-structural changes in the resulting chars were systematically examined across different carbonization temperatures. The results underscore the adaptability and effectiveness of ANN in analyzing the carbonization of biological macromolecules, establishing it as a reliable tool for thermochemical conversion studies. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

20 pages, 3320 KB  
Article
Pyrolysis Kinetics of Pine Waste Based on Ensemble Learning
by Alok Dhaundiyal and Laszlo Toth
Energies 2025, 18(10), 2556; https://doi.org/10.3390/en18102556 - 15 May 2025
Cited by 1 | Viewed by 820
Abstract
This article aimed to incorporate the coordinated construction of classifiers to develop a model for predicting the pyrolysis of loose biomass. For the purposes of application, the ground form of pine cone was used to perform the thermogravimetric analysis at heating rates of [...] Read more.
This article aimed to incorporate the coordinated construction of classifiers to develop a model for predicting the pyrolysis of loose biomass. For the purposes of application, the ground form of pine cone was used to perform the thermogravimetric analysis at heating rates of 5, 10, and 15 °C∙min−1. The supervised machine learning technique was considered to estimate the kinetic parameters associated with the thermal decomposition of the material. Here, the integral as well as differential form of the isoconversional method was used along with the Kissinger method for the maximum reaction rate determination. Python (version 3.13.2), along with PyCharm (2024.3.3) as an integrated development environment (IDE), was used to develop code for the given problem. The TG model obtained through the boosting technique provided the best fitting for the experimental dataset of raw pine cone, with the root squared error varying from ±1.82 × 10−3 to ±1.84 × 10−3, whereas it was in the range of ±1.78 × 10−3 to ±1.83 × 10−3 for processed pine cone. Similarly, the activation energies derived through the trained models of Friedman, OFW, and KAS were 176 kJ-mol−1, 151.60 kJ-mol−1, and 142.04 kJ-mol−1, respectively, for raw pine cone. It was seen that the boosting technique did not provide a reasonable fit if the number of features was increased in the kinetic models. This happened owing to an inability to maintain a tradeoff between variance and bias. Moreover, the multiclassification in pyrolysis kinetics through the proposed scheme was not able to capture the distribution pattern of target values of the differential method. With the increase in the heating rates, the noise level in the predicted model was also relatively increased. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

20 pages, 5188 KB  
Article
Investigation of Bio-Oil and Biochar Derived from Cotton Stalk Pyrolysis: Effect of Different Reaction Conditions
by Hussien Elshareef, Obid Tursunov, Sihao Ren, Katarzyna Śpiewak, Alina Rahayu Mohamed, Yongkun Fu, Renjie Dong and Yuguang Zhou
Resources 2025, 14(5), 75; https://doi.org/10.3390/resources14050075 - 28 Apr 2025
Cited by 4 | Viewed by 2606
Abstract
This work aimed to conduct a kinetic study of cotton stalks (CSs) through TGA to examine the impact of reaction conditions on bio-oil yield derived from CS slow pyrolysis using a tube furnace lab-scale reactor, as well as a characterization of bio-oil and [...] Read more.
This work aimed to conduct a kinetic study of cotton stalks (CSs) through TGA to examine the impact of reaction conditions on bio-oil yield derived from CS slow pyrolysis using a tube furnace lab-scale reactor, as well as a characterization of bio-oil and biochar products. The iso-conversional approaches of Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) were applied to estimate kinetic parameter activation energy (Ea) for the range of conversion degrees (α = 0.1–0.9). The kinetic results demonstrated that the average values of Ea for secondary pyrolysis were lower compared to those of primary pyrolysis; this could be explained by the fact that mainly cellulose degrades during primary pyrolysis, which requires more energy to be degraded. The pyrolysis findings indicated that the highest yield of bio-oil was 38.5%, which occurred at conditions of 500 °C and 0.5–1 mm size, while retention time showed an insignificant effect on pyrolysis oil. GC–MS analysis demonstrated that bio-oil is dominated by phenol compounds, which account for more than 40% of its components. SEM and XRD analyses emphasized that biochar is porous and has an amorphous shape, respectively. It can be concluded that these outcomes confirm that CSs have the potential to be a good candidate for a feedstock material for bioenergy production via the pyrolysis process. Full article
Show Figures

Figure 1

Back to TopTop