Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = iron oxide nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 13783 KiB  
Article
Synthesis and Characterization of a Nanocomposite Based on Opuntia ficus indica for Efficient Removal of Methylene Blue Dye: Adsorption Kinetics and Optimization by Response Surface Methodology
by Yasser Boumezough, Gianluca Viscusi, Sihem Arris, Giuliana Gorrasi and Sónia A. C. Carabineiro
Int. J. Mol. Sci. 2025, 26(14), 6717; https://doi.org/10.3390/ijms26146717 - 13 Jul 2025
Viewed by 363
Abstract
In this study, an efficient and cost-effective nanocomposite material based on Opuntia ficus indica (cactus) powder modified with iron oxide nanoparticles was developed as an adsorbent for the removal of methylene blue (MB), a common water pollutant. The nanocomposite was synthesized through the [...] Read more.
In this study, an efficient and cost-effective nanocomposite material based on Opuntia ficus indica (cactus) powder modified with iron oxide nanoparticles was developed as an adsorbent for the removal of methylene blue (MB), a common water pollutant. The nanocomposite was synthesized through the co-precipitation method of Fe2+ and Fe3+ ions and characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TGA). Batch adsorption experiments were conducted over 24 h, varying different operational conditions, such as pH, temperature and initial pollutant concentration. Furthermore, a Box–Behnken design was employed to develop an empirical model for predicting removal efficiency and optimizing the adsorption conditions. The effects of adsorption variables including contact time (1–60 min), initial MB concentration (20–100 mg/L), pH (2–12), adsorbent dosage (2–6 g/L) and temperature (25–55 °C) on the removal capacity were examined. Under optimal conditions, the maximum removal efficiency of MB reached approximately 96%, with a maximum adsorption capacity of 174 mg/g, as predicted by the Langmuir model. The synthesized cactus/iron oxide nanocomposite demonstrated significant potential as an adsorbent for treating MB-contaminated water. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

31 pages, 5165 KiB  
Article
Green Engineering of Bio-Epoxy Resin: Functionalized Iron-Oxide Nanoparticles for Enhanced Thermal, Mechanical, Surface and Magnetic Properties
by Klementina Pušnik Črešnar and Julio Vidal
Polymers 2025, 17(13), 1819; https://doi.org/10.3390/polym17131819 - 29 Jun 2025
Cited by 1 | Viewed by 437
Abstract
In the pursuit of environmental sustainability, reduced emissions, and alignment with circular economy principles, bio-epoxy resin nanocomposites have emerged as a promising alternative to traditional petroleum-based resins. This study investigates the development of novel bio-epoxy nanocomposites incorporating iron-oxide nanoparticles (Fe2O3 [...] Read more.
In the pursuit of environmental sustainability, reduced emissions, and alignment with circular economy principles, bio-epoxy resin nanocomposites have emerged as a promising alternative to traditional petroleum-based resins. This study investigates the development of novel bio-epoxy nanocomposites incorporating iron-oxide nanoparticles (Fe2O3, MnP) as multifunctional fillers at loadings of 0.5 wt.% and 3.0 wt.%. MnP nanoparticles were synthesized and subsequently functionalized with citric acid (MnP-CA) to enhance their surface properties. Comprehensive characterization of MnP and MnP-CA was performed using X-ray diffraction (XRD) to determine the crystalline structure, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), and zeta potential measurements to confirm surface functionalization. The bio-epoxy resins matrix (bio-EP), optimized for compatibility with MnP and MnP-CA, was thoroughly analyzed in terms of chemical structure, thermal stability, curing behavior, dynamic–mechanical properties, and surface characteristics. Non-isothermal differential scanning calorimetry (DSC) was employed to evaluate the curing kinetics of both the neat (bio-EP) and the MnP/MnP-CA-reinforced composites, offering insights into the influence of nanoparticle functionalization on the resin system. Surface zeta potential measurements further elucidated the effect of filler content on the surface charge and hydrophilicity. Magnetic characterization revealed superparamagnetic behavior in all MnP- and MnP-CA-reinforced (bio-EP) composites. This research provides a foundational framework for the design of green bio-epoxy nanocomposites, demonstrating their potential as environmentally friendly materials and representing an emerging class of sustainable alternatives. The results underscore the viability of bio-epoxy systems as a transformative solution for advancing sustainable resin technologies across eco-conscious industries. Full article
(This article belongs to the Special Issue Epoxy Resin and Composites: Properties and Applications)
Show Figures

Figure 1

14 pages, 5300 KiB  
Article
Synthesis and Antibacterial Evaluation of Silver-Coated Magnetic Iron Oxide/Activated Carbon Nanoparticles Derived from Hibiscus esculentus
by Müslüm Güneş, Erdal Ertaş, Seyhmus Tumur, Parvin Zulfugarova, Fidan Nuriyeva, Taras Kavetskyy, Yuliia Kukhazh, Pavlo Grozdov, Ondrej Šauša, Oleh Smutok, Dashgin Ganbarov and Arnold Kiv
Magnetochemistry 2025, 11(7), 53; https://doi.org/10.3390/magnetochemistry11070053 - 21 Jun 2025
Viewed by 483
Abstract
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon [...] Read more.
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon (AC) derived from Hibiscus esculentus (HE) fruit was coated onto the nanoparticle surfaces to fabricate MIONPs/HEAC nanocomposites. To augment their antimicrobial properties, silver ions were chemically reduced and deposited onto the MIONPs/HEAC surface, yielding MIONPs/HEAC@Ag nanocomposites. Comprehensive characterization of the synthesized nanocomposites was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and zeta potential analysis. DLS measurements indicated average particle sizes of approximately 122 nm and 164 nm for MIONPs/HEAC and MIONPs/HEAC@Ag, respectively. Saturation magnetization values were determined to be 73.6 emu/g for MIONPs and 65.5 emu/g for MIONPs/HEAC. Antibacterial assays demonstrated that MIONPs/HEAC@Ag exhibited significant inhibitory effects against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, with inhibition zone diameters of 11.50 mm and 13.00 mm, respectively. In contrast, uncoated MIONPs/HEAC showed negligible antibacterial activity against both bacterial strains. These findings indicate that MIONPs/HEAC@Ag nanocomposites possess considerable potential as antimicrobial agents for biomedical applications, particularly in addressing infections caused by antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

22 pages, 6344 KiB  
Article
Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study
by Mariana Martins de Melo Barbosa, Juliene Oliveira Campos de França, Quezia dos Santos Lima, Sílvia Cláudia Loureiro Dias, Carlos A. Vilca Huayhua, Fermín F. H. Aragón, José A. H. Coaquira and José Alves Dias
Polymers 2025, 17(12), 1713; https://doi.org/10.3390/polym17121713 - 19 Jun 2025
Viewed by 580
Abstract
This study focused on composites of magnetite magnetic nanoparticles (MNP) and poly(lactic acid) (PLA) prepared via sonochemical synthesis. The evaluation of MNP loadings (2, 5, 10, 15, and 20 wt.%) provided insights into the structural and reactivity properties of the materials. Methods used [...] Read more.
This study focused on composites of magnetite magnetic nanoparticles (MNP) and poly(lactic acid) (PLA) prepared via sonochemical synthesis. The evaluation of MNP loadings (2, 5, 10, 15, and 20 wt.%) provided insights into the structural and reactivity properties of the materials. Methods used included XRD, FT-IR and Raman spectroscopy, SEM and TEM microscopy, textural and thermal analysis (TG and DTA), and magnetic property measurements. The agreement between theoretical and experimental MNP loadings was good. XRD patterns showed predominantly MNP and semicrystalline phases, with a minor maghemite phase detected by FT-Raman and magnetic measurements. FT-IR analysis revealed interactions between MNP and PLA, confirmed by thermal analysis showing higher transition temperatures for the composites (145 °C) compared to pure PLA (139 °C). FT-Raman spectra also indicated that PLA helps prevent iron oxide oxidation, enhancing nanoparticle stability. SEM and TEM micrographs showed well-dispersed, spherical nanoparticles with minimal agglomeration, dependent on MNP loading. The nanocomposites exhibited low N2 adsorption, resulting in low surface area (~2.1 m2/g) and porosity (~0.03 cm3/g). Magnetic analysis indicated that in the 2MNP/PLA sample, MNP were in a superparamagnetic-like regime at 300 K, suggesting good dispersion of 2 wt.% MNP in the PLA matrix. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

22 pages, 3528 KiB  
Article
Comparative Evaluation of Redox and Non-Redox Epoxy–Clay Coatings for Corrosion Resistance in ACQ Saline Media
by Yun-Xiang Lan, Yun-Hsuan Chen, Hsin-Yu Chang, Karen S. Santiago, Li-Yun Su, Cheng-Yu Tsai, Chun-Hung Huang and Jui-Ming Yeh
Polymers 2025, 17(12), 1684; https://doi.org/10.3390/polym17121684 - 17 Jun 2025
Viewed by 505
Abstract
This study prepared epoxy–clay nanocomposites (ECNs) by incorporating organophilic clays modified with either non-redox cetyltrimethylammonium bromide (CTAB) or redox-active aniline pentamer (AP), then compared their anticorrosion performance on metal substrates in saline environments. The test solution contained 2 wt% alkaline copper quaternary (ACQ) [...] Read more.
This study prepared epoxy–clay nanocomposites (ECNs) by incorporating organophilic clays modified with either non-redox cetyltrimethylammonium bromide (CTAB) or redox-active aniline pentamer (AP), then compared their anticorrosion performance on metal substrates in saline environments. The test solution contained 2 wt% alkaline copper quaternary (ACQ) wood preservatives. Cold-rolled steel (CRS) panels coated with the ECNs were evaluated via electrochemical impedance spectroscopy (EIS) in saline media both with and without ACQ. For CRS coated with unmodified epoxy, the Nyquist plot showed impedance dropping from 255 kΩ to 121 kΩ upon adding 2 wt% ACQ—indicating that Cu2⁺ ions accelerate iron oxidation. Introducing 1 wt% CTAB–clay into the epoxy increased impedance from 121 kΩ to 271 kΩ, while 1 wt% AP–clay raised it to 702 kΩ. This improvement arises because the organophilic clay platelets create a more tortuous path for Cu2+ and O₂ diffusion, as confirmed by ICP–MS measurements of Cu2+ after EIS and oxygen permeability tests (GPA), thereby slowing iron oxidation. Moreover, ECN coatings containing AP–clay outperformed those with CTAB–clay in corrosion resistance, suggesting that AP not only enhances platelet dispersion but also promotes formation of a dense, passive metal oxide layer at the coating–metal interface, as shown by TEM, GPA, and XRD analyses. Finally, accelerated salt-spray exposure following ASTM B-117 yielded corrosion behavior consistent with the EIS results. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Figure 1

33 pages, 1666 KiB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Viewed by 1070
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1101
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

16 pages, 2538 KiB  
Article
Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells
by Dana Almohazey, Vijaya Ravinayagam, Hatim Dafalla and Rabindran Jermy Balasamy
Pharmaceutics 2025, 17(5), 631; https://doi.org/10.3390/pharmaceutics17050631 - 9 May 2025
Viewed by 620
Abstract
Background/Objectives: Nanocarrier particle design for treating chronic pulmonary diseases presents several challenges, including anatomical and physiological barriers. Drug-repurposing technology using monodispersed spherical silica is one of the innovative ways to deliver drugs. In the present study, the anticancer potential of combinational cisplatin/ribavirin [...] Read more.
Background/Objectives: Nanocarrier particle design for treating chronic pulmonary diseases presents several challenges, including anatomical and physiological barriers. Drug-repurposing technology using monodispersed spherical silica is one of the innovative ways to deliver drugs. In the present study, the anticancer potential of combinational cisplatin/ribavirin was explored for targeted lung cancer therapeutics. Methods: Monodispersed spherical silica (80 nm) capable of diffusing into the tracheal mucus region was chosen and doped with 10 wt% superparamagnetic iron oxide nanoparticles (SPIONs). Subsequently, it was wrapped with chitosan (Chi, 0.6 wt/vol%), functionalized with 5% wt/wt cisplatin (Cp)/ribavarin (Rib) and angiotensin-converting enzyme 2 (ACE-2) (1.0 μL/mL). Formulations are based on monodispersed spherical silica or halloysite and are termed as (S/MSSiO2/Chi/Cp/Rib) or (S/Hal/Chi/Cp/Rib), respectively. Results: X-ray diffraction (XRD) and diffuse reflectance UV-visible spectroscopy (DRS-UV-vis) analysis of S/MSSiO2/Chi/Cp/Rib confirmed the presence of SPION nanoclusters on the silica surface (45% coverage). The wrapping of chitosan on the silica was confirmed with a Fourier transformed infrared (FTIR) stretching band at 670 cm−1 and ascribed to the amide group of the polymer. The surface charge by zetasizer and saturation magnetization by vibrating sample magnetometer (VSM) were found to be −15.3 mV and 8.4 emu/g. The dialysis membrane technique was used to study the Cp and Rib release between the tumor microenvironment and normal pH ranges from 5.5 to 7.4. S/MSSiO2/Chi formulation demonstrated pH-responsive Cp and Rib at acidic pH (5.6) and normal pH (7.4). Cp and Rib showed release of ~27% and ~17% at pH 5.6, which decreases to ~14% and ~3.2% at pH 7.4, respectively. To assess the compatibility and cytotoxic effect of our nanocomposites, the cell viability assay (MTT) was conducted on cancer lung cells A549 and normal HEK293 cells. Conclusions: The study shows that the designed nanoformulations with multifunctional capabilities are able to diffuse into the lung cells bound with dual drugs and the ACE-2 receptor. Full article
(This article belongs to the Special Issue Hybrid Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

26 pages, 26551 KiB  
Article
Antimicrobial Coatings Based on Hybrid Iron Oxide Nanoparticles
by Doina-Antonia Mercan, Dana-Ionela Tudorache (Trifa), Adelina-Gabriela Niculescu, Laurenţiu Mogoantă, George Dan Mogoşanu, Alexandra Cătălina Bîrcă, Bogdan Ștefan Vasile, Ariana Hudiță, Ionela Cristina Voinea, Miruna S. Stan, Tony Hadibarata, Dan Eduard Mihaiescu, Alexandru Mihai Grumezescu and Adina Alberts
Nanomaterials 2025, 15(9), 637; https://doi.org/10.3390/nano15090637 - 22 Apr 2025
Cited by 4 | Viewed by 950
Abstract
This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. Fe3O4 nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and [...] Read more.
This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. Fe3O4 nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and uniform particle formation. The resulting Fe3O4/SA nanostructures were further modified with either silver or copper oxide to form iron oxide nanocomposites with enhanced antimicrobial functionality. These nanocomposites were subsequently integrated into silica aerogel matrices using a dip-coating approach to improve surface dispersion, structural stability, and biocompatibility. The structural and morphological properties of the samples were investigated using XRD, FT-IR, TEM with SAED analysis, and Raman microscopy. In vitro cytotoxicity and antimicrobial assays demonstrated that Fe3O4/SA–Ag and Fe3O4/SA–CuO exhibit potent antibacterial activity and cell type-dependent biocompatibility. In vivo biodistribution studies showed no accumulation in major organs and selective clearance via the spleen, validating the systemic safety of the platform. These findings highlight the potential of the synthesized nanocomposites as biocompatible, antimicrobial coatings for advanced biomedical surfaces. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

19 pages, 5449 KiB  
Article
Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater
by Yu Gao, Ying Liu, Xu Zhao, Xinchao Liu, Qina Sun and Tifeng Jiao
Molecules 2025, 30(8), 1743; https://doi.org/10.3390/molecules30081743 - 13 Apr 2025
Viewed by 597
Abstract
Chromium-containing wastewater poses severe threats to ecosystems and human health due to the high toxicity of hexavalent chromium (Cr(VI)). Although iron oxide nanoparticles (IONPs) show promise for Cr(VI) removal, their practical application is hindered by challenges in recovery and reuse. Herein, a novel [...] Read more.
Chromium-containing wastewater poses severe threats to ecosystems and human health due to the high toxicity of hexavalent chromium (Cr(VI)). Although iron oxide nanoparticles (IONPs) show promise for Cr(VI) removal, their practical application is hindered by challenges in recovery and reuse. Herein, a novel three-dimensional porous nanocomposite, Artemia cyst shell biochar-supported iron oxide nanoparticles (ACSC@ IONP), was synthesized via synchronous pyrolysis of Fe3+-impregnated Artemia cyst shells (ACSs) and in situ reduction of iron. The optimized composite C@Fe-3, prepared with 1 mol/L Fe3+ and pyrolyzed at 450 °C for 5 h, exhibited rapid removal equilibrium within 5–10 min for both Cr(VI) and total chromium (Cr(total)), attributed to synergistic reduction of Cr(VI) to Cr(III) and adsorption of Cr(VI) and Cr(III). The maximum Cr(total) adsorption capacity was 110.1 mg/g at pH 2, as determined by the Sips isothermal model for heterogeneous adsorption. Competitive experiments demonstrated robust selectivity for Cr(VI) removal even under a 64-fold excess of competing anions, with an interference order of SO42− > NO3 > Cl. Remarkably, C@Fe-3 retained 65% Cr(VI) removal efficiency after four adsorption–desorption cycles. This study provides a scalable and eco-friendly strategy for fabricating reusable adsorbents with dual functionality for chromium remediation. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

15 pages, 2932 KiB  
Article
Microstructural and Magnetic Properties of Polyamide-Based Recycled Composites with Iron Oxide Nanoparticles
by Lucas G. Dos Santos, Daina D. A. Buelvas, Daniel F. Valezi, Bruno L. S. Vicentin, Christian M. M. Rocha, Eduardo Di Mauro and Felipe de A. La Porta
Magnetism 2025, 5(1), 5; https://doi.org/10.3390/magnetism5010005 - 25 Feb 2025
Cited by 2 | Viewed by 1897
Abstract
This study explores a sustainable approach to developing magnetic nanocomposites by synthesizing a mixed-phase iron oxide (IO) and recycled polyamide (RPA) composite from textile waste. The RPA/IO nanocomposite’s microstructural and magnetic properties were characterized using X-ray diffraction (XRD) with Rietveld refinement, scanning, transmission [...] Read more.
This study explores a sustainable approach to developing magnetic nanocomposites by synthesizing a mixed-phase iron oxide (IO) and recycled polyamide (RPA) composite from textile waste. The RPA/IO nanocomposite’s microstructural and magnetic properties were characterized using X-ray diffraction (XRD) with Rietveld refinement, scanning, transmission electron microscopy (SEM, TEM), and vibrating sample magnetometry (VSM). The proportions of the Fe3O4 and γ-Fe2O3 phases were found to be 23.2 wt% and 76.8 wt%, respectively. SEM and TEM showed a porous, agglomerated IO surface morphology with an average particle size of 14 nm. Magnetic analysis revealed ferrimagnetic and superparamagnetic behavior, with VSM showing saturation magnetization values of 21.81 emu g−1 at 5 K and 18.84 emu g−1 at 300 K. Anisotropy constants were estimated at 4.28 × 105 and 1.53 × 105, respectively, for IO and the composite, with a blocking temperature of approximately 178 K at 300 K. These results contribute to understanding the magnetic behavior of IO and their nanocomposites, which is crucial for their potential applications in emerging technologies. Full article
(This article belongs to the Special Issue Magnetism and Correlations in Nanomaterials)
Show Figures

Figure 1

22 pages, 3575 KiB  
Article
Novel Carvacrol@activated Carbon Nanohybrid for Innovative Poly(lactide Acid)/Triethyl Citrate Based Sustainable Active Packaging Films
by Vassilios K. Karabagias, Aris E. Giannakas, Areti A. Leontiou, Andreas Karydis-Messinis, Dimitrios Moschovas, Nikolaos D. Andritsos, Apostolos Avgeropoulos, Nikolaos E. Zafeiropoulos, Charalampos Proestos and Constantinos E. Salmas
Polymers 2025, 17(5), 605; https://doi.org/10.3390/polym17050605 - 24 Feb 2025
Cited by 1 | Viewed by 1364
Abstract
It has been well known for the past decade that the accumulation of food E-preservatives in the human body has harmful consequences for human health. Furthermore, scientists have realized that despite the convenience offered by petrochemical-derived polymers, a circular economy and sustainability are [...] Read more.
It has been well known for the past decade that the accumulation of food E-preservatives in the human body has harmful consequences for human health. Furthermore, scientists have realized that despite the convenience offered by petrochemical-derived polymers, a circular economy and sustainability are two current necessities; thus, the use of biodegradable alternative materials is imposed. The food packaging sector is one of the most rapidly changing sectors in the world. In recent years, many studies have focused on the development of active packaging films to replace old non-ecofriendly techniques with novel environmentally friendly methods. In this study, a novel self-healable, biodegradable active packaging film was developed using poly(lactic acid) (PLA) as a biopolymer, which was incorporated with a nanohybrid solid material as a natural preservative. This nanohybrid was derived via the absorption of carvacrol (CV) essential oil in an activated carbon (AC) nanocarrier. A material with a high carvacrol load of 71.3%wt. into AC via a vacuum-assisted adsorption method, functioning as a natural antioxidant and an antibacterial agent. The CV@AC nanohybrid was successfully dispersed in a PLA/triethyl citrate (TEC) matrix via melt extrusion, and a final PLA/TEC/xCV@AC nanocomposite film was developed. The study concluded that x = 10%wt. CV@AC was the optimum nanohybrid amount incorporated in the self-healable PLA/TEC and exhibited 277% higher ultimate strength and 72% higher water barrier compared to the pure PLA/TEC. Moreover, it remained ductile enough to show the slowest CV release rate, highest antioxidant activity, and significant antibacterial activity against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium. This film extended the shelf life of fresh minced pork by four days, according to total viable count measurements, and decreased its lipid oxidation rate. Finally, this novel film preserved the nutritional value of porkby maintaining a higher heme iron content and showed a higher level of sensory characteristics compared to commercial packaging paper. Full article
Show Figures

Graphical abstract

20 pages, 7497 KiB  
Article
Synthesis of Magnetic Nanoparticles Coated with Human Serum Albumin and Loaded by Doxorubicin
by Kirill Petrov, Elena Ryabova, Elena Dmitrienko and Alexey Chubarov
Magnetochemistry 2025, 11(2), 13; https://doi.org/10.3390/magnetochemistry11020013 - 13 Feb 2025
Viewed by 1258
Abstract
Magnetic iron oxide (II,III) nanoparticles (MNPs) are highly interested in biomedicine. However, their application is limited by oxidation, aggregation, rapid clearance from the body, and poor biodistribution. Coating by human serum albumin (HSA), the predominant blood plasma protein, can significantly influence properties, prolong [...] Read more.
Magnetic iron oxide (II,III) nanoparticles (MNPs) are highly interested in biomedicine. However, their application is limited by oxidation, aggregation, rapid clearance from the body, and poor biodistribution. Coating by human serum albumin (HSA), the predominant blood plasma protein, can significantly influence properties, prolong circulation half-life, and enhance tumor capture efficiency. Here, we report the synthesis of oleic acid and Tween20-coated MNPs and their interaction with HSA. The influence of albumin coating on MNP size, zeta potential, aggregation ability, and toxicity was studied. The particles were characterized by dynamic light scattering, transmission electron microscopy, and Fourier transform infrared spectroscopy methods. The nanoparticles’ relaxivities (r1 and r2) were assessed under a magnetic field of 1.88 T to evaluate their performance in MRI applications. The anticancer drug doxorubicin (DOX) loading capacity of up to 725 µg/mg for albumin-coated MNPs was determined. DOX-loaded MNPs displayed pH-sensitive drug release during acidic conditions. The series of DOX-loaded nanocomposites indicated inhibition of A549 cell lines, and the IC50 values were evaluated. This research underscores the utility of HSA-coated MNPs in enhancing the efficacy and stability of drug delivery systems in biomedicine. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Novel Functional Magnetic Materials)
Show Figures

Figure 1

17 pages, 1658 KiB  
Article
UV-C and Nanomaterial-Based Approaches for Sulfite-Free Wine Preservation: Effects on Polyphenol Profile and Microbiological Quality
by Kamila Pachnowska, Jolanta Kochel-Karakulska, Adrian Augustyniak, Valentina Obradović, Ireneusz Ochmian, Sabina Lachowicz-Wiśniewska, Ireneusz Kapusta, Klaudia Maślana, Ewa Mijowska and Krzysztof Cendrowski
Molecules 2025, 30(2), 221; https://doi.org/10.3390/molecules30020221 - 8 Jan 2025
Cited by 1 | Viewed by 1453
Abstract
Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in [...] Read more.
Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice. Nevertheless, UV-C treatment poses the risk of altering the chemical properties of wine. Therefore, this study aimed to test and implement iron oxide–silica core–shell nanomaterial functionalized with TiO2 in UV-C treatment of white and red wines. Material for the study consisted of the synthesized nanocomposite, Saccharomyces cerevisiae as a model yeast, and Muscaris and Cabernet Cortis wines. The viability of yeasts under treatment, the physiochemical properties of wine, and polyphenol content were tested. Studies have shown that nanomaterial can modulate the effects of UV-C treatment regarding yeast viability and polyphenol content, and the effectiveness of the treatment depends on the wine type. These results open up discussion on the possible use of the proposed hurdle technology in winemaking to control the polyphenol composition and alcohol reduction. Full article
(This article belongs to the Special Issue Analyses and Applications of Phenolic Compounds in Food—2nd Edition)
Show Figures

Graphical abstract

41 pages, 3593 KiB  
Review
Nanocomposites Based on Iron Oxide and Carbonaceous Nanoparticles: From Synthesis to Their Biomedical Applications
by Mirela Văduva, Andreea Nila, Adelina Udrescu, Oana Cramariuc and Mihaela Baibarac
Materials 2024, 17(24), 6127; https://doi.org/10.3390/ma17246127 - 14 Dec 2024
Cited by 2 | Viewed by 1878
Abstract
Nanocomposites based on Fe3O4 and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as Fe3O4@GO, Fe3O4@RGO, and Fe3O4 [...] Read more.
Nanocomposites based on Fe3O4 and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as Fe3O4@GO, Fe3O4@RGO, and Fe3O4@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on Fe3O4. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration. Hence, a solid foundation has been established for the integration of various synthesis techniques for these nanocomposites, with the wet co-precipitation method being the most prevalent. Moreover, the dimensions and morphology of the composite nanoparticles are directly correlated with the value of magnetic saturation, thus influencing the efficiency of the composite in drug delivery and other significant biomedical applications. The current demand for this type of material is related to the loading of a larger quantity of drugs within the hybrid structure of the carrier, with the objective of releasing this amount into the tumor cells. A second demand refers to the biocompatibility of the drug carrier and its capacity to permeate cell membranes, as well as the processes occurring within the drug carriers. The main objective of this paper is to review the synthesis methods used to prepare hybrids based on Fe3O4 and CNPs, such as GO, RGO, and CNTs, and to examinate their role in the formation of hybrid nanoparticles and the correlation between their morphology, the dimensions, and optical/magnetic properties. Full article
(This article belongs to the Special Issue Featured Reviews on Carbon Materials)
Show Figures

Graphical abstract

Back to TopTop