Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = iron based biodegradable alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1796 KiB  
Review
An Overview of Scaffolds and Biomaterials for Skin Expansion and Soft Tissue Regeneration: Insights on Zinc and Magnesium as New Potential Key Elements
by Nourhan Hassan, Thomas Krieg, Max Zinser, Kai Schröder and Nadja Kröger
Polymers 2023, 15(19), 3854; https://doi.org/10.3390/polym15193854 - 22 Sep 2023
Cited by 18 | Viewed by 6238
Abstract
The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. However, certain implants may only [...] Read more.
The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. However, certain implants may only be required temporarily to aid in the healing process of diseased or injured tissues and tissue expansion. Biodegradable metals, including zinc (Zn), magnesium (Mg), iron, and others, present a new paradigm in the realm of implant materials. Ongoing research focuses on developing optimized materials that meet medical standards, encompassing controllable corrosion rates, sustained mechanical stability, and favorable biocompatibility. Achieving these objectives involves refining alloy compositions and tailoring processing techniques to carefully control microstructures and mechanical properties. Among the materials under investigation, Mg- and Zn-based biodegradable materials and their alloys demonstrate the ability to provide necessary support during tissue regeneration while gradually degrading over time. Furthermore, as essential elements in the human body, Mg and Zn offer additional benefits, including promoting wound healing, facilitating cell growth, and participating in gene generation while interacting with various vital biological functions. This review provides an overview of the physiological function and significance for human health of Mg and Zn and their usage as implants in tissue regeneration using tissue scaffolds. The scaffold qualities, such as biodegradation, mechanical characteristics, and biocompatibility, are also discussed. Full article
(This article belongs to the Special Issue Biomaterials for Tissue Engineering and Regeneration II)
Show Figures

Figure 1

21 pages, 8587 KiB  
Article
Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloys
by Ana-Maria Roman, Ramona Cimpoeșu, Bogdan Pricop, Nicoleta-Monica Lohan, Marius Mihai Cazacu, Leandru-Gheorghe Bujoreanu, Cătălin Panaghie, Georgeta Zegan, Nicanor Cimpoeșu and Alice Mirela Murariu
J. Funct. Biomater. 2023, 14(7), 377; https://doi.org/10.3390/jfb14070377 - 19 Jul 2023
Cited by 1 | Viewed by 2144
Abstract
Iron-based SMAs can be used in the medical field for both their shape memory effect (SME) and biodegradability after a specific period, solving complicated chirurgical problems that are partially now addressed with shape-memory polymers or biodegradable polymers. Iron-based materials with (28–32 wt %) [...] Read more.
Iron-based SMAs can be used in the medical field for both their shape memory effect (SME) and biodegradability after a specific period, solving complicated chirurgical problems that are partially now addressed with shape-memory polymers or biodegradable polymers. Iron-based materials with (28–32 wt %) Mn and (4–6 wt %) Si with the addition of 1 and 2 wt % Ag were obtained using levitation induction melting equipment. Addition of silver to the FeMnSi alloy was proposed in order to enhance its antiseptic property. Structural and chemical composition analyses of the newly obtained alloys were performed by X-ray diffraction (confirming the presence of ε phase), scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The corrosion resistance was evaluated through immersion tests and electrolyte pH solution variation. Dynamic mechanical solicitations were performed with amplitude sweep performed on the FeMnSi–1Ag and FeMnSi–2Ag samples, including five deformation cycles at 40 °C, with a frequency of 1 Hz, 5 Hz and 20 Hz. These experiments were meant to simulate the usual behavior of some metallic implants subjected to repetitive mechanical loading. Atomic force microscopy was used to analyze the surface roughness before and after the dynamic mechanical analysis test followed by the characterization of the surface profile change by varying dynamic mechanical stress. Differential scanning calorimetry was performed in order to analyze the thermal behavior of the material in the range of −50–+200 °C. X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) along with Neaspec nano-FTIR experiments were performed to identify and confirm the corrosion compounds (oxides, hydroxides or carbonates) formed on the surface. Full article
(This article belongs to the Special Issue Corrosion Science in Biodegradable Implants)
Show Figures

Figure 1

15 pages, 5184 KiB  
Review
Human Body-Fluid-Assisted Fracture of Zinc Alloys as Biodegradable Temporary Implants: Challenges, Research Needs and Way Forward
by R. K. Singh Raman, Cuie Wen and Jörg F. Löffler
Materials 2023, 16(14), 4984; https://doi.org/10.3390/ma16144984 - 13 Jul 2023
Cited by 6 | Viewed by 2036
Abstract
Alloys of magnesium, zinc or iron that do not contain toxic elements are attractive as construction material for biodegradable implants, i.e., the type of implants that harmlessly dissolve away within the human body after they have completed their intended task. The synergistic influence [...] Read more.
Alloys of magnesium, zinc or iron that do not contain toxic elements are attractive as construction material for biodegradable implants, i.e., the type of implants that harmlessly dissolve away within the human body after they have completed their intended task. The synergistic influence of mechanical stress and corrosive human body fluid can cause sudden and catastrophic fracture of bioimplants due to phenomena such as stress corrosion cracking (SCC) and corrosion fatigue (CF). To date, SCC and CF of implants based on Zn have scarcely been investigated. This article is an overview of the challenges, research needs and way forward in understanding human body-fluid-assisted fractures (i.e., SCC and CF) of Zn alloys in human body fluid. Full article
(This article belongs to the Special Issue Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

17 pages, 5363 KiB  
Article
Microstructure, Shape Memory Effect, Chemical Composition and Corrosion Resistance Performance of Biodegradable FeMnSi-Al Alloy
by Ana-Maria Roman, Ionelia Voiculescu, Ramona Cimpoeșu, Bogdan Istrate, Romeu Chelariu, Nicanor Cimpoeșu, Georgeta Zegan, Cătălin Panaghie, Nicoleta Monica Lohan, Mihai Axinte and Alice Mirela Murariu
Crystals 2023, 13(1), 109; https://doi.org/10.3390/cryst13010109 - 7 Jan 2023
Cited by 14 | Viewed by 2836
Abstract
The medical applications of degradable iron-based biomaterials have been targeted by re-searchers due to their special properties that they present after alloying with various elements and different technological methods of obtaining. Compared to other biodegradable materials, iron-based alloys are designed especially for the [...] Read more.
The medical applications of degradable iron-based biomaterials have been targeted by re-searchers due to their special properties that they present after alloying with various elements and different technological methods of obtaining. Compared to other biodegradable materials, iron-based alloys are designed especially for the low production costs, the non-magnetism obtained by alloying with Mn, and the shape memory effect (SME) following the alloying with Si, which is necessary in medical applications for which it could replace nitinol successfully. Alloying with new elements could improve the mechanical properties, the degradation rate, and the transformation temperatures corresponding to the SME. This paper presents the results from the study of FeMnSi-Al alloy as a biodegradable material. The X-ray diffraction (XRD) method was used to identify the phases formed in the experimental Fe-Mn-Si-Al alloy, and the SME was studied by differential scanning calorimetry (DSC). In vitro tests were performed by immersing the samples in Ringer’s biological solution for different time intervals (1, 3, and 7 days). The chemical composition of the samples, as well as the compounds resulting from the immersion tests, were evaluated by energy dispersive X-ray (EDS). Scanning electron microscopy (SEM) was used for the microstructural analysis and for highlighting the surfaces subjected to contact with the electrolyte solution. The corrosion rate (CR, mm/yr.) was calculated after mass loss, sample surface area, and immersion time (h) (at 37 °C). Samples were subjected to electro-corrosion tests using electrochemical impedance spectroscopy (EIS) and Tafel linear and cyclic potentiometry. Full article
(This article belongs to the Special Issue Studies on the Microstructure and Corrosion Behavior of Alloys)
Show Figures

Figure 1

20 pages, 3599 KiB  
Review
Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation
by Yang Liu, Tianming Du, Aike Qiao, Yongliang Mu and Haisheng Yang
J. Funct. Biomater. 2022, 13(4), 164; https://doi.org/10.3390/jfb13040164 - 26 Sep 2022
Cited by 44 | Viewed by 6339
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, [...] Read more.
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation. Full article
Show Figures

Figure 1

4 pages, 173 KiB  
Editorial
Development and Application of Biodegradable Metals
by Petra Maier
Metals 2022, 12(8), 1312; https://doi.org/10.3390/met12081312 - 5 Aug 2022
Viewed by 1924
Abstract
Magnesium-, zinc- and iron-based alloys as biodegradable metals have been a focus of scientific attention for their ability to eliminate the need for a second surgery in order to remove implants made with such materials [...] Full article
(This article belongs to the Special Issue Development and Application of Biodegradable Metals)
20 pages, 7456 KiB  
Article
In Vitro Corrosion Behavior of Zn3Mg0.7Y Biodegradable Alloy in Simulated Body Fluid (SBF)
by Cătălin Panaghie, Ramona Cimpoeșu, Georgeta Zegan, Ana-Maria Roman, Mircea Catalin Ivanescu, Andra Adorata Aelenei, Marcelin Benchea, Nicanor Cimpoeșu and Nicoleta Ioanid
Appl. Sci. 2022, 12(5), 2727; https://doi.org/10.3390/app12052727 - 6 Mar 2022
Cited by 6 | Viewed by 2730
Abstract
Biodegradable metallic materials represent a new class of biocompatible materials for medical applications based on numerous advantages. Among them, those based on zinc have a rate of degradation close to the healing period required by many clinical problems, which makes them more suitable [...] Read more.
Biodegradable metallic materials represent a new class of biocompatible materials for medical applications based on numerous advantages. Among them, those based on zinc have a rate of degradation close to the healing period required by many clinical problems, which makes them more suitable than those based on magnesium or iron. The poor mechanical properties of Zn could be significantly improved by the addition of Mg and Y. In this research, we analyze the electro-chemical and mechanical behavior of a new alloy based on Zn3Mg0.7Y compared with pure Zn and Zn3Mg materials. Microstructure and chemical composition were investigated by electron microscopy and energy dispersive spectroscopy. The electrochemical corrosion was analyzed by linear polarization (LP), cyclic polarization (CP) and electrochemical impedance spectroscopy (EIS). For hardness and scratch resistance, a microhardness tester and a scratch module were used. Findings revealed that the mechanical properties of Zn improved through the addition of Mg and Y. Zn, Zn-Mg and Zn-Mg-Y alloys in this study showed highly active behavior in SBF with uniform corrosion. Zinc metals and their alloys with magnesium and yttrium showed a moderate degradation rate and can be considered as promising biodegradable materials for orthopedic application. Full article
(This article belongs to the Special Issue Active Materials for Medical Applications)
Show Figures

Figure 1

14 pages, 5035 KiB  
Article
Effect of the Biodegradable Component Addition to the Molding Sand on the Microstructure and Properties of Ductile Iron Castings
by Katarzyna Major-Gabryś, Małgorzata Hosadyna-Kondracka, Adelajda Polkowska and Małgorzata Warmuzek
Materials 2022, 15(4), 1552; https://doi.org/10.3390/ma15041552 - 18 Feb 2022
Cited by 2 | Viewed by 2407
Abstract
In this work, the results of the examinations of the effect of the mold material and mold technology on the microstructure and properties of the casts parts of ductile cast iron have been presented. Four different self-hardening molding sands based on fresh silica [...] Read more.
In this work, the results of the examinations of the effect of the mold material and mold technology on the microstructure and properties of the casts parts of ductile cast iron have been presented. Four different self-hardening molding sands based on fresh silica sand from Grudzen Las, with organic binders (no-bake process), were used to prepare molds for tested castings. A novelty is the use of molding sand with a two-component binder: furfuryl resin-polycaprolactone PCL biomaterial. The molds were poured with ductile iron according to standard PN-EN 1563:2018-10. The microstructure of the experimental castings was examined on metallographic cross-sections with PN-EN ISO 945-1:2019-09 standard. Observations were made in the area at the casting/mold boundary and in a zone approximately 10 mm from the surface of the casting with a light microscope. The tensile test at room temperature was conducted according to standard PN-EN ISO 6892-1:2016-09. Circular cross-section test pieces, machined from samples taken from castings, were used. In the present experiment, it was stated that interactions between the mold material of different compositions and liquid cast iron at the stage of casting solidification led to some evolution of casting’s microstructure in the superficial layer, such as a pearlite rim observed for acidic mold sand, a ferritic rim for alkaline sand, and graphite spheroids degeneration, especially spectacular for the acidic mold with polycaprolactone (PCL) addition. These microstructural effects may point to the interference of the direct chemical interactions between liquid alloy and the components released from the mold sand, such as sulfur and oxygen. Particularly noteworthy is the observation that the use of molding sand with furfuryl resin with the addition of biodegradable PCL material does not lead to an unfavorable modification of the mechanical properties in the casting. The samples taken from Casting No. 2, made on the acidic molding sand with the participation of biodegradable material, had an average strength of 672 MPa, the highest average strength UTS-among all tested molding sands. However, the elongation after fracture was 48% lower compared to the reference samples from Casting No. 1 from the sand without the addition of PCL. Full article
(This article belongs to the Topic Metallurgical and Materials Engineering)
Show Figures

Figure 1

18 pages, 4399 KiB  
Article
In-Vitro Analysis of FeMn-Si Smart Biodegradable Alloy
by Ana Maria Roman, Victor Geantă, Ramona Cimpoeșu, Corneliu Munteanu, Nicoleta Monica Lohan, Georgeta Zegan, Eduard Radu Cernei, Iulian Ioniță, Nicanor Cimpoeșu and Nicoleta Ioanid
Materials 2022, 15(2), 568; https://doi.org/10.3390/ma15020568 - 12 Jan 2022
Cited by 15 | Viewed by 2698
Abstract
Special materials are required in many applications to fulfill specific medical or industrial necessities. Biodegradable metallic materials present many attractive properties, especially mechanical ones correlated with good biocompatibility with vivant bodies. A biodegradable iron-based material was realized through electric arc-melting and induction furnace [...] Read more.
Special materials are required in many applications to fulfill specific medical or industrial necessities. Biodegradable metallic materials present many attractive properties, especially mechanical ones correlated with good biocompatibility with vivant bodies. A biodegradable iron-based material was realized through electric arc-melting and induction furnace homogenization. The new chemical composition obtained presented a special property named SME (shape memory effect) based on the martensite transformation. Preliminary results about this special biodegradable material with a new chemical composition were realized for the chemical composition and structural and thermal characterization. Corrosion resistance was evaluated in Ringer’s solution through immersion tests for 1, 3, and 7 days, the solution pH was measured in time for 3 days with values for each minute, and electro-corrosion was measured using a potentiostat and a three electrode cell. The mass loss of the samples during immersion and electro-corrosion was evaluated and the surface condition was studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). SME was highlighted with differential scanning calorimetry (DSC). The results confirm the possibility of a memory effect of the materials in the wrought case and a generalized corrosion (Tafel and cyclic potentiometry and EIS) with the formation of iron oxides and a corrosion rate favorable for applications that require a longer implantation period. Full article
(This article belongs to the Special Issue Corrosion Resistance Enhancement of the Materials Surface)
Show Figures

Figure 1

14 pages, 8730 KiB  
Article
Anodic ZnO Microsheet Coating on Zn with Sub-Surface Microtrenched Zn Layer Reduces Risk of Localized Corrosion and Improves Bioactivity of Pure Zn
by Hongzhou Dong and Sannakaisa Virtanen
Coatings 2021, 11(5), 486; https://doi.org/10.3390/coatings11050486 - 21 Apr 2021
Cited by 5 | Viewed by 2568
Abstract
Zinc-based alloys are emerging as an alternative to magnesium- and iron-based alloys for biodegradable implant applications, due to their appropriate corrosion performance and biocompatibility. However, localized corrosion occurring on the zinc surface, which is generally associated with restricted mass transport at specific surface [...] Read more.
Zinc-based alloys are emerging as an alternative to magnesium- and iron-based alloys for biodegradable implant applications, due to their appropriate corrosion performance and biocompatibility. However, localized corrosion occurring on the zinc surface, which is generally associated with restricted mass transport at specific surface sites, such as in confined crevices, declines mechanical strength and can lead to the failure of implant materials. In order to improve corrosion behavior and bioactivity, we explore the effect of a ZnO microsheet coating fabricated on pure Zn via anodic oxidization. Samples were characterized with Scanning Electron Microscope (SEM) (including Energy Dispersive Spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD)). The microstructured surface consists of parallel Zn trenches on the bottom and ZnO/Zn3O(SO4)2 sheets on the top. This layer shows favorable Ca-phosphate precipitation as well as bovine serum albumin (BSA) adsorption properties. Electrochemical experiments indicate an increased corrosion resistance of surface-modified Zn by the presence of BSA in simulated body fluid. Most noteworthily, localized corrosion that has been previously observed for pure Zn in BSA-containing electrolytes does not occur on the Zn/ZnO-coated surface. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

16 pages, 6014 KiB  
Article
Friction, Wear and Corrosion Behavior of Environmentally-Friendly Fatty Acid Ionic Liquids
by Javier Faes, Rubén González, Antolin Hernández Battez, David Blanco, Alfonso Fernández-González and José Luis Viesca
Coatings 2021, 11(1), 21; https://doi.org/10.3390/coatings11010021 - 27 Dec 2020
Cited by 6 | Viewed by 2803
Abstract
This research deals with the tribological behavior and corrosion performance of three novel fatty acid anion-based ionic liquids (FAILs): methyltrioctylammonium hexanoate ([N8,8,8,1][C6:0]), methyltrioctylammonium octadecanoate ([N8,8,8,1][C18:0]) and methyltrioctylammonium octadec-9-enoate ([N8,8,8,1][C18:1]), employed for [...] Read more.
This research deals with the tribological behavior and corrosion performance of three novel fatty acid anion-based ionic liquids (FAILs): methyltrioctylammonium hexanoate ([N8,8,8,1][C6:0]), methyltrioctylammonium octadecanoate ([N8,8,8,1][C18:0]) and methyltrioctylammonium octadec-9-enoate ([N8,8,8,1][C18:1]), employed for the first time as neat lubricant with five different material pairs: steel–steel, steel–aluminum alloy, steel–bronze, steel–cast iron and steel–tungsten carbide. These novel substances were previously obtained from fatty acids via metathesis reactions, identified structurally via NMR (nuclear magnetic resonance) and FTIR (Fourier-transform infrared spectroscopy) techniques, and then characterized from a physicochemical (density, water solubility, viscosity, viscosity index and refractive index) and environmental (bacterial toxicity and biodegradability) points of view. The corrosion behavior of the three FAILs was studied by exposure at room temperature, while friction and wear tests were performed with a reciprocating ball-on-disc configuration. The main results and conclusions obtained were: (1) Corrosion in the presence of the three FAILs is observed only on the bronze surface; (2) All FAILs presented similar tribological behavior as lubricants for each tested material pair; (3) XPS (X-ray photoelectron spectroscopy) analysis indicated that the surface behavior of the three FAILs in each material pair was similar, with low chemical interaction with the surfaces. Full article
(This article belongs to the Special Issue Recent Advances in Green Tribology)
Show Figures

Figure 1

22 pages, 15067 KiB  
Article
In Vitro and In Vivo Testing of Zinc as a Biodegradable Material for Stents Fabricated by Photo-Chemical Etching
by Bala Subramanya Pavan Kumar Kandala, Guangqi Zhang, Tracy M. Hopkins, Xiaoxian An, Sarah K. Pixley and Vesselin Shanov
Appl. Sci. 2019, 9(21), 4503; https://doi.org/10.3390/app9214503 - 24 Oct 2019
Cited by 13 | Viewed by 4388
Abstract
There is an increasing interest in biodegradable metal implants made from magnesium (Mg), iron (Fe), zinc (Zn) and their alloys because they are well tolerated in vivo and have mechanical properties that approach those of non-degradable metals. In particular, Zn and its alloys [...] Read more.
There is an increasing interest in biodegradable metal implants made from magnesium (Mg), iron (Fe), zinc (Zn) and their alloys because they are well tolerated in vivo and have mechanical properties that approach those of non-degradable metals. In particular, Zn and its alloys show the potential to be the next generation of biodegradable materials for medical implants. However, Zn has not been as well-studied as Mg, especially for stent applications. Manufacturing stents by laser cutting has become an industry standard. Nevertheless, the use of this approach with Zn faces some challenges, such as generating thermal stress, dross sticking on the device, surface oxidation, and the need for expensive thin-walled Zn tubing and post-treatment. All of these challenges motivated us to employ photo-chemical etching for fabricating different designs of Zn (99.95% pure) stents. The stents were constructed with different strut patterns, made by photo-chemical etching, and mechanically tested to evaluate radial forces. Stents with rhombus design patterns showed a promising 0.167N/mm radial force, which was comparable to Mg-based stents. In vitro studies were conducted with uncoated Zn stents as control and Parylene C-coated Zn stents to determine corrosion rates. The Parylene C coating reduced the corrosion rate by 50% compared to uncoated stents. In vivo studies were carried out by implanting photo-chemically etched, uncoated Zn stent segments subcutaneously in a C57BL/6 mice model. Histological analyses provided favorable data about the surrounding tissue status, as well as nerve and blood vessel responses near the implant, providing insights into the in vivo degradation of the metal struts. All of these experiments confirmed that Zn has the potential for use in biodegradable stent applications. Full article
(This article belongs to the Special Issue Degradable/Resorbable Metallic Alloys for Biomedical Applications)
Show Figures

Graphical abstract

12 pages, 1620 KiB  
Review
Refining Principles and Technical Methodologies to Produce Ultra-Pure Magnesium for High-Tech Applications
by Seifeldin R. Mohamed, Semiramis Friedrich and Bernd Friedrich
Metals 2019, 9(1), 85; https://doi.org/10.3390/met9010085 - 15 Jan 2019
Cited by 32 | Viewed by 6317
Abstract
During the last decade, magnesium-based medical implants have become the focal point of a large number of scientific studies due to their perceived favorable properties. Implants manufactured from magnesium alloys are not only biocompatible and biodegradable, but they are also the answer to [...] Read more.
During the last decade, magnesium-based medical implants have become the focal point of a large number of scientific studies due to their perceived favorable properties. Implants manufactured from magnesium alloys are not only biocompatible and biodegradable, but they are also the answer to problems associated with other materials like stress shielding (Ti alloys) and low mechanical stability (polymers). Magnesium has also been a metal of interest in another field. By offering superior technical and economic features in comparison to lithium, it has received significant attention in recent years as a potential battery anode alternative. Natural abundancy, low cost, environmental friendliness, large volumetric capacity, and enhanced operational safety are among the reasons that magnesium anodes are the next breakthrough in battery development. Unfortunately, commercial production of such implants and primary and secondary cells has been hindered due to magnesium’s low corrosion resistance. Corrosion investigations have shown that this inferior quality is a direct result of the presence of certain impurities in metallic magnesium such as iron, copper, cobalt, and nickel, even at the lowest levels of concentration. Magnesium’s sensitivity to corrosion is an obstacle for its usage not only in biomedical implants and batteries, but also in the automotive/aerospace industries. Therefore, investigations focusing on magnesium refinement with the goal of producing high and ultra-high purity magnesium suitable for such demanding applications are imperative. In this paper, vacuum distillation fundamentals and techniques are thoroughly reviewed as the main refining principles for magnesium. Full article
Show Figures

Figure 1

15 pages, 4221 KiB  
Article
Electrochemical Behavior of Biodegradable FeMnSi–MgCa Alloy
by Nicanor Cimpoeşu, Florin Săndulache, Bogdan Istrate, Ramona Cimpoeşu and Georgeta Zegan
Metals 2018, 8(7), 541; https://doi.org/10.3390/met8070541 - 13 Jul 2018
Cited by 22 | Viewed by 4244
Abstract
Nowadays, alongside metallic biomaterials, there is increasing interest in using degradable metals in an appreciable number of medical applications. There are new kinds of metallic biomaterials for medical applications and many new findings have been reported over the past few years. Iron-based materials [...] Read more.
Nowadays, alongside metallic biomaterials, there is increasing interest in using degradable metals in an appreciable number of medical applications. There are new kinds of metallic biomaterials for medical applications and many new findings have been reported over the past few years. Iron-based materials are a solution for biodegradable applications based on their mechanical and chemical properties. In order to control the corrosion rate of the Fe10Mn6Si alloy, we proposed the use of two additional elements, Ca and Mg, as corrosion promoters. The new material was obtained in an air-controlled atmosphere furnace after five melting operations. The material was in vitro analyzed from a corrosion resistance point of view. The experiments were realized by immersion (7, 14, and 30 days) in simulated body fluid (SBF) solution at 37 °C and a constant pH, and by electrochemical tests (electrochemical impedance spectroscopy (EIS), linear polarization (LP), cyclic polarization (CP)). Material surfaces before and after corrosion tests were analyzed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) techniques. A discussion on the degradation rate of the material was realized from a comparison of the results. The results presented good composition homogeneity after the re-melting stages, with low percentages of Ca and Mg in the material, but with an adequate spread in the alloy. Full article
Show Figures

Graphical abstract

14 pages, 1349 KiB  
Review
Advances and Challenges of Biodegradable Implant Materials with a Focus on Magnesium-Alloys and Bacterial Infections
by Muhammad Imran Rahim, Sami Ullah and Peter P. Mueller
Metals 2018, 8(7), 532; https://doi.org/10.3390/met8070532 - 10 Jul 2018
Cited by 72 | Viewed by 9217
Abstract
Medical implants made of biodegradable materials could be advantageous for temporary applications, such as mechanical support during bone-healing or as vascular stents to keep blood vessels open. After completion of the healing process, the implant would disappear, avoiding long-term side effects or the [...] Read more.
Medical implants made of biodegradable materials could be advantageous for temporary applications, such as mechanical support during bone-healing or as vascular stents to keep blood vessels open. After completion of the healing process, the implant would disappear, avoiding long-term side effects or the need for surgical removal. Various corrodible metal alloys based on magnesium, iron or zinc have been proposed as sturdier and potentially less inflammatory alternatives to degradable organic polymers, in particular for load-bearing applications. Despite the recent introduction of magnesium-based screws, the remaining hurdles to routine clinical applications are still challenging. These include limitations such as mechanical material characteristics or unsuitable corrosion characteristics. In this article, the salient features and clinical prospects of currently-investigated biodegradable implant materials are summarized, with a main focus on magnesium alloys. A mechanism of action for the stimulation of bone growth due to the exertion of mechanical force by magnesium corrosion products is discussed. To explain divergent in vitro and in vivo effects of magnesium, a novel model for bacterial biofilm infections is proposed which predicts crucial consequences for antibacterial implant strategies. Full article
(This article belongs to the Special Issue Biodegradable Metals)
Show Figures

Figure 1

Back to TopTop