Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = ionospheric scintillation index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3735 KB  
Article
Estimating Ionospheric Phase Scintillation Indices in the Polar Region from 1 Hz GNSS Observations Using Machine Learning
by Zhuojun Han, Ruimin Jin, Longjiang Chen, Weimin Zhen, Huaiyun Peng, Huiyun Yang, Mingyue Gu, Xiang Cui and Guangwang Ji
Remote Sens. 2025, 17(17), 3073; https://doi.org/10.3390/rs17173073 - 3 Sep 2025
Viewed by 1628
Abstract
Ionospheric scintillation represents a disturbance phenomenon induced by irregular electron density variations, predominantly occurring in equatorial, auroral, and polar regions, thereby posing significant threats to Global Navigation Satellite Systems (GNSS) performance. Polar regions in particular confront distinctive challenges, including the sparse deployment of [...] Read more.
Ionospheric scintillation represents a disturbance phenomenon induced by irregular electron density variations, predominantly occurring in equatorial, auroral, and polar regions, thereby posing significant threats to Global Navigation Satellite Systems (GNSS) performance. Polar regions in particular confront distinctive challenges, including the sparse deployment of dedicated ionospheric scintillation monitoring receiver (ISMR) equipment, the limited availability of strong scintillation samples, severely imbalanced training datasets, and the insufficient sensitivity of conventional Deep Neural Networks (DNNs) to intense scintillation events. To address these challenges, this study proposes a modeling framework that integrates residual neural networks (ResNet) with the Synthetic Minority Over-sampling Technique for Regression with Gaussian Noise (SMOGN). The proposed model incorporates multi-source disturbance features to accurately estimate phase scintillation indices (σφ) in polar regions. The methodology was implemented and validated across multiple polar observation stations in Canada. Shapley Additive Explanations (SHAP) interpretability analysis reveals that the rate of total electron content index (ROTI) features contribute up to 64.09% of the predictive weight. The experimental results demonstrate a substantial performance enhancement compared with conventional DNN models, with root mean square error (RMSE) values ranging from 0.0078 to 0.038 for daytime samples in 2024, and an average coefficient of determination (R2) consistently exceeding 0.89. The coefficient of determination for the Pseudo-Random Noise (PRN) path estimation results can reach 0.91. The model has good estimation results at different latitudes and is able to accurately capture the distribution characteristics of the local strong scintillation structures and their evolution patterns. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

9 pages, 4438 KB  
Proceeding Paper
Impact of Solar Cycle 25 on GNSS Measurements: Analysis of Ionospheric Scintillation and Positioning Challenges
by Ali Broumandan, Isabelle Tremblay and Sandy Kennedy
Eng. Proc. 2025, 88(1), 21; https://doi.org/10.3390/engproc2025088021 - 26 Mar 2025
Cited by 1 | Viewed by 2154
Abstract
As the peak of solar cycle 25 approaches, increased ionospheric and scintillation activity is being observed, which is negatively impacting the quality of GNSS measurements and presenting challenges in the positioning domain. Ionospheric refraction and diffraction introduce delays and distortions to GNSS carrier [...] Read more.
As the peak of solar cycle 25 approaches, increased ionospheric and scintillation activity is being observed, which is negatively impacting the quality of GNSS measurements and presenting challenges in the positioning domain. Ionospheric refraction and diffraction introduce delays and distortions to GNSS carrier phase measurements, leading to positioning errors that exceed the anticipated accuracies. These position errors can be a significant concern for users across the world who depend on precise GNSS positioning, such as in agriculture, offshore marine positioning and autonomous automotive positioning. To understand the direct impact on NovAtel receivers and its positioning engines, a comprehensive analysis was conducted. A closer look was taken at what happened in 2023–2024 by characterizing scintillation using the amplitude scintillation index (S4) values in an equatorial region. Additionally, the scintillation effect on the receivers was characterized through the analysis of C/N0, lock breaks, double differences and other indicators. With a substantial amount of data collected at 20° latitude, where high solar activity occurs due to the proximity to the equator, the positioning performance of Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) was analyzed. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

15 pages, 6100 KB  
Article
The Characteristics and Possible Mechanisms of the Strongest Ionospheric Irregularities in March 2024
by Jinghua Li, Guanyi Ma, Jiangtao Fan, Qingtao Wan, Takashi Maruyama, Jie Zhang, Chi-Kuang Chao, Liang Dong, Dong Wang, Yang Gao and Le Zhang
Atmosphere 2025, 16(2), 218; https://doi.org/10.3390/atmos16020218 - 15 Feb 2025
Viewed by 2340
Abstract
A geomagnetic storm occurred on 3 March 2024, with the minimum SYM-H reaching −127 nT. Although this geomagnetic storm was not very strong, the ionospheric irregularities on this day resulted in a strong ionospheric scintillation. The amplitude scintillation index was larger than 1.0. [...] Read more.
A geomagnetic storm occurred on 3 March 2024, with the minimum SYM-H reaching −127 nT. Although this geomagnetic storm was not very strong, the ionospheric irregularities on this day resulted in a strong ionospheric scintillation. The amplitude scintillation index was larger than 1.0. Global Navigation Satellite System (GNSS) receivers experienced numerous cycle slips and loss of lock of carrier phase over a large longitudinal range of ~30 degrees within ~5 h in the south of China. The occurrence of cycle slips over such a long duration and extensive longitudinal range is rarely reported. Ground-based GNSS receivers, ionosondes and in situ satellite measurements were utilized to analyze the characteristics of the equatorial plasma bubbles (EPBs) during this event. The EPBs began before the main phase of the geomagnetic storm and extended to 30°N in latitude. Possible physical mechanisms for the initial generation and the development of the EPBs are discussed. It is believed that different mechanisms played vital roles in the initial generation and development of the EPBs before and after the onset of the main phase of the geomagnetic storm. Moreover, a large-scale wave structure (LSWS) could potentially serve as the seeding source of the EPBs. Full article
(This article belongs to the Special Issue Ionospheric Irregularity (2nd Edition))
Show Figures

Figure 1

23 pages, 14513 KB  
Article
Scintillations in Southern Europe During the Geomagnetic Storm of June 2015
by Anna Morozova, Luca Spogli, Teresa Barata, Rayan Imam, Emanuele Pica, Juan Andrés Cahuasquí, Mohammed Mainul Hoque, Norbert Jakowski and Daniela Estaço
Remote Sens. 2025, 17(3), 535; https://doi.org/10.3390/rs17030535 - 5 Feb 2025
Cited by 1 | Viewed by 1566
Abstract
The sensitivity of Global Navigation Satellite System (GNSS) receivers to ionospheric disturbances and their constant growth are nowadays resulting in an increased concern of GNSS users about the impacts of ionospheric disturbances at mid-latitudes. The geomagnetic storm of June 2015 is an example [...] Read more.
The sensitivity of Global Navigation Satellite System (GNSS) receivers to ionospheric disturbances and their constant growth are nowadays resulting in an increased concern of GNSS users about the impacts of ionospheric disturbances at mid-latitudes. The geomagnetic storm of June 2015 is an example of a rare phenomenon of a spill-over of equatorial plasma bubbles well north from their habitual. We study the occurrence of small- and medium-scale irregularities in the North Atlantic Eastern Mediterranean mid- and low-latitudinal zone by analysing the amplitude of the scintillation index S4 and rate of total electron content index (ROTI) measurements during this storm. In addition, large-scale perturbations of the ionospheric electron density were studied using ground and space-borne instruments, thus characterising a complex perturbation behaviour over the region mentioned above. The involvement of large-scale structures is emphasised by the usage of innovative approaches such as the ground-based gradient ionosphere index (GIX) and electron density and total electron content gradients derived from Swarm satellite data. The multi-source data allow us to characterise the impact of irregularities of different scales to better understand the ionospheric dynamics and stress the importance of proper monitoring of the ionosphere in the studied region. Full article
Show Figures

Figure 1

14 pages, 2587 KB  
Article
Prediction of Ionospheric Scintillations Using Machine Learning Techniques during Solar Cycle 24 across the Equatorial Anomaly
by Sebwato Nasurudiin, Akimasa Yoshikawa, Ahmed Elsaid and Ayman Mahrous
Atmosphere 2024, 15(10), 1213; https://doi.org/10.3390/atmos15101213 - 11 Oct 2024
Viewed by 2225
Abstract
Ionospheric scintillation is a pressing issue in space weather studies due to its diverse effects on positioning, navigation, and timing (PNT) systems. Developing an accurate and timely prediction model for this event is crucial. In this work, we developed two machine learning models [...] Read more.
Ionospheric scintillation is a pressing issue in space weather studies due to its diverse effects on positioning, navigation, and timing (PNT) systems. Developing an accurate and timely prediction model for this event is crucial. In this work, we developed two machine learning models for the prediction of ionospheric scintillation events at the equatorial anomaly during the maximum and minimum phases of solar cycle 24. The models developed in this study are the Random Forest (RF) algorithm and the eXtreme Gradient Boosting (XGBoost) algorithm. The models take inputs based on the solar wind parameters obtained from the OMNI Web database from the years 2010–2017 and Pc5 wave power obtained from the Bear Island (BJN) magnetometer station. We retrieved data from the Scintillation Network and Decision Aid (SCINDA) receiver in Egypt from which the S4 index was computed to quantify amplitude scintillations that were utilized as the target in the model development. Out-of-sample model testing was performed to evaluate the prediction accuracy of the models on unseen data after training. The similarity between the observed and predicted scintillation events, quantified by the R2 score, was 0.66 and 0.74 for the RF and XGBoost models, respectively. The corresponding Root Mean Square Errors (RMSEs) associated with the models were 0.01 and 0.01 for the RF and XGBoost models, respectively. The similarity in error shows that the XGBoost model is a good and preferred choice for the prediction of ionospheric scintillation events at the equatorial anomaly. With these results, we recommend the use of ensemble learning techniques for the study of the ionospheric scintillation phenomenon. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

27 pages, 10426 KB  
Article
Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23–24 March 2023 Geomagnetic Storm
by Afnan Tahir, Falin Wu, Munawar Shah, Christine Amory-Mazaudier, Punyawi Jamjareegulgarn, Tobias G. W. Verhulst and Muhammad Ayyaz Ameen
Remote Sens. 2024, 16(9), 1594; https://doi.org/10.3390/rs16091594 - 30 Apr 2024
Cited by 12 | Viewed by 4401
Abstract
This work investigates the ionospheric response to the March 2023 geomagnetic storm over American and Asian sectors from total electron content (TEC), rate of TEC index, ionospheric heights, Swarm plasma density, radio occultation profiles of Formosat-7/Cosmic-2 (F7/C2), Fabry-Perot interferometer driven neutral winds, and [...] Read more.
This work investigates the ionospheric response to the March 2023 geomagnetic storm over American and Asian sectors from total electron content (TEC), rate of TEC index, ionospheric heights, Swarm plasma density, radio occultation profiles of Formosat-7/Cosmic-2 (F7/C2), Fabry-Perot interferometer driven neutral winds, and E region electric field. During the storm’s main phase, post-sunset equatorial plasma bubbles (EPBs) extend to higher latitudes in the western American longitudes, showing significant longitudinal differences in the American sector. Over the Indian longitudes, suppression of post-sunset irregularities is observed, attributed to the westward prompt penetration electric field (PPEF). At the early recovery phase, the presence of post-midnight/near-sunrise EPBs till post-sunrise hours in the American sector is associated with the disturbance of dynamo-electric fields (DDEF). Additionally, a strong consistency between F7/C2 derived amplitude scintillation (S4) ≥ 0.5 and EPB occurrences is observed. Furthermore, a strong eastward electric field induced an increase in daytime TEC beyond the equatorial ionization anomaly crest in the American region, which occurred during the storm’s main phase. Both the Asian and American sectors exhibit negative ionospheric storms and inhibition of ionospheric irregularities at the recovery phase, which is dominated by the disturbance dynamo effect due to equatorward neutral winds. A slight increase in TEC in the Asian sector during the recovery phase could be explained by the combined effect of DDEF and thermospheric composition change. Overall, storm-time ionospheric variations are controlled by the combined effects of PPEF and DDEF. This study may further contribute to understanding the ionospheric responses under the influence of storm-phase and LT-dependent electric fields. Full article
Show Figures

Figure 1

28 pages, 5213 KB  
Article
Analyzing the Ionospheric Irregularities Caused by the September 2017 Geomagnetic Storm Using Ground-Based GNSS, Swarm, and FORMOSAT-3/COSMIC Data near the Equatorial Ionization Anomaly in East Africa
by Alireza Atabati, Iraj Jazireeyan, Mahdi Alizadeh, Mahmood Pirooznia, Jakob Flury, Harald Schuh and Benedikt Soja
Remote Sens. 2023, 15(24), 5762; https://doi.org/10.3390/rs15245762 - 17 Dec 2023
Cited by 11 | Viewed by 3268
Abstract
Geomagnetic storms are one of the leading causes of ionospheric irregularities, depending on their intensity. The 6–10 September 2017 geomagnetic storm, the most severe geomagnetic event of the year, resulted from an X9 solar flare and a subsequent coronal mass ejection (CME), with [...] Read more.
Geomagnetic storms are one of the leading causes of ionospheric irregularities, depending on their intensity. The 6–10 September 2017 geomagnetic storm, the most severe geomagnetic event of the year, resulted from an X9 solar flare and a subsequent coronal mass ejection (CME), with the first sudden storm commencements (SSC) occurring at 23:43 UT on day 06, coinciding with a Sym-H value of approximately 50 nT, triggered by a sudden increase in the solar wind. The interplanetary magnetic field (IMF) and disturbance storm time (Dst) increased when the first SSC occurred at 23:43 UT on 6 September. The second SSC occurred with a more vigorous intensity at 23:00 UT on 7 September, with the Kp index reaching 8 and the auroral electrojet (AE) 2500 nT. In this study, we investigated this phenomenon using data from Swarm, FORMOSAT-3/COSMIC, and ground-based GNSS networks in East Africa to measure ionospheric irregularities near the equatorial ionization anomaly (EIA). In this procedure, the total electron content (TEC), amplitude scintillation (S4), and rate of TEC Index (ROTI) were implemented to recognize ionospheric irregularities appearing during the geomagnetic storm. In addition, the Langmuir plasma probes of the Swarm satellites were employed to identify the rate of electron density index (RODI). The results obtained from the different techniques indicate the effects of geomagnetic storms in terms of increased ionospheric irregularities indicated by geophysical ionospheric parameters. This study demonstrates the potential of using space-based measurements to detect the effects of a geomagnetic storm on ionospheric irregularities for regions where ground-based ionospheric observations are rarely available, such as above the oceans. Full article
Show Figures

Figure 1

17 pages, 22587 KB  
Article
Effects of Strong Geomagnetic Storms on the Ionosphere and Degradation of Precise Point Positioning Accuracy during the 25th Solar Cycle Rising Phase: A Case Study
by Yifan Wang, Yunbin Yuan, Min Li, Ting Zhang, Hao Geng, Guofang Wang and Gang Wen
Remote Sens. 2023, 15(23), 5512; https://doi.org/10.3390/rs15235512 - 27 Nov 2023
Cited by 27 | Viewed by 6157
Abstract
Approaching the peak year of the 25th solar activity cycle, the frequency of strong geomagnetic storms is gradually increasing, which seriously affects the navigation and positioning performance of GNSS. Based on the globally distributed GNSS station data and FORMOSAT-7/COSMIC-2 occultation data, this paper [...] Read more.
Approaching the peak year of the 25th solar activity cycle, the frequency of strong geomagnetic storms is gradually increasing, which seriously affects the navigation and positioning performance of GNSS. Based on the globally distributed GNSS station data and FORMOSAT-7/COSMIC-2 occultation data, this paper explores for the first time the effects of the G4-class geomagnetic storm that occurred on 23–24 April 2023 on the global ionosphere, especially the ionospheric equatorial anomalies and F-layer perturbations. It reveals the precise point positioning (PPP) accuracy degradation during a geomagnetic storm. The results show that the ionospheric rate of total electron content index (ROTI) and near high latitude GNSS phase scintillations index have varying levels of perturbation during geomagnetic storms, with the maximum ROTI and phase scintillations index exceeding 0.5 TECU/min and 0.8, respectively. The equatorial ionization anomaly (EIA) shows an enhanced state (positive ionospheric storms) during geomagnetic storms, and the cause of this phenomenon is most likely the equatorward neutral wind. The variation of the S4 index of the FORMOSAT-7/COSMIC-2 satellite reveals the uplift of the F-layer during geomagnetic storms. During geomagnetic storms, the PPP accuracy degrades most seriously at high latitudes, the maximum MAE exceeds 2.3 m, and the RMS in the three-dimensional (3D) direction exceeds 2.0 m. These investigations can provide case support for space weather and GNSS studies of the impact of geomagnetic storms during peak solar activity years. Full article
Show Figures

Figure 1

17 pages, 3264 KB  
Article
Determining the Day-to-Day Occurrence of Low-Latitude Scintillation in Equinoxes at Sanya during High Solar Activities (2012–2013)
by Guodong Jia, Weihua Luo, Xiao Yu, Zhengping Zhu and Shanshan Chang
Atmosphere 2023, 14(8), 1242; https://doi.org/10.3390/atmos14081242 - 2 Aug 2023
Cited by 3 | Viewed by 2003
Abstract
Plasma irregularity in the equatorial and low-latitude ionosphere, which leads to ionospheric scintillation, can threaten the operation of radio-based communication and navigation systems. A method for forecasting scintillation activity is still pending. In this study, we examined the performance of ionospheric parameters, including [...] Read more.
Plasma irregularity in the equatorial and low-latitude ionosphere, which leads to ionospheric scintillation, can threaten the operation of radio-based communication and navigation systems. A method for forecasting scintillation activity is still pending. In this study, we examined the performance of ionospheric parameters, including the critical frequency (foF2), peak height of the F2-layer (hmF2), scale height (Hm) and virtual height (h’F), around local sunset from ground-based ionosonde observations, and also the characteristics of Equatorial Ionization Anomaly (EIA) derived from Gravity Recovery and Climate Experiment (GRACE) observations in equinoctial months (March–April and September–October) during high solar activities (2012–2013) at a low-latitude station at Sanya (18.3° N, 109.6° E; dip lat.: 12.8° N), China. Furthermore, the simplified linear growth rate of Rayleigh–Taylor (R–T) instability inferred from ionosonde measurements and EIA strength derived from GRACE observations were used to estimate the day-to-day occurrence of post-sunset scintillation. The results indicate that it is not adequate to determine whether scintillation in a low-latitude region would occur or not based on one ionospheric parameter around sunset. The simplified growth rate of R–T instability can be a good indicator for the day-to-day occurrence of scintillation, especially in combination with variations in EIA strength. An index including the growth rate and EIA variations for the prediction of the post-sunset occurrence of irregularity and scintillation is proposed; the overall prediction accuracy could be about 90%. Our results may provide useful information for the development of a forecasting model of the day-to-day variability of irregularities and scintillation in equatorial and low-latitude regions. Full article
Show Figures

Figure 1

19 pages, 8596 KB  
Article
The Movement of GPS Positioning Discrepancy Clouds at a Mid-Latitude Region in March 2015
by Janis Balodis, Madara Normand and Ansis Zarins
Remote Sens. 2023, 15(8), 2032; https://doi.org/10.3390/rs15082032 - 12 Apr 2023
Cited by 4 | Viewed by 2517
Abstract
The geomagnetic storm on 17 March 2015 had a strong impact on the global navigation satellite systems (GNSS) positioning results in many GNSS Continuously Operating Reference Stations (CORS) in Europe. The analysis of global positioning system (GPS) observations in Latvian CORS stations discovered [...] Read more.
The geomagnetic storm on 17 March 2015 had a strong impact on the global navigation satellite systems (GNSS) positioning results in many GNSS Continuously Operating Reference Stations (CORS) in Europe. The analysis of global positioning system (GPS) observations in Latvian CORS stations discovered a strong impact of this space weather event over the whole country. The impact appeared as a moving cloud of positioning discrepancies across the country. However, the analysis of the days before 17 March revealed other smaller duration ionospheric scintillation events. The objective was to analyze the GPS positioning discrepancy cloud movement, total electron content (TEC), and rate of change of the TEC index (ROTI) relationships, as well as discrepancy statistics. The area of analysis on 16–18 March was increased by including the EGNOS ground-based Ranging and Integrity Monitoring Stations (RIMS): GVLA and GVLB, LAPA and LAPB, and WRSA and WRSB. The conclusion of the study is that each “shot” after 90 s gives a completely new cloud with a new impacted station subset, its configuration, and completely irregular discrepancy values. Full article
Show Figures

Figure 1

11 pages, 2213 KB  
Article
TEC and ROTI Measurements from a New GPS Receiver at BOWEN University, Nigeria
by Olawale S. Bolaji, Rafiat O. Kaka, Wayne A. Scales, Joshua B. Fashae, Yuxiang Peng, A. Babatunde Rabiu, Joshua O. Fadiji and Aanuoluwapo Ojelade
Atmosphere 2023, 14(4), 636; https://doi.org/10.3390/atmos14040636 - 28 Mar 2023
Cited by 8 | Viewed by 3489
Abstract
Scintillation and total electron content (TEC) are the two major examples of the top-side ionospheric parameters that are recorded differently by most Global Positioning System (GPS) receivers. The new GPS sensor created by the Atmospheric and Space Technology Research Associates (ASTRA), Cornell University, [...] Read more.
Scintillation and total electron content (TEC) are the two major examples of the top-side ionospheric parameters that are recorded differently by most Global Positioning System (GPS) receivers. The new GPS sensor created by the Atmospheric and Space Technology Research Associates (ASTRA), Cornell University, and the University of Texas, Austin have capability to record scintillation and TEC fluctuations simultaneously. Hence, the Connected Autonomous Space Environment Sensor (CASES) from ASTRA is a software-defined GPS receiver with the dual frequency of L1 C/A and L2C codes for space-weather monitoring and can be remotely programmed via an internet source. The receiver employs numerous novel techniques that make it suitable for space-weather studies compared to other nearby GPS receivers, such as different methods for eliminating local clock effects, an advanced triggering mechanism for determining scintillation onset, data buffering to permit observation of the prelude to scintillation, and data-bit prediction and wipe-off for robust tracking. Moreover, the CASES hardware is made up of a custom-built dual frequency, a digital signal processor board, and a “single board computer” with an ARM microcontroller. We have used the CASES GPS receiver newly installed at Bowen University, Iwo, Nigeria, to investigate the TEC and the rate of the TEC index (ROTI) around the equatorial region. Measurements of the TEC and ROTI showed similar variation trends in monthly, seasonal, and annual periods when compared to TEC and ROTI measurements from a nearby station, BJCO at Cotonou, Benin Republic. The newly installed GPS receiver looks promising for scientific use as it is the only one operational in Nigeria at the moment. Full article
Show Figures

Figure 1

17 pages, 7318 KB  
Article
Study of Ionospheric Bending Angle and Scintillation Profiles Derived by GNSS Radio-Occultation with MetOp-A Satellite
by Fabricio S. Prol, M. Mainul Hoque, Manuel Hernández-Pajares, Liangliang Yuan, Germán Olivares-Pulido, Axel von Engeln, Christian Marquardt and Riccardo Notarpietro
Remote Sens. 2023, 15(6), 1663; https://doi.org/10.3390/rs15061663 - 20 Mar 2023
Cited by 6 | Viewed by 3458
Abstract
In this work, a dedicated campaign by MetOp-A satellite is conducted to monitor the ionosphere based on radio-occultation (RO) measurements provided by the onboard GNSS (Global Navigation Satellite System) Receiver for Atmospheric Sounding (GRAS). The main goal is to analyze the capabilities of [...] Read more.
In this work, a dedicated campaign by MetOp-A satellite is conducted to monitor the ionosphere based on radio-occultation (RO) measurements provided by the onboard GNSS (Global Navigation Satellite System) Receiver for Atmospheric Sounding (GRAS). The main goal is to analyze the capabilities of the collected data to represent the bending angle and scintillation profiles of the ionosphere. We compare the MetOp-A products with those generated by other RO missions and explore the spatial/temporal distributions sensed by the MetOp-A campaign. Validation of dual frequency bending angles at the RO tangent points, S4 index, and Rate of the Total electron content Index (ROTI) is performed against independent products from Fengyun-3D and FORMOSAT-7/COSMIC-2 satellites. Our main findings constitute the following: (1) bending angle profiles from MetOp-A agree well with Fengyun-3D measurements; (2) bending angle distributions show a typical S-shape variation along the altitudes; (3) signatures of the sporadic E-layer and equatorial ionization anomaly crests are observed by the bending angles; (4) sharp transitions are observed in the bending angle profiles above ~200 km due to the transition of the daytime/nighttime in addition to the transition of the bottom-side/top-side; and (5) sporadic E-layer signatures are observed in the S4 index distributions by MetOp-A and FORMOSAT-7/COSMIC-2, with expected differences in magnitudes between the GPS (Global Positioning System) L1 and L2 frequencies. Full article
Show Figures

Figure 1

19 pages, 6481 KB  
Article
Morphological and Spectral Features of Ionospheric Structures at E- and F-Region Altitudes over Poker Flat Analyzed Using Modeling and Observations
by Pralay Raj Vaggu, Kshitija B. Deshpande, Seebany Datta-Barua, Gary S. Bust, Donald L. Hampton, Aurora López Rubio and James P. Conroy
Sensors 2023, 23(5), 2477; https://doi.org/10.3390/s23052477 - 23 Feb 2023
Cited by 6 | Viewed by 2580
Abstract
Electron density irregularities in the ionosphere modify the phase and amplitude of trans-ionospheric radio signals. We aim to characterize the spectral and morphological features of E- and F-region ionospheric irregularities likely to produce these fluctuations or “scintillations”. To characterize them, we use a [...] Read more.
Electron density irregularities in the ionosphere modify the phase and amplitude of trans-ionospheric radio signals. We aim to characterize the spectral and morphological features of E- and F-region ionospheric irregularities likely to produce these fluctuations or “scintillations”. To characterize them, we use a three-dimensional radio wave propagation model—“Satellite-beacon Ionospheric scintillation Global Model of upper Atmosphere” (SIGMA), along with the scintillation measurements observed by a cluster of six Global Positioning System (GPS) receivers called Scintillation Auroral GPS Array (SAGA) at Poker Flat, AK. An inverse method is used to derive the parameters that describe the irregularities by estimating the best fit of model outputs to GPS observations. We analyze in detail one E-region and two F-region events during geomagnetically active times and determine the E- and F-region irregularity characteristics using two different spectral models as input to SIGMA. Our results from the spectral analysis show that the E-region irregularities are more elongated along the magnetic field lines with rod-shaped structures, while the F-region irregularities have wing-like structures with irregularities extending both along and across the magnetic field lines. We also found that the spectral index of the E-region event is less than the spectral index of the F-region events. Additionally, the spectral slope on the ground at higher frequencies is less than the spectral slope at irregularity height. This study describes distinctive morphological and spectral features of irregularities at E- and F-regions for a handful of cases performed using a full 3D propagation model coupled with GPS observations and inversion. Full article
Show Figures

Figure 1

16 pages, 3035 KB  
Article
Statistical Analysis of SF Occurrence in Middle and Low Latitudes Using Bayesian Network Automatic Identification
by Jian Feng, Yuqiang Zhang, Shuaihe Gao, Zhuangkai Wang, Xiang Wang, Bo Chen, Yi Liu, Chen Zhou and Zhengyu Zhao
Remote Sens. 2023, 15(4), 1108; https://doi.org/10.3390/rs15041108 - 17 Feb 2023
Cited by 3 | Viewed by 2328
Abstract
Spread-F (SF) is one of the most important types of the ionospheric irregularities as it causes ionospheric scintillation which can severely affect the performance and reliability of communication, navigation, and radar systems. The ionosonde provides the most effective and economical way to study [...] Read more.
Spread-F (SF) is one of the most important types of the ionospheric irregularities as it causes ionospheric scintillation which can severely affect the performance and reliability of communication, navigation, and radar systems. The ionosonde provides the most effective and economical way to study the ionosphere and SF. However, the manual identification of SF from an ionogram is boring and hard work. To automatically identify SF on the ionogram and extend the study of SF into the middle and low latitudes of East Asia, this paper presents a statistical analysis of SF in this region, based on the naïve Bayesian classifier. The results showed that the accuracy of automatic identification reached up to 97% on both the validation datasets and test datasets composed of Mohe, I-Cheon, Jeju, Wuhan, and Sanya ionograms, suggesting that it is a promising way to automatically identify SF on ionograms. Based on the classification results, the statistical analysis shows that SF has a complicated morphology in the middle and low latitudes of East Asia. Specifically, there is a peak of occurrence of SF in the summer in I-Cheon, Jeju, Sanya, and Wuhan; however, the Mohe station has the highest occurrence rate of SF in December. The different seasonal variations of SF might be due to the different geographic local conditions, such as the inland-coastal differences and formation mechanism differences at these latitudes. Moreover, SF occurs more easily in the post-midnight hours when compared with the pre-midnight period in these stations, which is consistent with the previous results. Furthermore, this paper extracts the frequency SF (FSF) index and range SF (RSF) index to characterize the features of SF. The results shows that the most intense FSF/RSF appeared in the height range of 220–300 km/1–7 MHz in these stations, although there are different magnitude extensions on different season in these regions. In particular, strong spread-F (SSF) reached its maximum at the equinox at Sanya, confirming the frequent SSF occurrence at the equinox at the equator and low latitudes. These results would be helpful for understanding the characteristics of SF in East Asia. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing II)
Show Figures

Figure 1

26 pages, 4454 KB  
Article
Mitigating the Scintillation Effect on GNSS Signals Using MP and ROTI
by Chendong Li, Craig M. Hancock, Sreeja Vadakke Veettil, Dongsheng Zhao and Nicholas A. S. Hamm
Remote Sens. 2022, 14(23), 6089; https://doi.org/10.3390/rs14236089 - 1 Dec 2022
Cited by 6 | Viewed by 4169
Abstract
Ionospheric scintillation is one of the main error sources of Global Navigation Satellite System (GNSS) positioning. The presence of scintillation may result in cycle slips, measurement errors or even losses of lock on satellites, eventually leading to complete failure of positioning. Typically, scintillation [...] Read more.
Ionospheric scintillation is one of the main error sources of Global Navigation Satellite System (GNSS) positioning. The presence of scintillation may result in cycle slips, measurement errors or even losses of lock on satellites, eventually leading to complete failure of positioning. Typically, scintillation parameters S4 and σϕ are used to characterize amplitude and phase scintillation, respectively. However, the scintillation parameters can only be generated from data with a frequency of at least 1 Hz. Rate of change of total electron content index (ROTI) is often used as a proxy for scintillation parameters, which can be obtained from 1/30 Hz data. However, previous research has shown the inefficiency of ROTI to represent scintillation. Therefore, the multipath parameter (MP) has been proposed as another proxy for scintillation parameters, which can also be obtained from 1/30 Hz data. In this paper, both MP and ROTI (standard parameters) were used to mitigate scintillation effects on precise point positioning (PPP). To evaluate the effectiveness of MP and ROTI in mitigating scintillation effects, S4 and σϕ were also used for comparison and validation. Three strategies are proposed: (1) remove all observations from the satellite that is most affected by scintillation; (2) remove the scintillation-affected observations; (3) weight the measurement noise matrix in the Kalman Filter (KF) process. The results show that the observation removal and weighting strategies are considerably more effective than the satellite removal strategy. The results also show that the improvement of PPP outputs reaches 93.1% and the performance of standard parameters is comparable to that of scintillation parameters in the observation removal and weighting strategies. Full article
Show Figures

Figure 1

Back to TopTop