Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23–24 March 2023 Geomagnetic Storm
Abstract
:1. Introduction
2. Data and Methods
2.1. Space Weather Indices
2.2. Ionospheric Data
2.3. E Region Electric Field Data
2.4. Thermospheric Data
3. Results
3.1. Interplanetary and Geophysical Conditions
3.2. Ionospheric Irregularities
3.2.1. American Sector
3.2.2. Asian Sector
3.3. Topside Plasma Density Fluctuations
3.3.1. American Sector
3.3.2. Asian Sector
3.4. GNSS-Derived TEC Disturbances
3.4.1. American Sector
3.4.2. Asian Sector
3.5. Variations in Ionospheric Heights
3.5.1. American Sector
3.5.2. Asian Sector
4. Discussion
4.1. On the Enhancement/Suppression of Ionospheric Irregularities
4.2. On the TEC Response
4.3. On the Amplitude Scintillation
5. Conclusions
- The formation of post-sunset EPBs during the main phase in eastern Brazil (~40°W) and inhibition in western Brazil (~60°W) are associated with the coexistence of PPEF and DDEF and their LT dependence;
- Enhancement in post-sunset EPBs indicates an absence of westward DDEF on the western coast of America; however, a poleward shift at ~2100 LT suggests the presence of eastward DDEF;
- The observation of EPBs during near-sunrise to post-sunrise periods in the American sector is associated with the eastward DDEF at the storm recovery phase;
- In the Indian sector, the suppression of post-sunset irregularities during the main phase is due to the effect of over-shielding PEF followed by the westward turning of PPEF. In the East Asian sector, EPBs persisted for a long time, and this longitudinal difference is due to the LT dependence on storm-induced electric fields;
- At the initial phase, a decrease in TEC values in the East Asian sector could have been associated with the sudden increase in solar wind velocity. However, no TEC change was observed in the Indian sector;
- The main phase was on the dayside in the American sector; therefore, a strong fountain effect was observed, reaching beyond EIA crest latitudes. No TEC variations were observed in the Asian sector due to low background TEC values at night, except for some depletions due to EPBs;
- In the early recovery phase, TEC depletions suggested the presence of EPBs in the American sector. However, on the dayside, TEC in the Asian sector exhibited negative storms except for an increase at equatorial latitudes. This increase at dip-equatorial stations is associated with the ceasing of double peak EIA structure and downward motion of plasma from higher to lower latitudes owing to the strong DDEF. The thermospheric O/N2 change also played a role;
- The observation of negative ionospheric storms after ~1000 UT on 24 March at both sectors suggests a strong influence of westward DDEF due to disturbed neutral winds. The inhibition of ionospheric irregularity during the recovery phase is due to the same reason;
- F7/C2 RO profiles show that the amplitude scintillation (S4) ≥ 0.5 is consistent with the EPB occurrence at the F-layer peak.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kärhä, O.; Tanskanen, E.I.; Vanhamäki, H. Large regional variability in geomagnetic storm effects in the auroral zone. Sci. Rep. 2023, 13, 18888. [Google Scholar] [CrossRef] [PubMed]
- Astafyeva, E.; Zakharenkova, I.; Huba, J.D.; Doornbos, E.; Van den IJssel, J. Global Ionospheric and Thermospheric Effects of the June 2015 Geomagnetic Disturbances: Multi-Instrumental Observations and Modeling. J. Geophys. Res. Space Phys. 2017, 122, 11–716. [Google Scholar] [CrossRef] [PubMed]
- Nishida, A. Geomagnetic Dp 2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. 1968, 73, 1795–1803. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fejer, B.G.; Gonzales, C.A. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 1979, 6, 301–304. [Google Scholar] [CrossRef]
- Fejer, B.G.; Gonzales, C.A.; Farley, D.T.; Kelley, M.C.; Woodman, R.F. Equatorial electric fields during magnetically disturbed conditions 1. The effect of the interplanetary magnetic field. J. Geophys. Res. Space Phys. 1979, 84, 5797–5802. [Google Scholar] [CrossRef]
- Bulusu, J.; Archana, R.K.; Arora, K.; Chandrasekhar, N.P.; Nagarajan, N. Effect of Disturbance Electric Fields on Equatorial Electrojet Over Indian Longitudes. J. Geophys. Res. Space Phys. 2018, 123, 5894–5916. [Google Scholar] [CrossRef]
- Tulasi Ram, S.; Nilam, B.; Balan, N.; Zhang, Q.; Shiokawa, K.; Chakrabarty, D.; Xing, Z.; Venkatesh, K.; Veenadhari, B.; Yoshikawa, A. Three Different Episodes of Prompt Equatorial Electric Field Perturbations Under Steady Southward IMF Bz During St. Patrick’s Day Storm. J. Geophys. Res. Space Phys. 2019, 124, 10428–10443. [Google Scholar] [CrossRef]
- Hashimoto, K.K.; Kikuchi, T.; Tomizawa, I.; Nagatsuma, T. Substorm Overshielding Electric Field at Low Latitude on the Nightside as Observed by the HF Doppler Sounder and Magnetometers. J. Geophys. Res. Space Phys. 2017, 122, 10–851. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance dynamo. J. Geophys. Res. Space Phys. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Mazaudier, C.; Venkateswaran, S.V. Delayed ionospheric effects of the geomagnetic storms of March 22, 1979 studied by the sixth co-ordinated data analysis workshop (CDAW-6). Ann. Geophys. 1990, 8, 511–518. [Google Scholar]
- Sultan, P.J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. Space Phys. 1996, 101, 26875–26891. [Google Scholar] [CrossRef]
- Abdu, M.A. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J. Atmos. Sol. Terr. Phys. 2012, 75–76, 44–56. [Google Scholar] [CrossRef]
- Sun, W.; Li, G.; Lei, J.; Zhao, B.; Hu, L.; Zhao, X.; Li, Y.; Xie, H.; Li, Y.; Ning, B.; et al. Ionospheric Super Bubbles Near Sunset and Sunrise During the 26–28 February 2023 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031864. [Google Scholar] [CrossRef]
- Patil, A.S.; Nade, D.P.; Taori, A.; Pawar, R.P.; Pawar, S.M.; Nikte, S.S.; Pawar, S.D. A Brief Review of Equatorial Plasma Bubbles. Space Sci. Rev. 2023, 219, 16. [Google Scholar] [CrossRef]
- Burke, W.J.; Gentile, L.C.; Huang, C.Y.; Valladares, C.E.; Su, S.Y. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res. Space Phys. 2004, 109, A12301. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, H.; Hu, L.; Sun, W.; Hao, X.; Ning, B.; Takahashi, H.; Li, G. Climatology of equatorial and low-latitude F region kilometer-scale irregularities over the meridian circle around 120°E/60°W. GPS Solut. 2020, 25, 20. [Google Scholar] [CrossRef]
- Sobral, J.H.A.; Abdu, M.A.; Takahashi, H.; Taylor, M.J.; De Paula, E.R.; Zamlutti, C.J.; De Aquino, M.G.; Borba, G.L. Ionospheric plasma bubble climatology over Brazil based on 22 years (1977–1998) of 630nm airglow observations. J. Atmos. Sol. Terr. Phys. 2002, 64, 1517–1524. [Google Scholar] [CrossRef]
- Dao, T.; Otsuka, Y.; Shiokawa, K.; Nishioka, M.; Yamamoto, M.; Buhari, S.M.; Abdullah, M.; Husin, A. Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes. J. Geophys. Res. Space Phys. 2017, 122, 7504–7518. [Google Scholar] [CrossRef]
- Otsuka, Y. Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere. Prog. Earth Planet. Sci. 2018, 5, 57. [Google Scholar] [CrossRef]
- Zhan, W.; Rodrigues, F.S.; Milla, M.A. On the Genesis of Postmidnight Equatorial Spread F: Results for the American/Peruvian Sector. Geophys. Res. Lett. 2018, 45, 7354–7361. [Google Scholar] [CrossRef]
- Carmo, C.S.; Pi, X.; Denardini, C.M.; Figueiredo, C.A.O.B.; Verkhoglyadova, O.P.; Picanço, G.A.S. Equatorial Plasma Bubbles Observed at Dawn and After Sunrise Over South America During the 2015 St. Patrick’s Day Storm. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029934. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shinbori, A.; Sori, T.; Tsugawa, T.; Nishioka, M.; Huba, J.D. Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations. Earth Planet Phys. 2021, 5, 427–434. [Google Scholar] [CrossRef]
- Sripathi, S.; Abdu, M.A.; Patra, A.K.; Ghodpage, R.N. Unusual Generation of Localized EPB in the Dawn Sector Triggered by a Moderate Geomagnetic Storm. J. Geophys. Res. Space Phys. 2018, 123, 9697–9710. [Google Scholar] [CrossRef]
- Otsuka, Y.; Spogli, L.; Tulasi Ram, S.; Li, G. Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation. Earth Planet. Phys. 2021, 5, eepp2021050. [Google Scholar] [CrossRef]
- Li, G.; Ning, B.; Otsuka, Y.; Abdu, M.A.; Abadi, P.; Liu, Z.; Spogli, L.; Wan, W. Challenges to Equatorial Plasma Bubble and Ionospheric Scintillation Short-Term Forecasting and Future Aspects in East and Southeast Asia. Surv. Geophys. 2021, 42, 201–238. [Google Scholar] [CrossRef]
- Rajana, S.S.K.; Panda, S.K.; Jade, S.; Vivek, C.G.; Upadhayaya, A.K.; Bhardwaj, A.; Jorphail, S.; Seemala, G.K. Impact of two severe geomagnetic storms on the ionosphere over Indian longitude sector during March–April 2023. Astrophys. Space Sci. 2024, 369, 3. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Förster, M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef]
- Venkatesh, K.; Patra, A.K.; Balan, N.; Fagundes, P.R.; Tulasi Ram, S.; Batista, I.S.; Reinisch, B.W. Superfountain Effect Linked With 17 March 2015 Geomagnetic Storm Manifesting Distinct F3 Layer. J. Geophys. Res. Space Phys. 2019, 124, 6127–6137. [Google Scholar] [CrossRef]
- Mansilla, G.A.; Zossi, M.M. Ionospheric response to the 26 August 2018 geomagnetic storm along 280°E and 316°E in the South American sector. Adv. Space Res. 2022, 69, 48–58. [Google Scholar] [CrossRef]
- Tariq, M.A.; Liu, L.; Shah, M.; Yang, Y.; Sun, W.; Shah, M.; Zhang, R.; Yoshikawa, A. Longitudinal variations of ionospheric responses to the February and April 2023 geomagnetic storms over American and Asian sectors. Adv. Space Res. 2024, 73, 3033–3049. [Google Scholar] [CrossRef]
- Buonsanto, M.J. Ionospheric Storms—A Review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Li, G.; Ning, B.; Wang, C.; Abdu, M.A.; Otsuka, Y.; Yamamoto, M.; Wu, J.; Chen, J. Storm-Enhanced Development of Postsunset Equatorial Plasma Bubbles Around the Meridian 120°E/60°W on 7–8 September 2017. J. Geophys. Res. Space Phys. 2018, 123, 7985–7998. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Chen, Y.; Yang, Y.; Han, T.; Ding, F.; Le, H.; Zhang, R. Multi-Instruments Observation of Ionospheric-Thermospheric Dynamic Coupling Over Mohe (53.5°N, 122.3°E) During the April 2023 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2023, 128, e2023JA032141. [Google Scholar] [CrossRef]
- Shahzad, R.; Shah, M.; Tariq, M.A.; Calabia, A.; Melgarejo-Morales, A.; Jamjareegulgarn, P.; Liu, L. Ionospheric-Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data. Remote Sens. 2023, 15, 2687. [Google Scholar] [CrossRef]
- Santos, A.M.; Abdu, M.A.; Sobral, J.H.A.; Koga, D.; Nogueira, P.A.B.; Candido, C.M.N. Strong longitudinal difference in ionospheric responses over Fortaleza (Brazil) and Jicamarca (Peru) during the January 2005 magnetic storm, dominated by northward IMF. J. Geophys. Res. Space Phys. 2012, 117, A08333. [Google Scholar] [CrossRef]
- Abdu, M.A.; De Paula, E.R.; Batista, I.S.; Reinisch, B.W.; Matsuoka, M.T.; Camargo, P.O.; Veliz, O.; Denardini, C.M.; Sobral, J.H.A.; Kherani, E.A.; et al. Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm. J. Geophys. Res. Space Phys. 2008, 113, A07313. [Google Scholar] [CrossRef]
- Abdu, M.A.; Batista, I.S.; Sobral, J.H.A. A new aspect of magnetic declination control of equatorial spread F and F region dynamo. J. Geophys. Res. Space Phys. 1992, 97, 14897–14904. [Google Scholar] [CrossRef]
- Abdu, M.A.; Bittencourt, J.A.; Batista, I.S. Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J. Geophys. Res. Space Phys. 1981, 86, 11443–11446. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Li, M.; Zhang, T.; Geng, H.; Wang, G.; Wen, G. Effects of Strong Geomagnetic Storms on the Ionosphere and Degradation of Precise Point Positioning Accuracy during the 25th Solar Cycle Rising Phase: A Case Study. Remote Sens. 2023, 15, 5512. [Google Scholar] [CrossRef]
- Oyama, S.; Vanhamäki, H.; Cai, L.; Shinbori, A.; Hosokawa, K.; Sakanoi, T.; Shiokawa, K.; Aikio, A.; Virtanen, I.I.; Ogawa, Y.; et al. Thermospheric Wind Response to March 2023 Storm: Largest Wind Ever Observed With a Fabry-Perot Interferometer in Tromsø, Norway Since 2009. Space Weather 2024, 22, e2023SW003728. [Google Scholar] [CrossRef]
- Seemala, G.K.; Valladares, C.E. Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 2011, 46, 1–14. [Google Scholar] [CrossRef]
- Carmo, C.S.; Denardini, C.M.; Figueiredo, C.A.O.B.; Resende, L.C.A.; Picanço, G.A.D.S.; Neto, P.F.B.; Nogueira, P.A.B.; Moro, J.; Chen, S.S. Evaluation of Different Methods for Calculating the ROTI Index Over the Brazilian Sector. Radio. Sci. 2021, 56, e2020RS007140. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. ROTI Maps: A new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solut. 2018, 22, 69. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, Y.; Tan, B.; Li, M. Observational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China. ISPRS Int. J. Geoinf. 2016, 5, 237. [Google Scholar] [CrossRef]
- Oladipo, O.A.; Schüler, T. Equatorial ionospheric irregularities using GPS TEC derived index. J. Atmos. Sol. Terr. Phys. 2013, 92, 78–82. [Google Scholar] [CrossRef]
- Atıcı, R.; Sağır, S. Global investigation of the ionospheric irregularities during the severe geomagnetic storm on September 7–8, 2017. Geod. Geodyn. 2020, 11, 211–221. [Google Scholar] [CrossRef]
- Shinbori, A.; Otsuka, Y.; Tsugawa, T.; Nishioka, M.; Kumamoto, A.; Tsuchiya, F.; Matsuda, S.; Kasahara, Y.; Matsuoka, A. Relationship Between the Locations of the Midlatitude Trough and Plasmapause Using GNSS-TEC and Arase Satellite Observation Data. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028943. [Google Scholar] [CrossRef]
- Khmyrov, G.M.; Galkin, I.A.; Kozlov, A.V.; Reinisch, B.W.; McElroy, J.; Dozois, C. Exploring Digisonde Ionogram Data with SAO-X and DIDBase. AIP Conf. Proc. 2008, 974, 175–185. [Google Scholar] [CrossRef]
- Astafyeva, E.; Yasyukevich, Y.V.; Maletckii, B.; Oinats, A.; Vesnin, A.; Yasyukevich, A.S.; Syrovatskii, S.; Guendouz, N. Ionospheric Disturbances and Irregularities During the 25–26 August 2018 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029843. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.H.; Meehan, T.; Serafino, W.; et al. COSMIC-2 Radio Occultation Constellation: First Results. Geophys. Res. Lett. 2020, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Chen, S.P.; Lin, C.; Rajesh, P.K.; Liu, J.Y.; Eastes, R.; Chou, M.Y.; Choi, J.M. Near Real-Time Global Plasma Irregularity Monitoring by FORMOSAT-7/COSMIC-2. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028339. [Google Scholar] [CrossRef]
- Duann, Y.; Chang, L.C.; Liu, J.Y. Impact of the February 3–4, 2022 geomagnetic storm on ionospheric S4 amplitude scintillation index: Observations and implications. Adv. Space Res. 2023, 72, 4379–4391. [Google Scholar] [CrossRef]
- Rastogi, R.G. The equatorial electrojet: Magnetic and ionsopheric effects. Geomagentism 1989, 3, 461–525. [Google Scholar]
- Anderson, D.; Anghel, A.; Chau, J.; Veliz, O. Daytime vertical E × B drift velocities inferred from ground-based magnetometer observations at low latitudes. Space Weather 2004, 2, 1–9. [Google Scholar] [CrossRef]
- Shimeis, A.; Fathy, I.; Amory-Mazaudier, C.; Fleury, R.; Mahrous, A.M.; Yumoto, K.; Groves, K. Signature of the coronal hole near the north crest equatorial anomaly over Egypt during the strong geomagnetic storm 5 April 2010. J. Geophys. Res. Space Phys. 2012, 117, A07309. [Google Scholar] [CrossRef]
- Le Huy, M.; Amory-Mazaudier, C. Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: “Ddyn”. J. Geophys. Res. Space Phys. 2005, 110, A10301. [Google Scholar] [CrossRef]
- Manoj, C.; Maus, S. A real-time forecast service for the ionospheric equatorial zonal electric field. Space Weather 2012, 10, S09002. [Google Scholar] [CrossRef]
- Scherliess, L.; Fejer, B.G. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. Space Phys. 1999, 104, 6829–6842. [Google Scholar] [CrossRef]
- Archana, R.K.; Arora, K.; Nagarajan, N. Prompt penetration effects on Equatorial Electrojet from the Indian sector. Earth Planets Space 2023, 75, 122. [Google Scholar] [CrossRef]
- Ren, X.; Le, X.; Mei, D.; Liu, H.; Zhang, X. IROTI: A new index to detect and identify traveling ionospheric disturbances and equatorial plasma bubbles. GPS Solut. 2023, 28, 7. [Google Scholar] [CrossRef]
- Kepkar, A.; Arras, C.; Wickert, J.; Schuh, H.; Alizadeh, M.; Tsai, L.C. Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3/COSMIC GPS radio occultation data. Ann. Geophys. 2020, 38, 611–623. [Google Scholar] [CrossRef]
- Huang, F.; Lei, J.; Xiong, C.; Zhong, J.; Li, G. Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016. Earth Planet Phys. 2021, 5, eepp2021043. [Google Scholar] [CrossRef]
- Batista, I.S.; de Medeiros, R.T.; Abdu, M.A.; de Souza, J.R.; Bailey, G.J.; de Paula, E.R. Equatorial ionospheric vertical plasma drift model over the Brazilian region. J. Geophys. Res. Space Phys. 1996, 101, 10887–10892. [Google Scholar] [CrossRef]
- Abdu, M.A. Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F. J. Atmos. Sol. Terr. Phys. 2001, 63, 869–884. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Saito, A.; Araki, T.; Yumoto, K.; Tsuda, T.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.D.; et al. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. Space Phys. 2008, 113, A05311. [Google Scholar] [CrossRef]
- Sreeja, V.; Devasia, C.V.; Ravindran, S.; Pant, T.K. Observational evidence for the plausible linkage of Equatorial Electrojet (EEJ) electric field variations with the post sunset F-region electrodynamics. Ann. Geophys. 2009, 27, 4229–4238. [Google Scholar] [CrossRef]
- Uemoto, J.; Maruyama, T.; Saito, S.; Ishii, M.; Yoshimura, R. Relationships between pre-sunset electrojet strength, pre-reversal enhancement and equatorial spread-F onset. Ann. Geophys. 2010, 28, 449–454. [Google Scholar] [CrossRef]
- Fejer, B.G. The electrodynamics of the low-latitude ionosphere: Recent results and future challenges. J. Atmos. Sol. Terr. Phys. 1997, 59, 1465–1482. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. Space Phys. 1997, 102, 24047–24056. [Google Scholar] [CrossRef]
- Huang, C.M. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res. Space Phys. 2013, 118, 496–501. [Google Scholar] [CrossRef]
- Adekoya, B.J.; Adebesin, B.O. Hemispheric, seasonal and latitudinal dependence of storm-time ionosphere during low solar activity period. Adv. Space Res. 2014, 54, 2184–2193. [Google Scholar] [CrossRef]
- Mendillo, M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, 44, RG4001. [Google Scholar] [CrossRef]
- Huba, J.D.; Krall, J. Impact of meridional winds on equatorial spread F: Revisited. Geophys. Res. Lett. 2013, 40, 1268–1272. [Google Scholar] [CrossRef]
- González, G.D.L. Ionospheric irregularities during disturbed geomagnetic conditions over Argentinian EIA region. Acta Geod. Geophys. 2022, 57, 129–155. [Google Scholar] [CrossRef]
- Sidorova, L.N. Equatorial Plasma Bubbles: Zonal Thermosphere Wind Influence. Geomagn. Aeron. 2023, 63, 780–787. [Google Scholar] [CrossRef]
- Loutfi, A.; Bounhir, A.; Pitout, F.; Benkhaldoun, Z.; Makela, J.J. Thermospheric Neutral Winds Above the Oukaimeden Observatory: Effects of Geomagnetic Activity. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027383. [Google Scholar] [CrossRef]
- Malki, K.; Bounhir, A.; Benkhaldoun, Z.; Makela, J.J.; Vilmer, N.; Fisher, D.J.; Kaab, M.; Elbouyahyaoui, K.; Harding, B.J.; Laghriyeb, A.; et al. Ionospheric and thermospheric response to the 27–28 February 2014 geomagnetic storm over north Africa. Ann. Geophys. 2018, 36, 987–998. [Google Scholar] [CrossRef]
- Kim, J.; Kwak, Y.S.; Lee, C.; Lee, J.; Kam, H.; Yang, T.Y.; Jee, G.; Kim, Y. Observational evidence of thermospheric wind and composition changes and the resulting ionospheric disturbances in the European sector during extreme geomagnetic storms. J. Space Weather Space Clim. 2023, 13, 24. [Google Scholar] [CrossRef]
- Hashimoto, K.K.; Kikuchi, T.; Watari, S.; Abdu, M.A. Polar-equatorial ionospheric currents driven by the region 2 field-aligned currents at the onset of substorms. J. Geophys. Res. Space Phys. 2011, 116, A09217. [Google Scholar] [CrossRef]
- Jin, H.; Zou, S.; Chen, G.; Yan, C.; Zhang, S.; Yang, G. Formation and Evolution of Low-Latitude F Region Field-Aligned Irregularities During the 7–8 September 2017 Storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations. Space Weather 2018, 16, 648–659. [Google Scholar] [CrossRef]
- Timoçin, E.; Inyurt, S.; Temuçin, H.; Ansari, K.; Jamjareegulgarn, P. Investigation of equatorial plasma bubble irregularities under different geomagnetic conditions during the equinoxes and the occurrence of plasma bubble suppression. Acta Astronaut. 2020, 177, 341–350. [Google Scholar] [CrossRef]
- Lei, J.; Zhu, Q.; Wang, W.; Burns, A.G.; Zhao, B.; Luan, X.; Zhong, J.; Dou, X. Response of the topside and bottomside ionosphere at low and middle latitudes to the October 2003 superstorms. J. Geophys. Res. Space Phys. 2015, 120, 6974–6986. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.; Li, S.; Liu, J. Statistical analysis of equatorial electrojet responses to the transient changes of solar wind conditions. Front. Astron. Space Sci. 2023, 10, 1306279. [Google Scholar] [CrossRef]
- Deng, K.; Wang, S.; Deng, B.; Ma, Y.; Guo, Z. Disturbance electric fields and their effect on ionospheric TEC and scintillations over south China. Adv. Space Res. 2023, 72, 1266–1276. [Google Scholar] [CrossRef]
- Deng, B.; Huang, J.; Kong, D.; Xu, J.; Wan, D.; Lin, G. Temporal and spatial distributions of TEC depletions with scintillations and ROTI over south China. Adv. Space Res. 2015, 55, 259–268. [Google Scholar] [CrossRef]
- Salles, L.A.; Vani, B.C.; Moraes, A.; Costa, E.; de Paula, E.R. Investigating Ionospheric Scintillation Effects on Multifrequency GPS Signals. Surv. Geophys. 2021, 42, 999–1025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, A.; Wu, F.; Shah, M.; Amory-Mazaudier, C.; Jamjareegulgarn, P.; Verhulst, T.G.W.; Ameen, M.A. Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23–24 March 2023 Geomagnetic Storm. Remote Sens. 2024, 16, 1594. https://doi.org/10.3390/rs16091594
Tahir A, Wu F, Shah M, Amory-Mazaudier C, Jamjareegulgarn P, Verhulst TGW, Ameen MA. Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23–24 March 2023 Geomagnetic Storm. Remote Sensing. 2024; 16(9):1594. https://doi.org/10.3390/rs16091594
Chicago/Turabian StyleTahir, Afnan, Falin Wu, Munawar Shah, Christine Amory-Mazaudier, Punyawi Jamjareegulgarn, Tobias G. W. Verhulst, and Muhammad Ayyaz Ameen. 2024. "Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23–24 March 2023 Geomagnetic Storm" Remote Sensing 16, no. 9: 1594. https://doi.org/10.3390/rs16091594
APA StyleTahir, A., Wu, F., Shah, M., Amory-Mazaudier, C., Jamjareegulgarn, P., Verhulst, T. G. W., & Ameen, M. A. (2024). Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23–24 March 2023 Geomagnetic Storm. Remote Sensing, 16(9), 1594. https://doi.org/10.3390/rs16091594