Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = ion mobility separation mass spectrometry (IMS MS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4757 KB  
Article
Identification of Key Aroma Substances in Pomegranate from Different Geographical Origins via Integrated Volatile Profiling and Multivariate Statistical Analysis
by Yanzhen Zhang, Wenzhu Guo, Haitao Qu, Lihua Zhang, Lingxiao Liu, Xiaojie Hu and Yunguo Liu
Foods 2025, 14(20), 3546; https://doi.org/10.3390/foods14203546 - 17 Oct 2025
Viewed by 631
Abstract
Pomegranate (Punica granatum L.), valued for its health benefits and distinctive flavor, derives its characteristic aroma from volatile organic compounds (VOCs) that vary significantly with geographical origin. In this study, VOCs in pomegranates from six Chinese geographical regions were characterized using an [...] Read more.
Pomegranate (Punica granatum L.), valued for its health benefits and distinctive flavor, derives its characteristic aroma from volatile organic compounds (VOCs) that vary significantly with geographical origin. In this study, VOCs in pomegranates from six Chinese geographical regions were characterized using an electronic nose (E-nose), an electronic tongue (E-tongue), headspace gas chromatography–ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS). To elucidate geographical variations in odor, taste, and volatile profiles, a comprehensive multivariate statistical analysis integrating principal component analysis (PCA), hierarchical cluster analysis, orthogonal partial least squares-discriminant analysis (OPLS-DA), and variable importance in projection (VIP) was employed. The results demonstrated that the E-nose and E-tongue effectively distinguished pomegranate by geographical origin, with aroma contributing more significantly than taste to regional differentiation. A total of 46 and 58 VOCs were identified using HS-GC-IMS and HS-SPME-GC-MS, respectively, with different characteristic volatile compounds in pomegranate from various origins, and alkenes, esters, and alcohols were the primary contributors to regional variations. Notably, OPLS-DA revealed that HS-GC-IMS exhibited superior discriminatory power in separating pomegranates of different geographical origins, with HY and HL displaying closely related odor profiles while the other samples showed the most pronounced odor differences, but these findings contrasted with HS-SPME-GC-MS results. Additionally, the VIP method and the relative odor activity value (ROAV) further identified six and eight key aroma compounds based on HS-GC-IMS and HS-SPME-GC-MS data; in particular, hexanal, nonanal, β-pinene, 3-hydroxybutan-2-one, and β-ocimene were identified as key aroma compounds in pomegranate as potential regional markers. These findings highlight VOC profiles as potential geographical origin markers, supporting origin traceability and quality control in the pomegranate industry. Full article
(This article belongs to the Special Issue Flavor, Palatability, and Consumer Acceptance of Foods)
Show Figures

Graphical abstract

16 pages, 2348 KB  
Article
Novel Application of Ion Mobility Mass Spectrometry Reveals Complex Ganglioside Landscape in Diffuse Astrocytoma Peritumoral Regions
by Raluca Ica, Mirela Sarbu, Roxana Biricioiu, Dragana Fabris, Željka Vukelić and Alina D. Zamfir
Int. J. Mol. Sci. 2025, 26(17), 8433; https://doi.org/10.3390/ijms26178433 - 29 Aug 2025
Viewed by 788
Abstract
Diffuse astrocytoma is a primary brain tumor known for its gradual and diffuse infiltration into the surrounding brain tissue. Given this characteristic, the investigation of the peritumoral region holds potential biological and clinical relevance. In this study, ion mobility spectrometry mass spectrometry (IMS [...] Read more.
Diffuse astrocytoma is a primary brain tumor known for its gradual and diffuse infiltration into the surrounding brain tissue. Given this characteristic, the investigation of the peritumoral region holds potential biological and clinical relevance. In this study, ion mobility spectrometry mass spectrometry (IMS MS) was optimized and applied for the first time for the analysis of gangliosides present in the peritumoral tissue of diffuse astrocytoma. Ganglioside profiling and structural characterization were conducted using high-resolution nanoelectrospray ionization (nanoESI) IMS MS, along with tandem mass spectrometry (MS/MS) via low-energy collision-induced dissociation (CID) in the negative ion mode. Using IMS MS-based separation and screening, we observed a greater diversity of ganglioside species in the peritumoral tissue than previously reported. Notably, an elevated expression was detected for several species, including GT1(d18:1/18:0), GT1(d18:1/20:0), GM2(d18:1/16:2), GD1(d18:1/16:0), GD2(d18:1/20:0), Fuc-GT3(d18:1/24:4), and Fuc-GD1(d18:1/18:2). Although preliminary, these observations prompt consideration of whether these species could be implicated in processes such as microenvironmental modulation, tumor cell infiltration and invasion, maintenance of cellular interactions, or regulation of immune responses. Additionally, their potential utility as biomarkers may merit further exploration. In the subsequent phase of the study, structural analysis using IMS MS, CID tandem MS, and fragmentation data supported the identification of GT1b(d18:1/20:0) isomer in the peritumoral tissue. However, given the exploratory nature of the study and reliance on limited sampling, further investigation across broader sample sets is necessary to extend these findings. Full article
(This article belongs to the Special Issue Invasion and Metastasis in Brain Cancer)
Show Figures

Figure 1

15 pages, 1282 KB  
Article
Structural and Quantitative Analysis of Polyfluoroalkyl Substances (PFASs) and Para-Phenylenediamines (PPDs) by Direct Analysis in Real Time Ion Mobility Mass Spectrometry (DART-IM-MS)
by Calum Bochenek, Jack Edwards, Zhibo Liu and Chrys Wesdemiotis
Molecules 2025, 30(13), 2828; https://doi.org/10.3390/molecules30132828 - 30 Jun 2025
Cited by 2 | Viewed by 1112
Abstract
Polyfluoroalkyl substances (PFASs) and para-phenylenediamines (PPDs) are emerging classes of anthropogenic contaminants that are environmentally persistent (most often found in ground and surface water sources), bioaccumulative, and harmful to human health. These chemicals are currently regulated in the US by the Environmental Protection [...] Read more.
Polyfluoroalkyl substances (PFASs) and para-phenylenediamines (PPDs) are emerging classes of anthropogenic contaminants that are environmentally persistent (most often found in ground and surface water sources), bioaccumulative, and harmful to human health. These chemicals are currently regulated in the US by the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), and the Occupational Safety and Health Administration (OSHA). Analysis of these contaminants is currently spearheaded by mass spectrometry (MS) coupled to liquid chromatography (LC) because of their high sensitivity and separation capabilities. Although effective, a major flaw in LC-MS analysis is its large consumption of solvents and the amount of time required for each experiment. Direct analysis in real time mass spectrometry (DART-MS) is a new technique that offers high sensitivity and permits rapid analysis with little to no sample preparation. Herein, we present the qualitative and quantitative analysis of PFASs and PPDs by high-resolution DART-MS, interfaced with ion mobility (IM) and tandem mass spectrometry (MS/MS) characterization, demonstrating the utility of this multidimensional approach for the fast separation and detection of environmental contaminants. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

16 pages, 3525 KB  
Article
Chiral Trapped-Headspace GC-QMS-IMS: Boosting Untargeted Benchtop Volatilomics to the Next Level
by Lukas Bodenbender, Sascha Rohn, Simeon Sauer, Markus Jungen and Philipp Weller
Chemosensors 2024, 12(8), 165; https://doi.org/10.3390/chemosensors12080165 - 17 Aug 2024
Cited by 1 | Viewed by 3092
Abstract
In the field of quality analysis of food and flavoring products, gas chromatography–quadrupole mass spectrometry–ion mobility spectrometry (GC-QMS-IMS) is a powerful technique for the simultaneous detection of volatile organic compounds (VOCs) by both QMS and IMS. GC is an established technique for the [...] Read more.
In the field of quality analysis of food and flavoring products, gas chromatography–quadrupole mass spectrometry–ion mobility spectrometry (GC-QMS-IMS) is a powerful technique for the simultaneous detection of volatile organic compounds (VOCs) by both QMS and IMS. GC is an established technique for the separation of complex VOC-rich food products. While subsequent detection by IMS features soft ionization of fragile compounds (e.g., terpenes) with characteristic drift times, MS provides analytes’ m/z values for database substance identification. A limitation of the prominently used static-headspace-based GC-QMS-IMS systems is the substantially higher sensitivity of IMS in comparison to full-scan QMS. The present study describes a new prototypic trapped-headspace (THS)-GC-QMS-IMS setup using mango purees. This approach ultimately allows the combination of soft ionization with m/z values obtained from database-searchable electron ionization (EI) spectra. The new setup features aligned retention times for IMS and MS and sufficient signal intensities for QMS and IMS. The results demonstrate that THS-GC-QMS-IMS allows for the classification of mango purees from different cultivars and that it could be a promising alternative method for authenticity control of food, flavors, and beverages. Full article
Show Figures

Graphical abstract

34 pages, 4213 KB  
Review
Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers
by Maria Roxana Biricioiu, Mirela Sarbu, Raluca Ica, Željka Vukelić, Svjetlana Kalanj-Bognar and Alina D. Zamfir
Int. J. Mol. Sci. 2024, 25(2), 1335; https://doi.org/10.3390/ijms25021335 - 22 Jan 2024
Cited by 7 | Viewed by 3754
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) [...] Read more.
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biology in Romania)
Show Figures

Figure 1

16 pages, 6136 KB  
Article
Volatile Fingerprint and Differences in Volatile Compounds of Different Foxtail Millet (Setaria italica Beauv.) Varieties
by Miao Kang, Yu Guo, Zhiyuan Ren, Weiwei Ma, Yuewei Luo, Kai Zhao and Xiaowen Wang
Foods 2023, 12(23), 4273; https://doi.org/10.3390/foods12234273 - 27 Nov 2023
Cited by 8 | Viewed by 1938
Abstract
Aroma components in foxtail millet are one of the key factors in origin traceability and quality control, and they are associated with consumer acceptance and the corresponding processing suitability. However, the volatile differences based on the foxtail millet varieties have not been studied [...] Read more.
Aroma components in foxtail millet are one of the key factors in origin traceability and quality control, and they are associated with consumer acceptance and the corresponding processing suitability. However, the volatile differences based on the foxtail millet varieties have not been studied further. The present study was undertaken to develop the characteristic volatile fingerprint and analyze the differences in volatile compounds of 20 foxtail millet varieties by electronic nose (E-Nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). A total of 43 volatile compounds were tentatively identified in foxtail millet samples, 34 and 18 by GC-IMS and GC-MS, respectively. Aldehydes, alcohols, and ketones were the major volatile compounds, and the hexanal content was the highest. The characteristic volatile fingerprint of foxtail millet was successfully constructed. A total of 39 common volatile compounds were found in all varieties. The content of hexanal, heptanal, 1-pentanol, acetophenone, 2-heptanone, and nonanal were explored to explain the aroma characteristics among the different varieties, and different varieties can be separated based on these components. The results demonstrate that the combination of E-Nose, GC-IMS, and GC-MS can be a fast and accurate method to identify the general aroma peculiarities of different foxtail millet varieties. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

27 pages, 2110 KB  
Review
Collision Cross Section Prediction Based on Machine Learning
by Xiaohang Li, Hongda Wang, Meiting Jiang, Mengxiang Ding, Xiaoyan Xu, Bei Xu, Yadan Zou, Yuetong Yu and Wenzhi Yang
Molecules 2023, 28(10), 4050; https://doi.org/10.3390/molecules28104050 - 12 May 2023
Cited by 19 | Viewed by 6641
Abstract
Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the [...] Read more.
Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected. Full article
(This article belongs to the Special Issue LC-MS in Bioactive Molecules Study)
Show Figures

Figure 1

13 pages, 3543 KB  
Review
Evaluating Software Tools for Lipid Identification from Ion Mobility Spectrometry–Mass Spectrometry Lipidomics Data
by Dylan H. Ross, Jian Guo, Aivett Bilbao, Tao Huan, Richard D. Smith and Xueyun Zheng
Molecules 2023, 28(8), 3483; https://doi.org/10.3390/molecules28083483 - 14 Apr 2023
Cited by 5 | Viewed by 5205
Abstract
The unambiguous identification of lipids is a critical component of lipidomics studies and greatly impacts the interpretation and significance of analyses as well as the ultimate biological understandings derived from measurements. The level of structural detail that is available for lipid identifications is [...] Read more.
The unambiguous identification of lipids is a critical component of lipidomics studies and greatly impacts the interpretation and significance of analyses as well as the ultimate biological understandings derived from measurements. The level of structural detail that is available for lipid identifications is largely determined by the analytical platform being used. Mass spectrometry (MS) coupled with liquid chromatography (LC) is the predominant combination of analytical techniques used for lipidomics studies, and these methods can provide fairly detailed lipid identification. More recently, ion mobility spectrometry (IMS) has begun to see greater adoption in lipidomics studies thanks to the additional dimension of separation that it provides and the added structural information that can support lipid identification. At present, relatively few software tools are available for IMS-MS lipidomics data analysis, which reflects the still limited adoption of IMS as well as the limited software support. This fact is even more pronounced for isomer identifications, such as the determination of double bond positions or integration with MS-based imaging. In this review, we survey the landscape of software tools that are available for the analysis of IMS-MS-based lipidomics data and we evaluate lipid identifications produced by these tools using open-access data sourced from the peer-reviewed lipidomics literature. Full article
(This article belongs to the Special Issue Imaging and Spatial Lipidomic Analysis)
Show Figures

Figure 1

17 pages, 4800 KB  
Article
Mass Spectrometry, Ion Mobility Separation and Molecular Modelling: A Powerful Combination for the Structural Characterisation of Substituted Cyclodextrins Mixtures
by Sébastien Rigaud, Abdouramane Dosso, David Lesur, Dominique Cailleu, David Mathiron, Serge Pilard, Christine Cézard and Florence Djedaini-Pilard
Int. J. Mol. Sci. 2022, 23(21), 13352; https://doi.org/10.3390/ijms232113352 - 1 Nov 2022
Cited by 3 | Viewed by 2691
Abstract
When working on the synthesis of substituted cyclodextrins (CDs), the main challenge remains the analysis of the reaction media content. Our objective in this study was to fully characterise a complex isomers mixture of Lipidyl-βCDs (LipβCD) obtained with a degree of substitution 1 [...] Read more.
When working on the synthesis of substituted cyclodextrins (CDs), the main challenge remains the analysis of the reaction media content. Our objective in this study was to fully characterise a complex isomers mixture of Lipidyl-βCDs (LipβCD) obtained with a degree of substitution 1 (DS = 1) from a one-step synthesis pathway. The benefit of tandem mass spectrometry (MS/MS) and ion mobility separation hyphenated with mass spectrometry (IM-MS) was investigated. The MS/MS fragment ion‘s relative intensities were analysed by principal component analysis (PCA) to discriminate isomers. The arrival time distribution (ATD) of each isomer was recorded using a travelling wave ion mobility (TWIM) cell allowing the determination of their respective experimental collision cross section (CCSexp). The comparison with the predicted theoretical CCS (CCSth) obtained from theoretical calculations propose a regioisomer assignment according to the βCD hydroxyl position (2, 3, or 6) involved in the reaction. These results were validated by extensive NMR structural analyses of pure isomers combined with molecular dynamics simulations. This innovative approach seems to be a promising tool to elucidate complex isomer mixtures such as substituted cyclodextrin derivatives. Full article
(This article belongs to the Special Issue Recent Insights in Chemistry and Technology of Cyclodextrins)
Show Figures

Figure 1

16 pages, 2256 KB  
Article
Influence of Shear Stress, Inflammation and BRD4 Inhibition on Human Endothelial Cells: A Holistic Proteomic Approach
by Johannes Jarausch, Lisa Neuenroth, Reiner Andag, Andreas Leha, Andreas Fischer, Abdul R. Asif, Christof Lenz and Abass Eidizadeh
Cells 2022, 11(19), 3086; https://doi.org/10.3390/cells11193086 - 30 Sep 2022
Cited by 4 | Viewed by 2969
Abstract
Atherosclerosis is an important risk factor in the development of cardiovascular diseases. In addition to increased plasma lipid concentrations, irregular/oscillatory shear stress and inflammatory processes trigger atherosclerosis. Inhibitors of the transcription modulatory bromo- and extra-terminal domain (BET) protein family (BETi) could offer a [...] Read more.
Atherosclerosis is an important risk factor in the development of cardiovascular diseases. In addition to increased plasma lipid concentrations, irregular/oscillatory shear stress and inflammatory processes trigger atherosclerosis. Inhibitors of the transcription modulatory bromo- and extra-terminal domain (BET) protein family (BETi) could offer a possible therapeutic approach due to their epigenetic mechanism and anti-inflammatory properties. In this study, the influence of laminar shear stress, inflammation and BETi treatment on human endothelial cells was investigated using global protein expression profiling by ion mobility separation-enhanced data independent acquisition mass spectrometry (IMS-DIA-MS). For this purpose, primary human umbilical cord derived vascular endothelial cells were treated with TNFα to mimic inflammation and exposed to laminar shear stress in the presence or absence of the BRD4 inhibitor JQ1. IMS-DIA-MS detected over 4037 proteins expressed in endothelial cells. Inflammation, shear stress and BETi led to pronounced changes in protein expression patterns with JQ1 having the greatest effect. To our knowledge, this is the first proteomics study on primary endothelial cells, which provides an extensive database for the effects of shear stress, inflammation and BETi on the endothelial proteome. Full article
(This article belongs to the Collection Cellular and Molecular Mechanisms of Atherosclerosis)
Show Figures

Figure 1

15 pages, 2371 KB  
Article
Identification and Structural Characterization of Novel Chondroitin/Dermatan Sulfate Hexassacharide Domains in Human Decorin by Ion Mobility Tandem Mass Spectrometry
by Mirela Sarbu, Raluca Ica, Edie Sharon, David E. Clemmer and Alina D. Zamfir
Molecules 2022, 27(18), 6026; https://doi.org/10.3390/molecules27186026 - 15 Sep 2022
Cited by 4 | Viewed by 2467
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are found in nature linked to proteoglycans, most often as hybrid CS/DS chains. In the extracellular matrix, where they are highly expressed, CS/DS are involved in fundamental processes and various pathologies. The structural diversity of CS/DS [...] Read more.
Chondroitin sulfate (CS) and dermatan sulfate (DS) are found in nature linked to proteoglycans, most often as hybrid CS/DS chains. In the extracellular matrix, where they are highly expressed, CS/DS are involved in fundamental processes and various pathologies. The structural diversity of CS/DS domains gave rise to efforts for the development of efficient analytical methods, among which is mass spectrometry (MS), one of the most resourceful techniques for the identification of novel species and their structure elucidation. In this context, we report here on the introduction of a fast, sensitive, and reliable approach based on ion mobility separation (IMS) MS and MS/MS by collision-induced dissociation (CID), for the profiling and structural analysis of CS/DS hexasaccharide domains in human embryonic kidney HEK293 cells decorin (DCN), obtained after CS/DS chain releasing by β-elimination, depolymerization using chondroitin AC I lyase, and fractionation by size-exclusion chromatography. By IMS MS, we were able to find novel CS/DS species, i.e., under- and oversulfated hexasaccharide domains in the released CS/DS chain. In the last stage of analysis, the optimized IMS CID MS/MS provided a series of diagnostic fragment ions crucial for the characterization of the misregulations, which occurred in the sulfation code of the trisulfated-4,5-Δ-GlcAGalNAc[IdoAGalNAc]2 sequence, due to the unusual sulfation sites. Full article
(This article belongs to the Special Issue Tandem Mass Spectrometry: Techniques and Applications)
Show Figures

Figure 1

13 pages, 2759 KB  
Article
A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry
by Hongxue Gao, Zhiqiang Liu, Fengrui Song, Junpeng Xing, Zhong Zheng and Shu Liu
Molecules 2022, 27(13), 4302; https://doi.org/10.3390/molecules27134302 - 4 Jul 2022
Cited by 22 | Viewed by 3986
Abstract
Plantago asiatica L. (PAL) as a medicinal and edible plant is rich in chemical compounds, which makes the systematic and comprehensive characterization of its components challenging. In this study, an integrated strategy based on three-dimensional separation including AB-8 macroporous resin column chromatography, ultra-high [...] Read more.
Plantago asiatica L. (PAL) as a medicinal and edible plant is rich in chemical compounds, which makes the systematic and comprehensive characterization of its components challenging. In this study, an integrated strategy based on three-dimensional separation including AB-8 macroporous resin column chromatography, ultra-high performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF MS), and ultra-high performance liquid chromatography-mass spectrometry with ion-mobility spectrometry (UHPLC-IM-MS) was established and used to separate and identify the structures of compounds from PAL. The extracts of PAL were firstly separated into three parts by AB-8 macroporous resin and further separated and identified by UHPLC-Q-TOF MS and UHPLC-IM-MS, respectively. Additionally, UHPLC-IM-MS was used to identify isomers and coeluting compounds, so that the product ions appearing at the same retention time (RT)can clearly distinguish where the parent ion belongs by their different drift times. UNIFI software was used for data processing and structure identification. A total of 86 compounds, including triterpenes, iridoids, phenylethanoid glycosides, guanidine derivatives, organic acids, and fatty acids, were identified by using MS information and fragment ion information provided by UHPLC-Q-TOF MS and UHPLC-IM-MS. In particular, a pair of isoforms of plantagoside from PAL were detected and identified by UHPLC-IM-MS combined with the theoretical calculation method for the first time. In conclusion, the AB-8 macroporous resin column chromatography can separate the main compounds of PAL and enrich the trace compounds. Combining UHPLC-IM-MS and UHPLC-Q-TOF MS can obtain not only more fragments but also their unique drift times and RT, which is more conducive to the identification of complex systems, especially isomers. This proposed strategy can provide an effective method to separate and identify chemical components, and distinguish isomers in the complex system of traditional Chinese medicine (TCM). Full article
(This article belongs to the Special Issue State-of-the-Art Analytical Technologies for Natural Products)
Show Figures

Figure 1

24 pages, 6711 KB  
Article
Improved Analysis of Isomeric Polyphenol Dimers Using the 4th Dimension of Trapped Ion Mobility Spectrometry—Mass Spectrometry
by Aécio L. de Sousa Dias, Arnaud Verbaere, Emmanuelle Meudec, Stacy Deshaies, Cédric Saucier, Véronique Cheynier and Nicolas Sommerer
Molecules 2022, 27(13), 4176; https://doi.org/10.3390/molecules27134176 - 29 Jun 2022
Cited by 6 | Viewed by 3187
Abstract
Dehydrodicatechins resulting from (epi)catechin oxidation have been investigated in different foods and natural products, but they still offer some analytical challenges. The purpose of this research is to develop a method using ultra-high performance liquid chromatography coupled with trapped ion mobility spectrometry and [...] Read more.
Dehydrodicatechins resulting from (epi)catechin oxidation have been investigated in different foods and natural products, but they still offer some analytical challenges. The purpose of this research is to develop a method using ultra-high performance liquid chromatography coupled with trapped ion mobility spectrometry and tandem mass spectrometry (UHPLC−ESI−TIMS−QTOF−MS/MS) to improve the characterization of dehydrodicatechins from model solutions (oxidation dimers of (+)-catechin and/or (−)-epicatechin). Approximately 30 dehydrodicatechins were detected in the model solutions, including dehydrodicatechins B with β and ε-interflavanic configurations and dehydrodicatechins A with γ-configuration. A total of 11 dehydrodicatechins B, based on (−)-epicatechin, (+)-catechin, or both, were tentatively identified in a grape seed extract. All of them were of β-configuration, except for one compound that was of ε-configuration. TIMS allowed the mobility separation of chromatographically coeluted isomers including dehydrodicatechins and procyanidins with similar MS/MS fragmentation patterns that would hardly be distinguished by LC-MS/MS alone, which demonstrates the superiority of TIMS added to LC-MS/MS for these kinds of compounds. To the best of our knowledge, this is the first time that ion mobility spectrometry (IMS) was applied to the analysis of dehydrodicatechins. This method can be adapted for other natural products. Full article
(This article belongs to the Special Issue Food Polyphenols as Affected by Food Processing Conditions)
Show Figures

Figure 1

13 pages, 1557 KB  
Article
Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid
by Mirela Sarbu, Dragana Fabris, Željka Vukelić, David E. Clemmer and Alina D. Zamfir
Molecules 2022, 27(3), 743; https://doi.org/10.3390/molecules27030743 - 24 Jan 2022
Cited by 14 | Viewed by 3962
Abstract
Gangliosides (GGs) represent an important class of biomolecules associated with the central nervous system (CNS). In view of their special role at a CNS level, GGs are valuable diagnostic markers and prospective therapeutic agents. By ion mobility separation mass spectrometry (IMS MS), recently [...] Read more.
Gangliosides (GGs) represent an important class of biomolecules associated with the central nervous system (CNS). In view of their special role at a CNS level, GGs are valuable diagnostic markers and prospective therapeutic agents. By ion mobility separation mass spectrometry (IMS MS), recently implemented by us in the investigation of human CNS gangliosidome, we previously discovered a similarity between GG profiles in CSF and the brain. Based on these findings, we developed IMS tandem MS (MS/MS) to characterize rare human CSF glycoforms, with a potential biomarker role. To investigate the oligosaccharide and ceramide structures, the ions detected following IMS MS separation were submitted to structural analysis by collision-induced dissociation (CID) MS/MS in the transfer cell. The IMS evidence on only one mobility feature, together with the diagnostic fragment ions, allowed the unequivocal identification of isomers in the CSF. Hence, by IMS MS/MS, GalNAc-GD1c(d18:1/18:1) and GalNAc-GD1c(d18:1/18:0) having both Neu5Ac residues and GalNAc attached to the external galactose were for the first time discovered and structurally characterized. The present results demonstrate the high potential of IMS MS/MS for biomarker discovery and characterization in body fluids, and the perspectives of method implementation in clinical analyses targeting the early diagnosis of CNS diseases through molecular fingerprints. Full article
(This article belongs to the Special Issue Tandem Mass Spectrometry: Techniques and Applications)
Show Figures

Figure 1

14 pages, 5782 KB  
Article
A Rapid and Sensitive Method for the Simultaneous Determination of Multipolar Compounds in Plant Tea by Supercritical Fluid Chromatography Coupled to Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry
by Zi-Xuan Yue and Jun Cao
Foods 2022, 11(1), 111; https://doi.org/10.3390/foods11010111 - 1 Jan 2022
Cited by 2 | Viewed by 2657
Abstract
In this study, matrix solid phase dispersion (MSPD) microextraction combined with supercritical fluid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (SFC/IM-QTOF-MS) was used to analyze the multipolar compounds in plant tea. The parameters of stationary phase, mobile phase, make-up solution, temperature, and back pressure [...] Read more.
In this study, matrix solid phase dispersion (MSPD) microextraction combined with supercritical fluid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (SFC/IM-QTOF-MS) was used to analyze the multipolar compounds in plant tea. The parameters of stationary phase, mobile phase, make-up solution, temperature, and back pressure were optimized. The target analytes were gradient eluted in 8 min by supercritical CO2 on a Zorbax RX-SIL column. Collisional Cross Section (CCS) values for single and multiple fields were measured. A series of validation studies were carried out under the optimal conditions, and the linear relationship and reproducibility were good. The limits of detection were 1.4 (Scoparone (1))~70 (Naringenin (4)) ng/mL, and the limits of quantification were 4.7 (Scoparone (1))~241 (Naringenin (4)) ng/mL. The recoveries of most compounds ranged from 60.7% to 127%. As a consequence, the proposed method was used for the separation and quantitative analysis of active ingredients in caulis dendrobii. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

Back to TopTop