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Abstract: Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing
an additional dimension of separation to support the enhanced separation and characterization of
complex components from the tissue metabolome and medicinal herbs. The integration of machine
learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the
creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve
the rapid, comprehensive, and accurate characterization of the contained chemical components. In this
review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages
of ion mobility-mass spectrometers and the commercially available ion mobility technologies with
different principles (e.g., time dispersive, confinement and selective release, and space dispersive)
are introduced and compared. The general procedures involved in CCS prediction based on ML
(acquisition and optimization of the independent and dependent variables, model construction and
evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS
theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics,
natural products, foods, and the other research fields are reflected.

Keywords: ion mobility-mass spectrometry; collision cross section; machine learning; prediction;
molecular descriptor

1. Introduction

Ion mobility spectroscopy (IMS), analogous to a gas-phase electrophoresis technique,
enables the separation of compounds on the basis of the differences in the mobility of ions
through buffer gases under the action of an electric field [1,2]. The difference in mobility is
caused mainly by distinctions between the charge, shape, and size of the molecules, which
leads to the differences in drift time [3–5]. This difference can be described by the collision
cross section (CCS) value. In general, ions with the lower mass and/or more-compact
structures have shorter drift times and lower CCS values; the larger the space volume
and/or the higher the mass number, the greater the CCS value. This structural dependency
makes the CCS value an important parameter for compound identification. The origin of
IMS can be traced back to the X-ray experiments of Thomson and Rutherford in the late 19th
century [6], which even predates the study of mass spectrometry (MS) by about 15 years [1].
However, because of the commercialization of ion mobility instruments, their combination
had not been popularized until recently. Mobility separation occurs in milliseconds and
is compatible with the modern mass spectrometers operating at microsecond scanning
speeds [7]. The coupling of IMS and MS can thus provide four-dimensional structural
information for component characterization, including tR, CCS, MS, and MS/MS, thereby
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having great potential in reducing false-positive results and improving identification confi-
dence [8,9]. Unfortunately, the strategy of purchasing and measuring a large number of
reference standards to obtain the standard CCS values is cost-prohibitive and difficult to
implement in most cases. Currently, numerous CCS values can be obtained through theoret-
ical calculation and machine-learning-based prediction without sufficient standards [10,11].
The former usually uses molecular modeling to provide the approximate structure of the
molecule and then calculates CCS by simulating the interaction between the drift gas and
the analyzed ions [7,12]. These methods are relatively time-consuming and require more
professionalism. The latter utilizes a large data set containing the experimentally measured
CCS values and structural parameters of the compounds themselves to train, validate,
and test the regression models [13]. This method has the advantages of fast calculation
speed and high accuracy. At present, many CCS prediction platforms are available, such
as MetCCS [10], LipidCCS [14], DeepCCS [15], AllCCS [16], and CCSbase [11], etc. Pre-
vious IMS-related reviews have described either the principles of different platforms or
the advantages of a specific platform. In this review, we give a comprehensive summary
on both the principles and the advantages of different platforms, which can thus lay a
foundation for the workflows of machine learning (ML) for CCS prediction. In addition,
we focus on the general steps of constructing a CCS database on the basis of using ML
algorithms (Figure 1). Notably, along with the ML model, the quantum mechanical (QM)
workflows have been developed as well [17]. In this review, the commonly used methods
and techniques in various links are summarized, and some practical tips are proposed.
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Figure 1. General workflow for building a CCS database: (A) establishing the CCS database on the
basis of machine-learning-prediction methods; (B) elaborating the CCS database through ion mobility
instrument measurement; (C) creating the CCS database through the theoretical calculation methods;
(D) advantages embodied in applying the CCS database for component identification.

2. Ion Mobility-Mass Spectrometry (IM-MS)
2.1. Ion Mobility Platforms with Different Separation Principles

Up to now, the commercially available mainstream IM systems are divided into
three types of platforms on the basis of their separation principles: time dispersive, ion
confinement with selective release systems, and space dispersive [1,4,18,19]. In current
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research, the first two are the most commonly used, and space-dispersive methods have
higher development potential. Table 1 shows a comparison of the characteristics of different
IM-MS systems.

Table 1. Comparison of commercially available IM-MS techniques.

IMS
Technique Gas State Resolving

Power
Year of
Release

CCS
Calibration Available Device Sort

DTIMS Stationary ~60–80 2014 Not required Agilent IM-QTOF Time dispersive

TWIMS Stationary ~40–50 2006 Required

Waters Synapt
HDMS

Waters Vion
IMS-QTOF

Time dispersive

SLIMS Parallel gas
flow ~200–300 2021 Required MOBILion Time dispersive

TIMS Parallel gas
flow ~200–400 2015 Required

Bruker tims TOF
Bruker tims TOF pro

Bruker Impact
Q-TOF

Confinement
and selective

release

cIMS Parallel gas
flow ~750 2019 Required Waters SELECT

SERIES cyclic IMS

Confinement
and selective

release

FAIMS/DMS Parallel gas
flow Not comparable 2012 - AB Sciex SelexION Space

dispersive

In a time-dispersive IM-MS system, all ions drift along the same path and are detected
by the detector at different times. Generally, ions with small cross-sectional areas are
detected first, thanks to their high mobility. Figure 2A shows its specific working principle.
The main time-dispersive techniques include drift tube IMS (DTIMS) and traveling-wave
IMS (TWIMS). DTIMS consists of several ring electrodes stacked alongside that are filled
with an inert static gas through which ions move as directed by a uniform electric field [20].
The drift time can be correlated directly with the CCS value through the Mason–Schamp
relationship (Equations (1) and (2)) [21] without requiring a correction program [22,23].
Nevertheless, DTIMS devices have a low-resolution limitation. Researchers have in recent
years taken various approaches to improve their resolution, thereby increasing the analysis
range and separating isomers that have similar structures, approaches such as increasing
the length of the drift tubes [24] to enhance the electric field, introducing multiplexing
technology [25–28], developing a new dual drift tube IMS [29], etc. In contrast to DTIMS,
ions in TWIMS are directed by a sequence of symmetric potential waves that continuously
propagate through the drift region to pass through stationary gases [30,31]. The CCS values
of a TWIMS instrument cannot be directly calculated on the basis of the measured drift time,
because of the nonuniformly applied electric field. It needs to be calculated on the basis
of a group of predefined calibrators, usually using the CCS values derived from DTIMS
as a reference [23,32]. Structural similarity between calibrators and analytes is critical for
achieving accurate CCS calibration [33,34]. TWIMS has a greater resolution than DTIMS
with a uniform electric field for the same drift tube length [5], so TWIMS equipment take up
less space while attaining a same resolution level. Recently, structures for lossless ion ma-
nipulations (SLIMs), a traveling-wave-based platform, have been developed to guide ions
through a printed circuit board path, which maximizes transmission efficiency, increases
path length, and achieves an extremely high resolution [35,36]. Cyclic ion mobility-mass
spectrometry (cIMS) separates ions in a cyclic mobility chamber and provides significantly
longer path lengths by increasing the number of times that ions pass through the cell,
thereby improving the resolution and storage capacity of IM separation. The design of
the cIMS device allows for IMSn experiments, where ions can undergo multiple instances
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of selection, activation, or fragmentation and reseparation before MS detection [37]. The
flexibility and practicality of the cIMS separator and control software have led to its wide
application in the separation of isomers in different fields [22,38–42]. Time-dispersive
instruments allow the simultaneous analysis of all ions and are currently widely used in
untargeted metabolomics [31,43,44].

Ω =
3ze

16NK0

√
2π

µkBT
(1)

K0 =
L

tAE
P
P0

T0

T
(2)

where Ω is the rotationally averaged CCS, K0 is the reduced mobility, z is the charge state
of the ion, e is the elementary charge, N is the number density of the drift gas, µ is the
reduced mass of the ion–neutral drift gas pair, kB is the Boltzmann constant, T is the gas
temperature, tA is the corrected arrival time, E is the electric field, L is the length of the drift
cell, P is the pressure in the drift cell, and P0 and T0 are the pressure and the temperature
under standard conditions, respectively.
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Figure 2. Schematic diagram of drift zone of instruments with different ion mobility values. (A) time
dispersive; (B) confinement and selective release; (C) space dispersive. DTIMS: drift tube ion mobility;
TWIMS: traveling-wave ion mobility; TIMS: trapped ion mobility; FAIMS: field asymmetric waveform
ion mobility.

In a confinement and selective release system, ions are driven by a parallel moving
buffer gas and inversely driven by a gradient electric field. When the two forces are equiva-
lent, the ions are stationary relative to the drift tube, indicating that they are trapped. Ions
with large cross-sectional areas are stabilized in high-field regions because of their low
mobility and the high electric field intensity required to maintain a static state. By reducing
the intensity of the electric field, trapped ions are selectively released, and ions with a
larger cross-sectional area first pass through the mobility cell and are then detected by the
detector [4,45]. Figure 2B shows its specific working principle. Trapped ion mobility spec-
trometry (TIMS) is the most representative confinement and selective release instrument. It
is no longer limited to the length of the device and can provide high resolution three to
eight times larger than that of DTIMS or TWIMS [46]. Furthermore, the resolution of TIMS
may be modified by adjusting custom parameters, such as the voltage scanning rate (δ)
and neutral gas flow rate (vg), making TIMS use very selective [47]. A longer capture time
can improve the resolution of the device and ion utilization. Reducing capture time, on
the other hand, can enable an untargeted analysis [48]. Importantly, parallel accumulation
serial fragmentation (PASEF) can be achieved by connecting two TIMS in series, one for ion
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accumulation and the other for ion mobility separation, which improves the duty cycles
(up to nearly 100% if equal accumulation and analysis times are used in both TIMS regions)
and sensitivity [49], reducing the complexity of the MS/MS spectrum [50]. Like the TWIMS,
CCS values cannot be directly determined unless calibration is performed [45,51]. Thanks
to its high resolution and sensitivity, TIMS, especially the PASEF strategy based on TIMS,
has been applied to the separation of isomers in multiple fields [38,52–54].

The space-dispersive method separates ions along different drift paths on the basis of
their mobility in high and low fields, but there is no significant dispersion in time. Figure 2C
shows its specific working principle. Field asymmetric waveform ion mobility (FAIMS),
also known as differential (ion) mobility spectrometry (DMS or DIMS), belongs to a typical
space-dispersive platform [1]. The use of alternating high and low fields in FAIMS forestalls
the establishment of a recognized method for obtaining its CCS values [55]. FAIMS acts as
a migration filter in which only analytes that have a specific response to changing electric
fields and analytes that match the applied compensation voltage can pass through the drift
region and the aperture [18,56]. Therefore, FAIMS has been widely used to screen targeted
metabolomics and to increase the signal-to-noise ratio of analytes of interest [13].

2.2. Advantages of LC-IM-MS

Recent research has shown that LC-IM-MS has advantages over conventional liq-
uid/gas chromatography-mass spectrometry (LC/GC-MS) in the following four main
aspects: (1) providing four-dimensional information to improve the characterization of
isomers and enhance the reliability of identification; (2) increasing peak capacity and im-
proving the signal-to-noise ratio (S/N); (3) obtaining additional analysis information when
coupling with one or more additional analysis dimensions; (4) improving the quality of
spectral acquisition [57,58].

(1) LC-IM-MS provides four-dimensional information (tR, CCS, MS, and MS/MS). As
a robust parameter for characterization and recognition, CCS provides orthogonal
attributes for compound recognition, improving the confidence level of compound
annotation [4,59]. IMS technology has proven that it can be used to separate various
isomers, such as lipid isomers [60], steroid isomers [61], fatty acid isomers [62], amino
acid isomers [22], and carbohydrate isomers [63]. Numerous strategies have been
introduced to enhance the IMS characterization of isomers. A combination of chemical
derivatization and IMS can improve the detection of steroid isomers [61], metabolites
in nicotine [64], and carbohydrates [65]. The integration of dimers or polymers with
IM-MS is another effective method for identifying isomers. More accurately predict-
ing the relative differences in CCS between steroid epimers can be achieved through
the energy characteristics of the sodium dimer configuration of epimers [66]. The
enantiomers of aromatic amino acids can be differentiated by TWIM-MS through their
cationization with copper (II) and multimer formation with D-proline (Pro) as a chiral
reference compound [67]. The mobility of ions passing through IMS is affected by
using different drift gases and/or by doping volatile chiral reagents in drift gases,
which can also be used to separate isomers and enantiomers [68,69]. In addition,
platforms such as cIMS [42,70–72], multiplexed ion mobility [26,28,73], and TIMS [74]
have improved the separation of isomers by improving mobility resolution. IMS can
distinguish between conformational isomers [75] and isotopic isomers [22]. By taking
into account all relevant errors, N-glycan isomers with different conformations can
be distinguished on the basis of the CCS gained from the IMS [75]. As we know,
lipids have a wide range of structural diversity, with a large number of isomers. A
recent study used IMS to analyze the relationship between lipid structure and its
gas-phase conformation, providing accurate and comprehensive conformational lipid
profiles [76]. IMS has been used in the separation of isomers with different isotopic
atomic positions [77] and labeled/unlabeled isotope-substituted isomers [42]. Re-
searchers have found that IMS can be incorporated into the standard LC-MS/MS
isotope analysis process as an additional separation mechanism, which can provide
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broader separation space and higher identification confidence for metabolic character-
ization [22].

(2) Thanks to the advantage of increasing peak capacity and improving the signal-to-
noise ratio, IMS can improve the exposure rate of trace components in complex
samples [58,78]. Configuring ion mobility technology in MS studies with different
ionization principles (ESI, MSI, and MALDI) can increase the peak capacity by at least
two times compared with using MS alone [79–81]. It has been reported that when the
mass resolution is 35,000 (fwhm), 860 independent ions can be measured, accounting
for 15% of the total 5639 counted ions, while the addition of IMS adds 3911 features for
signal recognition [79]. Because IMS is used as a separation module between LC and
MS, the number of MS features detected in the metabolite composition characterization
experiment has significantly increased [82]. IM-MSI can reduce chemical noise and
transfer target signals from congested spectral regions, thereby increasing the S/N of
metabolites and lipid peaks by nearly 10 times and doubling the image contrast [83].
Some studies have shown that compared to the traditional lipidomics methods, LC-IM-
MS analysis has an increased S/N and can detect a low abundance of phospholipids
in highly complex brain lipoid samples [43]. In the experiment of adding IMS to
MS imaging, it was concluded that lipids with different CCS values can be spatially
separated, highlighting their spatial positioning and achieving more-accurate lipid
recognition [79].

(3) In addition to IMS’s direct use or combining IMS with LC, it can also combine with
gas chromatography (GC), mass spectrometry imaging (MSI), or supercritical fluid
chromatography (SFC) technologies. As a result, multidimensional analytical infor-
mation is provided, and the selection of methods increases. IMS and LC can provide
orthogonal separation, with IMS separation occurring within milliseconds, and it
is compatible with modern MS that is running at microsecond scanning speeds, al-
lowing maximum separation of metabolite ions prior to MS characterization. IMS is
often used in series with reverse-phase liquid chromatography (RPLC) [84–86] and
hydrophilic interaction liquid chromatography (HILIC) [87–89]. Some researchers
have also proposed an offline two-dimensional liquid chromatography coupled with
an ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS)
analysis strategy, achieving a comprehensive characterization of multiple compo-
nents in traditional Chinese medicine [8,58,90]. In addition, a study that coupled
IMS with MSI technology achieved the spatial localization of bile acids in sample
tissues [91]. One study integrated ultrahigh performance supercritical fluid chro-
matography/quadrupole time-of-flight mass spectrometry (UHPSFC/QTOF-MS) and
ion mobility spectroscopy/time-of-flight mass spectrometry (IMS/QTOF-MS) to estab-
lish a lipid omics platform for CCS measurement, which has improved the analytical
performance and recognition reliability of lipids [92].

(4) IM can improve the overall resolution of the spectrum and obtain high-quality MS1

and MS2 spectra. Double-charged ion clusters make the types of precursors thor-
oughly complex and can easily generate false positives when annotating MS2 data.
IM is capable of separating dimers or double-charged ions in a full scan spectrum
and generating high-resolution spectra of MS1 and MS2 that are close to the stan-
dards [58,84]. Wang [58] used an LC-IM-MS system to comprehensively characterize
the multicomponents of compound Danshen dripping pills (CDDPs) and elucidated
the advantages of IM. IM can improve the overall resolution of the spectrum of CDDPs
and effectively distinguish the doubly charged saponins or the dimers of salvianolic
acids, to obtain high-quality MS1 and MS2 spectra and reduce the false positives of
multicomponent characterization.
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3. Collision Cross Section Value: Dependent Variable of the Model
3.1. Acquisition of CCS Values

Experimental measurements [16,37,93–102] and theoretical calculations are the two main
ways to obtain CCS values. The latter can adopt various strategies, including theoretical-
driven methods [12,94,103–108] and data-driven methods [7,10,14,15,94,109–111].

The experimental CCS values are obtained by acquiring the mobility data of metabolite
standards by using ion mobility platforms (DTIMS, TWIMS, TIMS, etc.) that operate under
low field conditions. Because they have different principles, most of them require a
dedicated calibration process to determine their CCS values [1]. Currently, the stepped-
field method in DTIM, considered as the gold standard for CCS measurement, is the only
method that does not require calibration to measure CCS values. Another single-field
method requires the use of the linear relational equations constructed by the relationship
between the CCS value and the drift time of the calibrants to calculate the CCS values [112].
In TWIMS, it is also necessary to use calibrants with known CCS values to construct a
nonlinear calibration curve for both, thereby using this curve and the measured drift
time to calculate CCS. The selection of calibrants should meet the following conditions:
(1) ensuring good chemical stability; (2) providing wide coverage of m/z and CCS and
uniform ion distribution; (3) forming multiple charge states; and (4) being structurally
similar to the object to be analyzed [23,32,101,113,114]. At present, polyalanines and Agilent
ESI-L low concentration tube mixes are widely used calibrants in DTIMS and TWIMS.
Unlike the previous two calibration methods, TIMS uses known mobility (K0) calibrants to
establish a linear relationship between the reciprocal of mobility (1/K0) and voltage, further
obtaining the measured ion mobility and finally obtaining a CCS value after conversion.
The commonly used calibrants for TIMS include perfluoro-phosphazenes [47], Agilent
ESI-L low concentration tube mixes, etc. In addition, the construction of a high-precision
CCS database is inseparable from the stable operation of the instrument and the calibration
program. During data collection, the performance of the instrument is evaluated and its
stability monitored by repeatedly measuring quality-control (QC) samples at intervals of a
certain number of injections [10,14]. Some researchers have collected CCS values for a large
number of metabolite standards, and CCS databases for one or more types of compounds
have been constructed. Table 2 shows these specialized databases, from which we can find
the following: (1) three ion mobility platforms, namely DTIMS, TWIMS, and TIMS, are
involved, of which DTIMS is the most widely used; (2) various types of compounds, such
as metabolites, lipids, biological samples, and drugs or drug analogs, are covered; (3) the
number of CCS values obtained from this method is relatively small compared to that from
the calculation and speculation method. With the deepening of research, experimental CCS
databases continue to increase. However, the number of compounds in the experimental
CCS database is always limited because of the limitations of the number of compound
standards and ion mobility resolution.

Table 2. List of currently available CCS databases.

Source Research Object Number of
Compounds

Number of
CCS Values

Instrument
Platform Web Ref.

Experimental
CCS

Metabolites 125 209 TWIMS / [94]

Lipids 244 244 TWIMS / [79]

Metabolites and xenobiotics 459 826 DTIMS
http://panomics.pnnl.gov/

metabolites/ (accessed on 10
February 2023)

[95]

Primary metabolites 417 1246 DTIMS / [96]

Steroids 300 1080 TWIMS / [97]

Metabolites 1142 3271 DTIMS / [59]

http://panomics.pnnl.gov/metabolites/
http://panomics.pnnl.gov/metabolites/
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Table 2. Cont.

Source Research Object Number of
Compounds

Number of
CCS Values

Instrument
Platform Web Ref.

Metabolites 2193 5119 DTIMS,
TWIMS

http://allccs.zhulab.cn/
(accessed on 10 February 2023) [16]

Metabolites 510 942 TWIMS / [98]

Bile acids 47 400 DTIMS / [99]

Lipids / 594 DTIMS / [100]

Lipids 1856 1856 TIMS / [48]

Drug-like compounds and
pesticides ~500 ~500 DTIMS / [101]

Small molecules 124 124 DTIMS,
TWIMS / [23]

Drug or drug-like molecules 1425 1440 TWIMS / [102]

Doping agents 192 192 TWIMS / [115]

Metabolites 112 207 TWIMS https://massive.ucsd.edu
(accessed on 10 February 2023) [116]

Metabolites 87 142 TWIMS / [117]

Mycotoxins 53 219 TWIMS / [118]

Lipids 217 456 DTIMS

https://mcleanresearchgroup.
shinyapps.io/CCS-

Compendium/ (accessed on 10
February 2023)

[76]

N-glycans 500 500 TWIMS / [119]

Calculated
CCS

ISiCLE: metabolites / ~1,000,000 / metabolomics.pnnll.gov [12]

Metabolites 125 205 / / [94]

POMICS / / / https://www.pomics.org/
(accessed on 10 February 2023) [120]

Predicted
CCS

MetCCS: metabolites 35,203 176,015 DTIMS
http://www.metabolomics-
shanghai.org/software.php

(accessed on 10 February 2023)
[10]

LipidCCS: lipids 15,646 63,434 DTIMS
http://www.metabolomics-

shanghai.org/LipidCCS/
(accessed on 10 February 2023)

[14]

AllCCS: metabolites 1,670,596 11,697,711 / http://allccs.zhulab.cn/
(accessed on 10 February 2023) [16]

Pesticide residues 336 336 / / [110]

DeepCCS: metabolites 2400 2400 / / [15]

Sterol lipids 2068 2068 / / [111]

Food contact materials 488 635 TWIMS / [109]

dmCCS: drugs and their
metabolites 3286 2068 /

https://CCSbase.net/dmccs_
predictions (accessed on 10

February 2023)
[7]

CCSbase:
lipids, metabolites, drugs 4742 7669 DTIMS,

TWIMS
https://CCSbase.net (accessed

on 10 February 2023) [11]

Another method of obtaining CCS values is to use computational chemistry tools to
obtain theoretical CCS values. The general process of this method is as follows: (1) obtain
the three-dimensional (3D) structure and possible conformational forms of compounds;
(2) use molecular mechanics, molecular dynamics, quantum chemistry (especially density
functional theory, DFT), etc., to screen and optimize the conformations of compounds; and
(3) select the appropriate algorithm for calculation. Avogadro [105–107], TINKER [121],
Gaussian [105,121], NWChem [107], and SPARTAN’18 [106] are commonly used software
programs that can achieve geometric optimization. The calculation of CCS values can be im-

http://allccs.zhulab.cn/
https://massive.ucsd.edu
https://mcleanresearchgroup.shinyapps.io/CCS-Compendium/
https://mcleanresearchgroup.shinyapps.io/CCS-Compendium/
https://mcleanresearchgroup.shinyapps.io/CCS-Compendium/
https://www.pomics.org/
http://www.metabolomics-shanghai.org/software.php
http://www.metabolomics-shanghai.org/software.php
http://www.metabolomics-shanghai.org/LipidCCS/
http://www.metabolomics-shanghai.org/LipidCCS/
http://allccs.zhulab.cn/
https://CCSbase.net/dmccs_predictions
https://CCSbase.net/dmccs_predictions
https://CCSbase.net
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plemented through software such as MobCal [105,121], Collidoscope [122], IMoS [106,107],
and IMPACT [106]. MobCal is the most commonly used software, and it provides three
algorithms: projection approximation (PA), exact hard sphere scattering (EHSS), and the
trajectory method (TM) [103]. PA is the simplest, fastest, and most widely used method that
reduces scattering in 3D space to simpler, low-dimensional projections. The molecule is
represented as a collection of overlapping hard spheres in PA, and the calculated CCS value
is the rotational average of the projected area of this set [121]. The successive introduction
of the projected superposition approximation (PSA) method [104] and the local collision
probability approximation (LCPA) method [123] solved a problem: the collision between
ions and gases as well as noncovalent interactions were not considered in the principle of
the PA method. The EHSS method simulates the trajectory of the drift gas approaching
and colliding with analyte ions [124]. The algorithm is relatively complex and is often used
in the calculation of macromolecular CCS. TM is the most complex and computationally
intensive method among the commonly used methods. It simulates the 3D scattering of
buffer gas particles under the influence of long-range interaction potential, and it takes
into account the van der Waals force and polarization interaction [103]. Based on the TM
algorithm, Collidoscope uses parallel computing and trajectory parameter optimization,
resulting in a significant reduction in computing time [122]. The underlying algorithm
of IMoS [125] is different from that of MobCal and includes the richest CCS computing
methods: PA, EHSS, DHSS, TM, and DTM. Table 2 also shows the information from the
CCS database obtained through theoretical calculation methods. Zanotto [126] developed
high-performance CCS computation software (HPCCS), which performs CCS calculation
by using high-performance computing techniques. By using the trajectory method, HPCCS
can accurately calculate CCS values for a great variety of molecules, ranging from small
organic molecules to large protein complexes, using helium or nitrogen as a buffer gas with
considerable gains in computer time compared with publicly available codes under the
same level of theory (Table 3). CoSIMS [127] is another CCS computation-software-based
multithreaded trajectory method, and it is able to calculate nearly identical CCS values
as MobCal can in nearly two orders of magnitude less CPU time thanks to the various
numerical methods implemented into the software, even when run on a single CPU core
(Table 3). Colby [12] generated a structure and chemical property library by using molec-
ular dynamics, quantum chemistry, and ion mobility calculations and obtained over one
million CCS values by using the developed in silico chemical library engine (ISiCLE). This
research reconstructed the popular MobCal code for trajectory calculation, improving the
computational efficiency by more than two orders of magnitude. The method of obtaining
theoretical CCS in computational chemistry has certain limitations, though: (1) a large
amount of calculation and logical judgment; (2) low efficiency and a long calculation time
(CCS calculation of a compound often takes several days); and (3) a large CCS error, about
3–30% [128]. Therefore, the theoretical calculation accuracy and the efficiency of CCS need
to be further improved. Importantly, the accuracy of CCS calculations often depends on
a variety of factors, such as different buffer gases in actual measurements and whether
they are corrected, the choice of different force fields during conformation generation, and
different algorithms for theoretical calculations [129,130].

Table 3. The current CCS computation software.

Software Year Methods Collision Gas Open Source Ref.

MobCal 1996 PA, EHSS, TM He/N2 Yes [131]
IMoS 2013 DTM, DHSS He/N2 Yes [125]

IMPACT 2015 PA He Yes [132]
Collidoscope 2017 TM He/N2 Yes [122]

HPCCS 2018 TM He/N2 Yes [126]
CoSIMS 2019 TM He Yes [127]
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CCS values can also be obtained through data-driven ML methods. Developing a CCS
prediction model that is based on ML requires three components: a training data set, a
prediction algorithm, and a validation data set. The training data set contains parameters
representing molecular structural properties and CCS values. There are various ways to
reflect molecular structural properties (commonly known as molecular descriptors), and the
relevant content will be described in Section 4. The training data set can use experimental
or theoretical CCS values, usually using the former. The format of the validation data
set should be consistent with the training data set, but the two are independent of each
other, and there is no data duplication. ML algorithms are used to construct a regression
relationship between the molecular structure and the CCS values and are divided into
linear and nonlinear methods, which will be described in Section 5. The general process of
data modeling includes (1) the acquisition of data sets (randomly divided into a training
data set and an internal validation data set, according to a certain proportion); (2) the
construction of prediction models (model training, model accuracy evaluation, and model
parameter optimization); (3) the validation of prediction models. Different ML models
are commonly used to predict the respective CCS values of small molecule compounds
and have been applied to metabolites [10,15,16], lipids [14,60], drugs [7], and food [109]
and in some other fields [110,111]. It has the following advantages: (1) large prediction
scale; (2) fast computing speed without consuming plenty of computing resources; and
(3) a small prediction error, 1–3% [128]. Table 2 shows the information obtained from the
CCS database through ML algorithms. In addition, ML prediction can be combined with
computational chemistry for CCS calculation. For example, Das et al. [120] developed an
efficient computational CCS workflow by using the ML model in conjunction with standard
DFT methods and CCS calculations. The CCS computation protocols for the calculation of
CCS were the following: the determination of the molecular state; conformation generation;
conformation filtering; clustering the conformations; DFT geometry optimization; atomic
charge calculations; CCS calculation; Boltzmann weighted CCS; and a predicted structure.
The complete workflows could make the computation of CCS values tractable for a large
number of conformationally flexible metabolites with complex molecular structures.

3.2. Stability Evaluation of CCS Values

As a physicochemical property of chemical compounds, the CCS value has high
reproducibility and stability.

(1) CCS values are consistent among instruments and laboratories. Numerous stud-
ies [79,95,99,117,118] have demonstrated that the measurement of CCS values for
metabolites with different molecular weights on multiple TWIMS in independent
laboratories (between different Vion IMSs and different SynaptG2 HDMSs, as well as
between Vion IMS and SynaptG2 HDMS) is repeatable, with an RSD of CCS values
within ±3%. Sarah [112] studied the reproducibility of CCS values obtained from
DTIMS. Upon the completion of the analysis of 51 biologically related standards
(amino acids and lipids), it was found that the interlaboratory RSD was 0.30 ± 0.16%.
Some studies [23,133] have compared the CCS values measured by TWIMS and
DTIMS and found that the absolute percentage error (APE) of the CCS values was
within 2%.

(2) CCS has stability in different substrates. Giuseppe [94] found through experimental
measurements that 97% of CCS values had a mean RSD of less than 2%, which
demonstrates the repeatability of CCS values in various biological matrices. To test
the accuracy and precision of CCS measurements in different matrices, one study [79]
compared the CCS values in the database with CCS values measured from a series of
lipid extracts such as porcine brain, E. coli, and yeast. The results showed that CCS
measurements were highly stable in different matrices.

(3) CCS values have long-term robustness. One study [117] evaluated the reproducibility
of the CCS values of steroid compounds after 1.5 years, and the results showed that
95.7% of the CCS values had an RSD within ±1.0%.
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(4) CCS also has stability at different sample concentrations. In addition, some studies
have proposed some insights into how to improve the repeatability of CCS mea-
surements, especially the high reproducibility between different ion mobility plat-
forms [1,19,134]. For example, consistent instruments, configurations, calibration
procedures, etc. are used to achieve measurement standardization; the physical theory
behind ion mobility is improved so that different platforms can provide the same,
physically correctly calculated CCS values without requiring calibration.

4. Molecular Descriptors: Independent Variable of the Model
4.1. Molecular Representation

Molecular descriptors (MDs) are mathematical representations of molecules calculated
by a specific algorithm that converts molecular structures into numbers. MDs can be
divided into (1) measured values, such as polarity, logP, molar refractivity, dipole moment,
etc., and (2) theoretical values, which can be subdivided into constitutional, topological,
geometric, electronic, and physical chemistry types [135]. In addition, there are classification
methods for dividing MDs on the basis of different aspects. For example, MDs can also
be divided into zero- to three-dimensional descriptors [136]. In research based on ML to
predict CCS databases, MDs are often used for prediction [10,14,92,109], and molecular
fingerprints (MFs) [137], and molecular quantum numbers (MQNs) [11] have also been used
in some studies. MFs, which are included in MDs and are usually in the form of bit vectors,
have the advantages of simple operation, fast calculation speed, and high accuracy [138].
However, because of the difficulty in variable selection, there are currently few studies
applied to CCS database prediction. Yang [137] creatively used molecular fingerprints
and random forest algorithms to conduct CCS prediction research and obtained a CCS
database with accurate prediction capabilities (R2 = 0.95, MRE = 2.2%). The MQN system
defines a simple and universal chemical space to classify organic molecules and calculate
their basic characteristics, including atomic and bond types, polar groups, and topological
characteristics [139]. Another study [11] found that using unsupervised clustering based on
MQN to decompose chemical structure diversity can train specific and accurate prediction
models for each cluster, which showed better performance than using a single model for all
data training. This study has broken the limitations of the “black box” prediction model
and provides interpretable results. In addition, the quantum-chemical electron ionization
mass spectra (QCEIMS/QCxMS) program is the first standalone MD-based program that
can predict mass spectra solely on the basis of using molecular structures as inputs [17].

4.2. Access to Molecular Descriptors

MDs can be obtained through specialized computing software, software that includes
computing MD functionality and open-source databases or algorithms. Specialized comput-
ing software includes PaDEL-Descriptor [140,141], Dragon [142,143], alvaDesc [136,144,145],
Mordred [146,147], BlueDesc [145], Chemopy [148], and ChemDesc [149]. Software Dis-
covery Studio [150] includes the calculation of MD functions. The human metabolome
database (HMDB) [10], CDK [151,152], RDkit [153], and “rcdk” package [14,60] are open-
source databases or algorithms commonly used. Table 4 shows a detailed comparison of
some MD acquisition approaches. Thanks to the ability to provide multiple interfaces, such
as a graphical user interface (GUI) and a command line interface (CLI), and the ability to
calculate plenty of MDs in parallel, PaDEL-Descriptor has become one of the best choices
for open-source MD computing [146]. Dragon is another widely used software program for
computing MDs. Dragon can calculate a large number of MDs and allows the calculation
of disconnected structures (such as salts, complexes, etc.). Although the source code of
Dragon is not open, a free and easy-to-use web version of MD (e-Dragon) computing has
been developed on the basis of the older version of the software (Dragon 5.4). Further,
alvaDesc software can handle full and partial connection structures, provide different
unsupervised variable reduction methods, and delete descriptors with constant or missing
values to reduce the number of variables, and it can conveniently divide the 33 types
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of provided MDs into 2D and 3D ones [109,144,145]. Mordred software can calculate a
large number of MDs, and its calculation speed is twice that of PaDEL-Descriptor [146].
BlueDesc can output results in a libSVM input file format, making it easy to build SVM
models. ChemoPy is a free software program to calculate 2D and 3D descriptors and can
calculate 1135 descriptors. Currently, some web-based MD computing platforms have been
developed, such as ChemDes and the Online Chemical Modeling Environment (OCHEM).
ChemDes integrates multiple software packages such as CDK, RDKit, and BlueDesc, and it
has the functions of structural optimization, molecular format conversion, and similarity
calculation. OCHEM is an online version of alvaDesc [154].

Table 4. Comparison between features of MD calculation software programs.

Software Operating System Number of
Descriptors Features Ref.

PaDEL-
Descriptor

Windows, Linux,
MacOS >1700 Supports more than 90 molecular file formats [140]

alvaDesc Windows, Linux,
MacOS 5666 Can handle full and non-full connection

structures [144]

OCHEM Web 5666 Is a web version of alvaDesc [154]

chemDes Web 3679 Integrates with multiple advanced
software packages [149]

Dragon Windows, Linux, web
(e-Dragon) 5270 Has a fast calculation speed, allowing

disconnected structures [a]

Mordred Windows, Linux,
MacOS >1800 Can calculate macromolecule descriptor [146]

BlueDesc Windows, Linux,
MacOS 174 Is only applicable to 3D structures [b]

Chemopy Windows, Linux 1135 Is applicable to 2D and 3D structures [148]

Discovery Studio Windows, Linux Hundreds Enables structural optimization [150]

CDK Development kit 268 Contains the chemical and bioinformatics
Java library [151]

RDkit Development kit 200 Is based on the Python language, supporting
multiple file formats [153]

rcdk Development kit 221 Has the CDK toolkit integrated under the
R language [106]

[a]: http://www.talete.mi.it/products/dragon_description.htm (accessed on 10 February 2023). [b]: http://www.
ra.cs.uni-tuebingen.de/software/bluedesc/welcome_e.html (accessed on 10 February 2023).

4.3. Preprocessing and Optimization of Molecular Descriptors

The main two points that generally suitable MDs should meet are as follows: (1) the
correlation between MDs should be as low as possible, and (2) they should have a good
correlation with one or more properties of molecules. To accurately reflect the structure of
molecules, 2D absolute configurations or optimized 3D configurations should be obtained
before calculating the MDs. The 2D absolute configuration of the obtained compound can
be minimized by using the MM2 method in Chem3D Ultra software to minimize the energy
of the chemical structure of the molecule [150], and thus a stable molecular conformation
can be obtained. After obtaining the MDs, reducing their complexity and optimizing their
type and quantity, especially for compounds with similar chemical structures (such as
lipids), are prerequisites for obtaining high-precision CCS value predictions. Relevant
research [14] has found that through comparison, the prediction accuracy of the CCS values
of optimized lipid MDs has been greatly improved (R2 = 0.9941, and R2 = 0.1322 before
optimization) and the common overfitting problem in lipid prediction has also been solved.
The general process of MD optimization is as follows: (1) remove the same values [60],

http://www.talete.mi.it/products/dragon_description.htm
http://www.ra.cs.uni-tuebingen.de/software/bluedesc/welcome_e.html
http://www.ra.cs.uni-tuebingen.de/software/bluedesc/welcome_e.html
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zero values, and missing values in the data set [144]; (2) eliminate a portion of the MDs
that are highly correlated [148]; and (3) gradually remove the MDs that contribute little
to the regression model [14,145]. Specifically, the related MDs in the third point can be
deleted by using the nearZeroVar function in the R package insert [109]. Some studies [110]
have used the sensitivity analysis techniques in Alyuda NeuroIntelligence software to
analyze the importance of the obtained MDs, and they ultimately obtained good CCS
value prediction results (with a median relative error of less than 2%). The importance of
MDs is calculated by the degree of degradation of model performance after removing the
MDs. In one study [145], in extreme gradient-boosting models, the contribution of each
variable to the model is calculated on the basis of the number of times that it is selected for
splitting, and the square of the improvement to the model is weighted by each split. The
deletion or retention of MDs is determined on the basis of their importance to the model.
In order to obtain high-precision prediction results, researchers have made efforts to use a
combination of 2D descriptors and new 3D descriptors [7], optimizing 3D descriptors [155],
and considering the ionization states of protonated and deprotonated sites [12,145,156]. The
overall trend is that the compounds used to calculate MDs are closer to the true ionization
state. However, some studies [143] have found that the prediction results of 3D models are
superior to 2D models in only a few cases, by comparing the impact of using 2D and 3D
MDs on predicting CCS performance. Therefore, it is believed that 3D energy minimization
structures are usually time-consuming, hindering the realization of high throughput [142].

5. Machine-Learning Algorithms
5.1. Different Prediction Algorithms and Prediction Platforms

Prediction algorithms are used to establish a correlation between the structure of
molecules and CCS values and are divided mainly into linear and nonlinear methods
(Table 5). Linear modeling methods include stepwise multiple linear analysis (SMLR),
principal component regression (PCR), partial least squares (PLS) regression, and the
least absolute shrinkage and selection operator (LASSO) algorithm. Common nonlinear
algorithms include support vector machine (SVM), neural networks, random forest (RF),
and a gradient-boosting machine (GBM).

One study [156] explored the use of MDs and chemometrics tools, namely SMLR,
PCR, and PLS regression, to establish predictive models for the respective CCS values
of deprotonated phenolic compounds. These methods can be used in routine metabolite
identification analysis. Soper-Hopper [142] used the PLS toolbox in Matlab to conduct a
PLS analysis of MD and CCS values. The results showed that by using the PLS regression
model of MDs, accurate CCS values can be predicted from 2D structural information.
Wang [60] developed a method based on the LASSO algorithm to predict the CCS value of
lipids. In this method, a series of MDs were screened and optimized to reflect the subtle
structural differences between different lipid isomers. The use of MDs and a large number
of standard CCS values for lipids has significantly improved the accuracy of the LASSO
model. The accuracy was externally verified by using an independent data set, with median
relative errors (MREs) of <1.1%. Compared with linear regression algorithms, nonlinear
modeling methods have been studied more widely. The following sections will mainly
introduce the commonly used nonlinear algorithms for CCS database prediction.

SVR uses a kernel function to map the MDs of metabolites into a high-dimensional
feature space, establish a hyperplane in this space, and perform high-dimensional regres-
sion between the MDs and CCS values in the training data set [10]. In order to obtain
high-precision CSS value prediction results, training data sets are used to optimize the
kernel function parameters of the regression hyperplane. The cost of constraints naviga-
tion (C) and gamma (γ) are important parameters for constant optimization. The mean
absolute error (MAE), median absolute error (MDAE), median relative error (MDRE),
and root mean square error (RMSE) are used as the calculation performance indica-
tors [10,14,157]. SVR-based prediction can be achieved through the R package “e1071”
(https://cran.r-project.org/web/packages/e1071, accessed on 20 February 2023) or CCSP

https://cran.r-project.org/web/packages/e1071
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2.0 platform [147,158]. Zhou [10] reported for the first time a MetCCS database using
the support vector regression (SVR) algorithm. This study conducted large-scale CCS
predictions for 35,203 metabolites in the HMDB. Next, for the study of lipids, a stepwise
elimination method was used to screen out 45 MDs that were highly correlated with
CCS values. The SVR method was also used to develop a prediction CCS database con-
taining 15,646 lipids, namely LipidCCS, with significantly improved prediction accuracy
(MRE = 1%) [14]. Finally, [16] they collected more than 5000 experimental CCS values from
14 experimental data sets as a large-scale training set, and they continued to use the SVR
algorithm to develop the world’s largest CCS database of different types of small molecule
compounds (more than 1.6 million small molecules), which was named AllCCS.

A neural network, also known as an artificial neural network (ANN), is a type of
ML. Its name and its structure are inspired by the human brain and simulate the way that
biological neuron signals communicate with each other. The neural network consists of a
node layer, including an input layer; one or more hidden layers; and an output layer. Each
node is connected to another node and has associated weights and thresholds. If the output
of any one node is higher than the specified threshold, the node will be activated and send
data to the next layer of the network. The deep neural network (DNN) can be understood
as a neural network with many hidden layers. A convolutional neural network (CNN) is
a subtype of DNNs, consisting of a feature learning section and a prediction section [15].
It learns the internal representation of input through a series of convolution and maxi-
mum pooling steps. This internal representation is then used as an input to the multilayer
perceptron to perform the prediction. CCS value prediction based on neural network algo-
rithms can be performed on Alyuda NeuroIntelligence 2.2 software [110,133] or built using
the Keras library and Tensorflow backend on the programming software Python [15,159].
Pier-Luc [15] established a neural network between the SMILES format and the CCS of
compounds, successfully developed a CCS database called DeepCCS on the basis of CNNS,
and predicted the CCS values of more than 2400 compounds (MDRE = 2.7%). Colby’s
research team developed an algorithm, DarkChem, for metabolomics and predicting the
CCS values of untargeted small molecules that is based on neural networks [159]. The
algorithm used the SMILES format representing the structure of compounds as inputs and
extracted CCS values and m/z data on compounds from the PubChem database and the
ISiCLE database obtained through computational methods as output. A neural network
was established to predict the various physical and chemical properties of compounds,
including the CCS values. Through this training mechanism, DarkChem can predict CCS
with an average error of 2.5% and can predict CCS values of nearly 600,000 small molecules.

GBM is an integrated learning method. “Boosting” refers to an iterative process that
integrates multiple individual learners to form a series of weak learners into strong learners,
thereby reducing model generalization errors and improving model prediction accuracy.
It can be used for mathematical problems such as classification and regression [160]. At
the same time, gradient boosting is mostly constructed by decision trees, also known as
gradient-boosting decision trees, which have good fitting ability for linear and nonlinear
data, can handle continuous and discrete data, and have high prediction accuracy and
strong generalization ability. Extreme gradient boosting (XGBoost) is a scalable ML system
for tree boosting, featuring efficiency and flexibility [161]. There are a few studies in
which GBM algorithms is used to obtain predictive CCS databases. Nye [98] used the
GBM algorithm to predict the CCS values of metabolites in their study of comparing the
CCS values obtained through TWIMS and UHPLC-IMS. Connelly et al. [162] compared
the experimental, theoretical, and predicted CCS values through ML for isomeric drug
metabolites. The CCS value predicted by ML was obtained by using the gradient elevator
algorithm, and the final prediction accuracy reached up to 2.4%. In a study by Corey [153],
nearly 7325 experimental CCS values from 3775 compounds were used as dependent
variables, and a prediction model for CCS values was established by using the GBM
algorithm. To prevent overfitting, a nested cross-validation strategy was also used in
the study. The final model value showed a mean absolute deviation of 1.2% for the data
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set outside the sample. Song et al. [145] compared the impact of XGBoost and the SVM
algorithm on prediction models in their research on building a database of chemicals related
to plastic packaging. It was found that SVM models based on CDK descriptors provided
more-accurate prediction results.

Random forest (RF) is a classifier that uses multiple decision tree units to train and pre-
dict samples. It was first proposed and developed by Leo Breiman and Adele Cutler [163]
and is also an integrated learning algorithm. Unlike GBM, RF uses the bagging idea, which
means that the training sets of decision trees are independent of each other, and the decision
trees that makeup RF can be generated in parallel with each other, which applies to both the
classification and the regression problems. The RF algorithm can be implemented on the
R language open-source software package randomForest (v4.6-14) [164]. The research by
Ieritano found that the RF regression algorithm showed the best performance in the correla-
tion between differential mobility and CCS values, compared to the DNN model [165]. The
average absolute percentage error of the predicted CCS by RF was 2.6 ± 0.4% for analytes
outside the training set. Fan Yang [137] creatively developed a cross-platform CCS value
prediction method using RF algorithms and molecular fingerprints. The test accuracy of
this model is above 0.85, and the median of the relative residual is around 2.2%.

Table 5. The algorithms for CCS prediction.

Algorithm Method
Type Tools Features Refs.

Stepwise multiple
linear analysis

(SMLR)
linear R package

MLRMPA
Data need to be normalized to reduce the impact

of overfitting [156]

Principal
component

regression (PCR)
linear R package MASS

Can reduce the dimensionality of the data set
while maintaining the features with the

maximum variance contribution in the data set
[156]

Partial least
squares

regression (PLS)
linear

Matlab with the
PLS toolbox/R

package pls

Not sensitive to multicollinearity issues caused
by the use of simple linear regression models [150,156]

Least absolute
shrinkage and

selection operator
(LASSO)

linear Open-source R
programming

Have powerful ability to perform both variable
selection and regularization [60]

Support vector
machine (SVM) nonlinear R package e1071 Wide application; relatively small sample size;

can effectively avoid overfitting [10,14,16,145,147,158]

Artificial neural
network (ANN) nonlinear

Alyuda NeuroIn-
telligence

2.2

Can perform supervised learning, unsupervised
learning, and semisupervised learning [15,110,133,159]

Random forest
(RF) nonlinear

The scikit-learn
Python
package

Low variance; low susceptibility to overfitting;
poor model applicability [137,165]

Gradient-
boosting machine

(GBM)
nonlinear XGBoost library Overfitting often occurs [98,152,153,162]

5.2. Evaluation and Verification of Prediction Algorithms

The evaluation and the validation of prediction algorithms often use internal and
external validation. The data set for internal validation and the training set are from the
same instrument, while the external validation set uses different instruments to obtain the
CCS values in the data set [7,10]. When internal and external validations are performed on
the created CCS prediction model, the decision coefficient R2, mean absolute error (MAE),
median absolute error (MDAE), mean squared error (MSE), and root mean square error
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(RMSE) are used mainly as evaluation indicators for the prediction performance of different
models. Their calculation formulas are as follows:

R2 = 1− ∑n
i=1 (CCS− ĈCS)

2

∑n
i=1 (CCS−CCS)2 (3)

MAE =
∑n

i=1 |CCS− ĈCS|
n

(4)

MedAE = median(|CCS1 − ĈCS1|, . . . , |CCSn − ĈCSn|) (5)

MSE =
∑n

i=1 (CCS− ĈCS)
2

n
(6)

RMSE =

√
∑n

i=1 (CCS− ĈCS)
2

n
(7)

where CCS represents the measured CCS value of the compound measured in LC-MS, ĈCS
represents the predicted CCS value (by ML) of the compound predicted by the constructed
model, CCS represents the CCS mean value of a training or verification set, and n refers
to the number of samples in the training or verification set. The value of R2 is between 0
and 1, and the larger the value, the better. The larger the R2 of the training set, the higher
the degree of fitting of the model, and the larger the R2 of the verification set, the better
the prediction ability; the smaller the values of MAE, MDAE, MSE, and RMSE, the more
accurate the prediction results of the model and the smaller the error.

6. CCS Prediction Applications

Thanks to the advantages of CCS prediction, some ML-based CCS databases have
emerged one after another. These databases and self-built databases have been applied
to fields such as metabolomics, natural products, food, and the other research fields
(Section 6.4). Figure 3 shows the specific applications and advantages of CCS prediction.
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6.1. In Multiomics

CCS prediction methods based on ML have been widely used in lipidomics, pro-
teomics, and metabolomics. In 2016, Zhou et al. [10] first proposed a strategy for the
large-scale calculation of metabolite CCS values using ML methods. They focused on
small molecules and used the SVR algorithm to construct a regression relationship between
14 MDs and 400 measured metabolite CCS values. This study ultimately established a
predictive CCS database containing 35,203 metabolites, which has high predictive accuracy.
The database has also been proven to effectively improve the accuracy and efficiency of
identification in untargeted metabolomics. Zhou et al. [14] then used a similar method to
construct a regression relationship between the optimized molecular descriptor and more
than 450 measured lipid CCS values, and they obtained a CCS value database containing
more than 60,000 lipids. Notably, thanks to the high similarity among lipid structures,
they used the bioinformatics methods to optimize a set of molecular descriptors and fi-
nally established a lipid CCS prediction model with high prediction accuracy. They also
concluded that using the database can effectively reduce false-positive lipid identification
results in untargeted lipidomics. To annotate both known and unknown metabolites in
untargeted metabolomics on the basis of using IM-MS, Zhou et al. [16] developed an inte-
grated multidimensional matching strategy. This strategy integrates over 5000 experimental
CCS values and approximately 12 million CCS values predicted by ML, forming a diverse
CCS database called AllCCS. The prediction method includes an optimized ML prediction
algorithm, a large training data set with a high structure diversity, and a predictive perfor-
mance evaluation system with representative structure similarity (RSS) score. The AllCCS
database has proven to help expand the chemical coverage of identification and reveal
comprehensive chemical and metabolic insights into biological processes. The DeepCCS
database built by Plante and using convolutional neural network algorithms is trained and
validated by using the experimental data sets of over 2400 molecules [15]. Users only need
to input the SMILES symbol and the ion type of the compound to easily and quickly obtain
the CCS value, which avoids the error problems that users often encounter when using
MDs. DeepCCS has been proven to have high prediction accuracy, with a coefficient of
determination of 0.97 and a median relative error of 2.7% over a wide molecular range.
Wang [60] applied ML prediction to untargeted lipidomics, successfully predicted the CCS
values of lipids, and distinguished lipid isomers, including cis–trans isomers. Specifically,
a prediction method based on LASSO has been developed and used, and the molecular
descriptors of lipids have also been optimized to reflect the subtle differences between
their structures. Recently, Rainey [53] reported a high-precision ML algorithm (CCSP 2.0)
developed on the basis of SVR models. In particular, CCSP used the open-source Mordred
package to calculate a more comprehensive set of MDs. This algorithm can effectively filter
false-positive results in metabolomics. Liu [9] developed a quantitative structure–retention
relationship (QSRR) strategy and established a 4D information database containing tR, CCS,
MS, and MS/MS for 170 important signaling lipids (N-acetyl ethanolamines, NAEs) by
using the AllCCS database. Combining it with this database, they identified 68 NAE lipids
in different biological samples.

6.2. In Natural Products

The method of CCS prediction can be used to characterize different chemical compo-
nents in natural products. Song et al. [166] used LC-IM-HDMS techniques to characterize
phenolic compounds in bearberry leaves. In this study, a strategy of comparing CCS values
obtained from the literature and a database based on ML algorithms (AllCCS) with mea-
sured CCS values was added to the component identification workflow, and 88 compounds
with high confidence were identified. In their study, a tolerance of 5% between CCS val-
ues measured by ML and those predicted by ML was considered acceptable. Wang [167]
applied the prediction database (AllCCS) to the component characterization of Chinese
traditional medicine Cuscuta chinensis. The CCS value predicted by ML provides more
possibilities for distinguishing isomers in the absence of reference standards, with a total



Molecules 2023, 28, 4050 18 of 27

of 302 compounds identified or initially identified, of which 109 were not reported. With
the continuous expansion of the prediction range and improvement of accuracy in the
CCS database, its applications in the component characterization of natural products are
becoming increasingly widespread [168,169].

6.3. In Foods

Using the SVM model, Song et al. [109] constructed a correlation between the MDs of
400 food contact materials and the experimentally measured CCS values. In this study, MDs
and ML algorithms were optimized, and more-accurate prediction results were obtained. In
the meanwhile, they evaluated the applicability of CCS values predicted by ML in the field
of food packaging materials by comparing the established CCS value database for food
packaging materials with three available predictive CCS values (CCSondemand, AllCCS,
and CCSbase), and they found that the prediction given by CCSondemand was the most
accurate. This model was eventually applied to the structural annotation of oligomers in
polyamide adhesives. By combining it with the self-built prediction CCS database, the
recognition confidence of 11 oligomers has been improved. Another study [118] compared
the measured CCS values of mycotoxins with two ML databases (AllCCS and CCSbase).
The results showed that the CCS values predicted by ML were highly correlated with the
measured CCS values (Pearson r > 0.98). In the AllCCS prediction model, the prediction
error for 91% of the compounds was within a percentage difference of ±5%. The CCSbase
prediction model provided more-comprehensive structural coverage, resulting in lower
deviations, where half of the analytes (50.3%) showed prediction errors within ±2%. The
above research shows that the use of predicted CCS databases has a certain degree of
credibility, which is helpful for the detection of hazardous compounds in foods. Through
publicly available CCS databases, it is possible to gain a deeper understanding of the
chemical components in food and its contact materials, thereby improving the effectiveness
of food safety control.

6.4. In Other Fields

In the field of drugs and drug metabolites, research has used 2D and 3D combined
MDs and established large-scale databases to train CCS prediction models on the basis
of using ML, achieving high prediction accuracy [7]. Further, 3D information can predict
different polymers, conformational isomers, and positional isomers. In a study on the
characterization of pesticide components [110], researchers developed an accurate small
molecule CCS value prediction tool that was based on ANN and empirical CCS values
of 205 organic compounds. The applications of this prediction model to spinach samples
have demonstrated its potential for application, which raises confidence in the preliminary
identification of suspicious and untargeted pesticides. In environmental testing, Song
et al.’s research [145] collected over 1000 experimental CCS values related to plastics in the
literature and developed a plastic-packaging database based on SVM models. They ap-
plied this CCS database to the identification of plastic-related chemicals in rivers, reducing
false-positive results and improving the recognition confidence level. In a compound iden-
tification of dust samples [170], the researchers referred to two CCS databases constructed
on the basis of using ML during the identification process and evaluated the potential of
predictive databases to increase the reliability of compound identification. The applications
of predicted CCS values are summarized in Table 6.
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Table 6. The applications of predicted CCS values.

Object Year Effect Ref.

Metabolites

2016 MRE < 3%; the identification accuracy can be improved [10]
2017 MRE < 1%; the false-positive identifications of lipids can be effectively reduced [14]
2019 MRE < 3%; only SMILES notation and ion type are needed [15]

2020 MRE < 2%; the accuracy and coverage of both known metabolite and unknown
metabolite annotation from biological samples can be improved [16]

2022 MRE < 1.1%; cis–trans and sn-positional isomers can be distinguished [60]
2022 MRE < 2%; the false positives can be filtered out [147]

Natural products 2021 a higher identification confidence level can be obtained [166]
2022 more possibilities to distinguish isomers can be provided [167]

Foods
2020 a certain degree of credibility can be obtained [118]
2022 MRE < 2%; the identification confidence of 11 oligomers can be improved [109]

Drugs 2017 MRE < 2%; the confidence in the tentative identification of suspect and nontarget
pesticides can be notably improved [110]

2022 MRE < 2.2%; sufficient precision to differentiate isomers and conformers can be obtained [7]

Environment
2020 identification confidence can be increased [170]

2022 MRE < 2%; the false positives were reduced, and the recognition confidence levels can be
improved [145]

7. Summary and Outlook

Ion mobility technology has achieved rapid growth in the past 2 decades, and com-
mercial ion mobility platforms have emerged in an endless stream. IM-MS and its coupling
with other analytical techniques have demonstrated outstanding advantages in greatly
enhancing the confidence in the characterization and identification of chemical compo-
nents, especially isomers, in different fields. In addition to experimental measurements and
theoretical calculations, the prediction of CCS values can be more quickly and accurately
achieved through ML methods, thereby establishing a dedicated multidimensional infor-
mation database. Currently, some CCS databases based on different ML algorithms have
been developed, such as MetCCS, LipidCCS, DeepCCS, and CCSbase. Moreover, the CCS
databases have been applied in fields such as metabolomics, natural products, and foods.
The development of quantum chemistry or molecular dynamics, such as the screening and
optimization of 3D conformations and the determination of protonation/deprotonation
sites, is helpful for obtaining the gas-phase structure closer to the measured state. The more
comprehensive MD calculation methods can obtain more expected independent variables.
The higher resolution of the IMS platform helps to obtain higher precision for dependent
variable values. Last but not least, the newly developed appropriate feature screening
approaches, ML or deep-learning algorithms, will help to greatly improve the accuracy
of model fitting. With the further growth of IM-MS and the refinement of ML algorithms,
it is believed that the prediction accuracy will be improved and that the database will be
continuously expanded. The technology of predicting CCS values on the basis of using
IM-MS and ML will also be deeply and widely used.
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