Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,723)

Search Parameters:
Keywords = investigation event

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

13 pages, 1667 KiB  
Article
Univariate and Multivariate Pattern Analysis Reveals the Effects of Negative Body Image at Fatness on Food-Related Inhibitory Control
by Zihan Xu, Yuchan Xu, Junyao Han, Lechang Sun, Junwei Lian, Zhifang Li, Yong Liu and Jia Zhao
Nutrients 2025, 17(15), 2555; https://doi.org/10.3390/nu17152555 - 5 Aug 2025
Abstract
Background/Objectives: Perceptions of obesity critically influence people’s eating behaviors and responses to food stimuli. However, few studies have investigated the impact of negative body perception on behavioral and neural responses to food stimuli. This study investigates how elevated body dissatisfaction modulates food-related inhibitory [...] Read more.
Background/Objectives: Perceptions of obesity critically influence people’s eating behaviors and responses to food stimuli. However, few studies have investigated the impact of negative body perception on behavioral and neural responses to food stimuli. This study investigates how elevated body dissatisfaction modulates food-related inhibitory control. Methods: Fifty-one participants comprising three cohorts—overweight/obese individuals (OO), normal-weight participants exhibiting high negative body image (HNN), and healthy controls—performed a food-specific inhibitory control task under EEG recording. Results: The results showed that the HNN cohort achieved superior no-go accuracy and enhanced inhibitory control compared to controls. An event-related potentials (ERPs) analysis revealed increased conflict detection (P200) for high-calorie foods and reduced conflict resolution (LPP) in the HNN group, similar to the overweight/obese group. A multivariate pattern analysis (MVPA) identified earlier neural discrimination in the HNN group, suggesting more efficient inhibitory processing. Conclusions: These findings underscore negative body perception as a critical modulator of food-related cognitive control mechanisms. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

12 pages, 2254 KiB  
Article
Evolution of the Jawed Vertebrate (Gnathostomata) Stomach Through Gene Repertoire Loss: Findings from Agastric Species
by Jackson Dann and Frank Grützner
J. Dev. Biol. 2025, 13(3), 27; https://doi.org/10.3390/jdb13030027 - 5 Aug 2025
Abstract
The stomach has been a highly conserved organ throughout vertebrate evolution; however, there are now over 20 lineages composed of monotremes, lungfish and teleost fish displaying a secondary loss of stomach function and morphology. This “agastric phenotype” has evolved convergently and is typified [...] Read more.
The stomach has been a highly conserved organ throughout vertebrate evolution; however, there are now over 20 lineages composed of monotremes, lungfish and teleost fish displaying a secondary loss of stomach function and morphology. This “agastric phenotype” has evolved convergently and is typified by a loss of gastric glands and gastric acid secretion and a near-to-complete loss of storage capacity of the stomach. All agastric species have lost the genes for gastric enzymes (Pga and Pgc) and proton pump subunits (Atp4a and Atp4b), and gastrin (Gast) has been lost in monotremes. As a key gastric hormone, the conservation of gastrin has not yet been investigated in the lungfish or agastric teleosts, and it is unclear how the loss of gastrin affects the evolution and selection of the native receptor (Cckbr), gastrin-releasing peptide (Grp) and gastrin-releasing peptide receptor (Grpr) in vertebrates. Furthermore, there are still many genes implicated in gastric development and function which have yet to be associated with the agastric phenotype. We analysed the evolution, selection and conservation of the gastrin pathway and a novel gastric gene repertoire (Gkn1, Gkn2, Tff1, Tff2, Vsig1 and Anxa10) to determine the correlation with the agastric phenotype. We found that the loss of gastrin or its associated genes does not correlate with the agastric phenotype, and their conservation is due to multiple pleiotropic roles throughout vertebrate evolution. We found a loss of the gastric gene repertoire in the agastric phenotype, except in the echidna, which retained several genes (Gkn1, Tff2 and Vsig1). Our findings suggest that the gastrin physiological pathway evolved differently in pleiotropic roles throughout vertebrate evolution and support the convergent evolution of the agastric phenotype through shared independent gene-loss events. Full article
Show Figures

Figure 1

25 pages, 9050 KiB  
Article
Field Blast Tests and Finite Element Analysis of A36 Steel Sheets Subjected to High Explosives
by Anselmo S. Augusto, Girum Urgessa, José A. F. F. Rocco, Fausto B. Mendonça and Koshun Iha
Eng 2025, 6(8), 187; https://doi.org/10.3390/eng6080187 - 5 Aug 2025
Abstract
Blast mitigation of structures is an important research topic due to increasing intentional and accidental human-induced threats and hazards. This research area is essential to building capabilities in sustaining structural protection, site planning, protective design efficiency, occupant safety, and response and recovery plans. [...] Read more.
Blast mitigation of structures is an important research topic due to increasing intentional and accidental human-induced threats and hazards. This research area is essential to building capabilities in sustaining structural protection, site planning, protective design efficiency, occupant safety, and response and recovery plans. This paper investigates experimental tests and finite element analysis (FEM) of thin A36 steel sheets subjected to blast. Six field blast tests were performed at standoff distances of 300 mm and 500 mm. The explosive charges comprised 334 g of bare Composition B, and the steel sheets were 2 mm thick. The experimental results, derived from the analysis of high-speed camera recordings of the blast events, were compared with FEM simulations conducted using Abaqus®/Explicit version 6.10. Three constitutive material models were considered in these simulations. First, the FEM simulation results were compared with experimental results. It was shown that the FEM analysis provided reliable results and was proven to be robust and cost-effective. Second, an extensive set of 460 additional numerical simulations was carried out as a parametric study involving varying standoff distances and steel sheet thicknesses. The results and methodologies presented in this paper offer valuable and original insights for engineers and researchers aiming to predict damage to steel structures during real detonation events and to design blast-resistant structures. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

18 pages, 1203 KiB  
Communication
Efficacy of a Novel Lactiplantibacillus plantarum Strain (LP815TM) in Reducing Canine Aggression and Anxiety: A Randomized Placebo-Controlled Trial with Qualitative and Quantitative Assessment
by Emmanuel M. M. Bijaoui and Noah P. Zimmerman
Animals 2025, 15(15), 2280; https://doi.org/10.3390/ani15152280 - 4 Aug 2025
Abstract
Behavioral issues in domestic dogs represent a significant welfare concern affecting both canines and their caregivers, with prevalence rates reported to range from 34 to 86% across the population. Current treatment options, including selective serotonin reuptake inhibitors (SSRIs) like fluoxetine, often present limitations [...] Read more.
Behavioral issues in domestic dogs represent a significant welfare concern affecting both canines and their caregivers, with prevalence rates reported to range from 34 to 86% across the population. Current treatment options, including selective serotonin reuptake inhibitors (SSRIs) like fluoxetine, often present limitations including adverse effects and delayed efficacy. This randomized, placebo-controlled (maltodextrin) study investigated the effects of a novel Lactiplantibacillus plantarum strain (LP815TM) on canine behavioral concerns through gut–brain axis modulation. Home-based dogs (n = 40) received either LP815TM (n = 28) or placebo (n = 12) daily for 4 weeks, with behavioral changes assessed using the comprehensive Canine Behavioral Assessment & Research Questionnaire (C-BARQ) and continuous activity monitoring. After the intervention period, dogs receiving LP815TM showed significant improvements in aggression (p = 0.0047) and anxiety (p = 0.0005) compared to placebo controls. These findings were corroborated by objective activity data, which demonstrated faster post-departure settling, reduced daytime sleep, and improved sleep consistency in the treatment group. Throughout >1120 administered doses, no significant adverse events were reported, contrasting favorably with pharmaceutical alternatives. The concordance between our findings and previous research using different L. plantarum strains suggests a consistent biological mechanism, potentially involving GABA production and vagal nerve stimulation. These results indicate that LP815TM represents a promising, safe alternative for addressing common canine behavioral concerns with potential implications for improving both canine welfare and the human–animal bond. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Graphical abstract

26 pages, 4294 KiB  
Article
Post Hoc Event-Related Potential Analysis of Kinesthetic Motor Imagery-Based Brain-Computer Interface Control of Anthropomorphic Robotic Arms
by Miltiadis Spanos, Theodora Gazea, Vasileios Triantafyllidis, Konstantinos Mitsopoulos, Aristidis Vrahatis, Maria Hadjinicolaou, Panagiotis D. Bamidis and Alkinoos Athanasiou
Electronics 2025, 14(15), 3106; https://doi.org/10.3390/electronics14153106 - 4 Aug 2025
Abstract
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and [...] Read more.
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and imagery remains under investigation in terms of activations, processing of motor onset, and BCI control. The current work aims to conduct a post hoc investigation of the event-related potential (ERP)-based processing of KMI during BCI control of anthropomorphic robotic arms by spinal cord injury (SCI) patients and healthy control participants in a completed clinical trial. For this purpose, we analyzed 14-channel electroencephalography (EEG) data from 10 patients with cervical SCI and 8 healthy individuals, recorded through Emotiv EPOC BCI, as the participants attempted to move anthropomorphic robotic arms using KMI. EEG data were pre-processed by band-pass filtering (8–30 Hz) and independent component analysis (ICA). ERPs were calculated at the sensor space, and analysis of variance (ANOVA) was used to determine potential differences between groups. Our results showed no statistically significant differences between SCI patients and healthy control groups regarding mean amplitude and latency (p < 0.05) across the recorded channels at various time points during stimulus presentation. Notably, no significant differences were observed in ERP components, except for the P200 component at the T8 channel. These findings suggest that brain circuits associated with motor planning and sensorimotor processes are not disrupted due to anatomical damage following SCI. The temporal dynamics of motor-related areas—particularly in channels like F3, FC5, and F7—indicate that essential motor imagery (MI) circuits remain functional. Limitations include the relatively small sample size that may hamper the generalization of our findings, the sensor-space analysis that restricts anatomical specificity and neurophysiological interpretations, and the use of a low-density EEG headset, lacking coverage over key motor regions. Non-invasive EEG-based BCI systems for motor rehabilitation in SCI patients could effectively leverage intact neural circuits to promote neuroplasticity and facilitate motor recovery. Future work should include validation against larger, longitudinal, high-density, source-space EEG datasets. Full article
(This article belongs to the Special Issue EEG Analysis and Brain–Computer Interface (BCI) Technology)
Show Figures

Figure 1

16 pages, 4328 KiB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

15 pages, 553 KiB  
Systematic Review
The Potential of Virtual Reality-Based Multisensory Interventions in Enhancing Cognitive Function in Mild Cognitive Impairment: A Systematic Review
by Maryam Mehrinejad Khotbehsara, Jeffrey Soar, Sachithra Lokuge, Elham Mehrinejad Khotbehsara and Wing Keung Ip
J. Clin. Med. 2025, 14(15), 5475; https://doi.org/10.3390/jcm14155475 - 4 Aug 2025
Abstract
Background: This systematic review investigates the role of virtual reality (VR)-based multisensory cognitive training in cognitive function, executive function and wayfinding ability among people diagnosed with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Methods: The review was carried out using PRISMA guidelines. [...] Read more.
Background: This systematic review investigates the role of virtual reality (VR)-based multisensory cognitive training in cognitive function, executive function and wayfinding ability among people diagnosed with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Methods: The review was carried out using PRISMA guidelines. PubMed, Scopus, Embase, and Google Scholar were searched up from inception to February 2025 using terms related to MCI, AD, VR, and cognitive functions. Studies were included if they involved participants with MCI or early AD, used VR-based training, collected baseline data, and reported cognitive outcomes. Results: Nine studies with MCI were included, but no eligible studies focused on AD. Seven out of nine eligible studies in MCI reported significant improvements in global cognitive function (MoCA, CERAD-K, MMSE). Some studies showed improvements in executive function (EXIT-25, TMT-A/B, and SCWT), while others found no significant differences. One study reported improved depression/mental status (GDS, MOSES, QoL-AD). Just one study reported improvement in functional ability (IADL). One study reported enhanced cognition and reduced discomfort (SSQ). VR programs were generally well-tolerated, with no significant adverse events reported. Conclusions: VR shows promise for improving cognitive function in MCI. VR also showed potential benefits in executive function and psychological outcomes like depression and quality of life, though consistency varied. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

9 pages, 805 KiB  
Article
Feasibility and Safety of Liberal Fluid Fasting in an Orthogeriatric Department: A Prospective Before-and-After Cohort Study
by Thomas Saller, Janine Allmendinger, Patricia Knabe, Max Knabe, Lina Lenninger, Anne-Marie Just, Denise Seidenspinner, Boris Holzapfel, Carl Neuerburg and Roland Tomasi
J. Clin. Med. 2025, 14(15), 5477; https://doi.org/10.3390/jcm14155477 - 4 Aug 2025
Abstract
Background: The rationale for strict fluid fasting for pediatric and adult patients has been questioned recently. Point-of-care tools for the evaluation of gastric content have evolved over time, often using gastric ultrasound. Usually, the gastric antral cross-sectional area (CSA) is determined. A liberal [...] Read more.
Background: The rationale for strict fluid fasting for pediatric and adult patients has been questioned recently. Point-of-care tools for the evaluation of gastric content have evolved over time, often using gastric ultrasound. Usually, the gastric antral cross-sectional area (CSA) is determined. A liberal fluid fasting regimen, that is, ingestion of liquid fluids until the call for theatre, does not delay gastric emptying compared to midnight fasting, as evaluated with gastric ultrasound. Anesthesia is safe, and no adverse events result from a liberal regimen. Methods: The ethics committee of LMU Munich approved the study (21-0903). Liberal fluid fasting in a geriatric orthopedic surgery department (LFFgertrud) is a sub-study within a project investigating perioperative neurocognitive disorders (Study Registration: DRKS00026801). After obtaining informed consent from 134 geriatric patients 70 years or older, we investigated the gastric antral cross-sectional area (CSA) prior to and postimplementation of liberal fluid management, respectively. Results: After the implementation of liberal fluid fasting, fasting times for solid food and liquids decreased from 8.8 (±5.5) to 1.8 (±1.8) hours (p < 0.0001). In 39 patients where CSA was obtained, a slight increase in fluid was encountered. No critical amount of gastric content was observed, and no adverse events occurred. Conclusions: A liberal fluid fasting concept was safe even for comorbid elderly patients in orthopedic surgery. Applying a gastric ultrasound may be helpful to increase safety. According to the incidence of complications encountered in our study, it seems indispensable. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

23 pages, 857 KiB  
Article
Study of the Impact of Agricultural Insurance on the Livelihood Resilience of Farmers: A Case Study of Comprehensive Natural Rubber Insurance
by Jialin Wang, Yanglin Wu, Jiyao Liu and Desheng Zhang
Agriculture 2025, 15(15), 1683; https://doi.org/10.3390/agriculture15151683 - 4 Aug 2025
Abstract
Against the backdrop of increasingly frequent extreme weather events and heightened market price volatility, investigating the relationship between agricultural insurance and farmers’ livelihood resilience is crucial for ensuring rural socioeconomic stability. This study utilizes field survey data from 1196 households across twelve county-level [...] Read more.
Against the backdrop of increasingly frequent extreme weather events and heightened market price volatility, investigating the relationship between agricultural insurance and farmers’ livelihood resilience is crucial for ensuring rural socioeconomic stability. This study utilizes field survey data from 1196 households across twelve county-level divisions (three cities and nine counties) from China’s Hainan and Yunnan provinces, specifically in natural rubber-producing regions. Using propensity score matching (PSM), we empirically examine agricultural insurance’s impact on household livelihood resilience. The results demonstrate that agricultural insurance increased the effect on farmers’ livelihood resilience by 1%. This effect is particularly pronounced among recently poverty-alleviated households and large-scale farming operations. Furthermore, the analysis highlights the mediating roles of credit availability, adoption of agricultural production technologies, and production initiative in strengthening insurance’s positive impact. Therefore, policies should be refined and expanded, combining agricultural insurance with credit support and agricultural technology extension to leverage their value and ensure the sustainable development of farm households. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

21 pages, 328 KiB  
Review
Adjuvant Immunotherapy in Stage IIB/IIC Melanoma: Current Evidence and Future Directions
by Ivana Prkačin, Ana Brkić, Nives Pondeljak, Mislav Mokos, Klara Gaćina and Mirna Šitum
Biomedicines 2025, 13(8), 1894; https://doi.org/10.3390/biomedicines13081894 - 4 Aug 2025
Abstract
Background: Patients with resected stage IIB and IIC melanoma are at high risk of recurrence and distant metastasis, despite surgical treatment. The recent emergence of immune checkpoint inhibitors (ICIs) has led to their evaluation in the adjuvant setting for early-stage disease. This [...] Read more.
Background: Patients with resected stage IIB and IIC melanoma are at high risk of recurrence and distant metastasis, despite surgical treatment. The recent emergence of immune checkpoint inhibitors (ICIs) has led to their evaluation in the adjuvant setting for early-stage disease. This review aims to synthesize current evidence regarding adjuvant immunotherapy for stage IIB/IIC melanoma, explore emerging strategies, and highlight key challenges and future directions. Methods: We conducted a comprehensive literature review of randomized clinical trials, observational studies, and relevant mechanistic and biomarker research on adjuvant therapy in stage IIB/IIC melanoma. Particular focus was placed on pivotal trials evaluating PD-1 inhibitors (KEYNOTE-716 and CheckMate 76K), novel vaccine and targeted therapy trials, mechanisms of resistance, immune-related toxicity, and biomarker development. Results: KEYNOTE-716 and CheckMate 76K demonstrated significant improvements in recurrence-free survival (RFS) and distant metastasis-free survival (DMFS) with pembrolizumab and nivolumab, respectively, compared to placebo. However, no definitive overall survival benefit has yet been shown. Adjuvant immunotherapy is linked to immune-related adverse events, including permanent endocrinopathies. Emerging personalized approaches, such as circulating tumor DNA monitoring and gene expression profiling, may enhance patient selection, but remain investigational. Conclusions: Adjuvant PD-1 blockade offers clear RFS benefits in high-risk stage II melanoma, but optimal patient selection remains challenging, due to uncertain overall survival benefit and toxicity concerns. Future trials should integrate biomarker-driven approaches to refine therapeutic decisions and minimize overtreatment. Full article
(This article belongs to the Section Gene and Cell Therapy)
35 pages, 9464 KiB  
Article
Numerical Investigation of Progressive Collapse Resistance in Fully Bonded Prestressed Precast Concrete Spatial Frame Systems with and Without Precast Slabs
by Manrong Song, Zhe Wang, Xiaolong Chen, Bingkang Liu, Shenjiang Huang and Jiaxuan He
Buildings 2025, 15(15), 2743; https://doi.org/10.3390/buildings15152743 - 4 Aug 2025
Abstract
Preventing progressive collapse induced by accidental events poses a critical challenge in the design and construction of resilient structures. While substantial progress has been made in planar structures, the progressive collapse mechanisms of precast concrete spatial structures—particularly regarding the effects of precast slabs—remain [...] Read more.
Preventing progressive collapse induced by accidental events poses a critical challenge in the design and construction of resilient structures. While substantial progress has been made in planar structures, the progressive collapse mechanisms of precast concrete spatial structures—particularly regarding the effects of precast slabs—remain inadequately explored. This study develops a refined finite element modeling approach to investigate progressive collapse mechanisms in fully bonded prestressed precast concrete (FB-PPC) spatial frames, both with and without precast slabs. The modeling approach was validated against available test data from related sub-assemblies, and applied to assess the collapse performance. A series of pushdown analyses were conducted on the spatial frames under various column removal scenarios. The load–displacement curves, slab contribution, and failure modes under different conditions were compared and analyzed. A simplified energy-based dynamic assessment was additionally employed to offer a rapid estimation of the dynamic collapse capacity. The results show that when interior or side columns fail, the progressive collapse process can be divided into the beam action stage and the catenary action (CA) stage. During the beam action stage, the compressive membrane action (CMA) of the slabs and the compressive arch action (CAA) of the beams work in coordination. Additionally, the tensile membrane action (TMA) of the slabs strengthens the CA in the beams. When the corner columns fail, the collapse stages comprise the beam action stage followed by the collapse stage. Due to insufficient lateral restraints around the failed column, the development of CA is limited. The membrane action of the slabs cannot be fully mobilized. The contribution of the slabs is significant, as it can substantially enhance the vertical resistance and restrain the lateral displacement of the columns. The energy-based dynamic assessment further reveals that FB-PPC spatial frames exhibit high ductility and residual strength following sudden column removal, with dynamic load–displacement curves showing sustained plateaus or gentle slopes across all scenarios. The inclusion of precast slabs consistently enhances both the peak load capacity and the residual resistance in dynamic collapse curves. Full article
(This article belongs to the Special Issue Research on the Seismic Performance of Reinforced Concrete Structures)
Show Figures

Figure 1

16 pages, 297 KiB  
Article
How to Disappear Completely
by Dominik Zechner
Humanities 2025, 14(8), 161; https://doi.org/10.3390/h14080161 - 4 Aug 2025
Abstract
This article investigates the paradox of disappearance as both an aesthetic and a political phenomenon. Taking inspiration from Radiohead’s song “How to Disappear Completely,” it argues that aesthetic representations of disappearance never achieve total erasure; instead, they give rise to new forms of [...] Read more.
This article investigates the paradox of disappearance as both an aesthetic and a political phenomenon. Taking inspiration from Radiohead’s song “How to Disappear Completely,” it argues that aesthetic representations of disappearance never achieve total erasure; instead, they give rise to new forms of visibility. A true aesthetics of disappearance does not exist. Through case studies such as H.G. Wells’s The Invisible Man and Guy Debord’s Society of the Spectacle, the article demonstrates that disappearance is always mediated: the invisible man becomes hyper-visible through his clothing, bandages, and mask, while the spectacle conceals marginalized lives only to expose them through mechanisms of institutional control (e.g., prisons, medical facilities, schools—as analyzed in Michel Foucault’s work). An investigation of the “novel of the institution” (Campe), especially as it appears in the works of Franz Kafka and Robert Walser, eventually explores the nexus between aesthetic representation and institutionalized forms of coerced visibility. Ultimately, the essay argues that disappearance, as an aesthetic and political event, destabilizes regimes of visibility—not by erasure alone, but by exposing the fragility of appearance itself. The tension between opacity and exposure suggests that resistance lies not in pure absence but in subverting the very mechanisms of representation. Full article
(This article belongs to the Section Cultural Studies & Critical Theory in the Humanities)
24 pages, 2618 KiB  
Article
Effects of Postcure and Degradation in Wet Layup Carbon/Epoxy Composites Using Shear-Based Metrics
by Rabina Acharya and Vistasp M. Karbhari
J. Compos. Sci. 2025, 9(8), 411; https://doi.org/10.3390/jcs9080411 - 3 Aug 2025
Viewed by 29
Abstract
Non-autoclave-cured wet layup composites are used extensively in applications ranging from civil and marine infrastructure to offshore components and in transmission power systems. In many of these applications the composites can be exposed to elevated temperatures for extended periods of time. While residual [...] Read more.
Non-autoclave-cured wet layup composites are used extensively in applications ranging from civil and marine infrastructure to offshore components and in transmission power systems. In many of these applications the composites can be exposed to elevated temperatures for extended periods of time. While residual tensile characteristics have been used traditionally to assess the integrity of the composite after a thermal event/exposure, it is emphasized that fiber-dominated characteristics such as longitudinal tensile strength are not affected as much as those associated with shear. This paper reports on the investigation of shear related characteristics through off-axis and short-beam shear testing after exposure to temperatures between 66 °C and 260 °C for periods of time up to 72 h. It is shown that the use of shear test results in conjunction with tensile tests enables better assessment of the competing effects of postcure, which results in an increase in performance, and thermal degradation, which causes drops in performance. Off-axis-to-tensile strength and short-beam shear strength-to-tensile strength ratios are used to determine zones of influence and mechanisms. It is shown that temperatures up to 149 °C can lead to advantageous postcure related increases in performance whereas temperatures above 232 °C can lead to significant deterioration at time periods as low as 4 h. The use of shear tests is shown to provide data critical to performance integrity showing trends otherwise obscured by just the use of longitudinal tensile tests. A phenomenological model developed based on effects of the competing mechanisms and grouping based on phenomenon dominance and temperature regimes is shown to model data well providing a useful context for deign thresholds and determination of remaining structural integrity. Full article
Show Figures

Figure 1

16 pages, 281 KiB  
Article
Existence and Uniqueness of Solutions for Impulsive Stochastic Differential Variational Inequalities with Applications
by Wei Liu and Kui Liu
Axioms 2025, 14(8), 603; https://doi.org/10.3390/axioms14080603 - 3 Aug 2025
Viewed by 29
Abstract
This paper focuses on exploring an impulsive stochastic differential variational inequality (ISDVI), which combines an impulsive stochastic differential equation and a stochastic variational inequality. Innovatively, our work incorporates two key aspects: first, our stochastic differential equation contains an impulsive term, enabling better handling [...] Read more.
This paper focuses on exploring an impulsive stochastic differential variational inequality (ISDVI), which combines an impulsive stochastic differential equation and a stochastic variational inequality. Innovatively, our work incorporates two key aspects: first, our stochastic differential equation contains an impulsive term, enabling better handling of sudden event impacts; second, we utilize a non-local condition z(0)=χ0+ϑ(z) that integrates measurements from multiple locations to construct superior models. Methodologically, we commence our analysis by using the projection method, which ensures the existence and uniqueness of the solution to ISDVI. Subsequently, we showcase the practical applicability of our theoretical findings by implementing them in the investigation of a stochastic consumption process and electrical circuit model. Full article
Show Figures

Figure 1

Back to TopTop