Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = inverted OSC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3821 KB  
Article
Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells
by Ermioni Polydorou, Georgios Manginas, Georgios Chatzigiannakis, Zoi Georgiopoulou, Apostolis Verykios, Elias Sakellis, Maria Eleni Rizou, Vassilis Psycharis, Leonidas Palilis, Dimitris Davazoglou, Anastasia Soultati and Maria Vasilopoulou
Materials 2025, 18(8), 1767; https://doi.org/10.3390/ma18081767 - 12 Apr 2025
Cited by 1 | Viewed by 774
Abstract
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used [...] Read more.
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used as an electron extraction layer (EEL) in inverted OSCs, suffers from surface defects that hinder device performance. Furthermore, the active control of its optoelectronic properties is highly desirable as the interfacial electron transport and extraction, exciton dissociation and non-radiative recombination are crucial for optimum solar cell operation. In this regard, this study investigates the sulfur doping of ZnO as a facile method to effectively increase ZnO conductivity, improve the interfacial electron transfer and, overall, enhance solar cell performance. ZnO films were sulfur-treated under various annealing temperatures, with the optimal condition found at 250 °C. Devices incorporating sulfur-doped ZnO (S-ZnO) exhibited a significant PCE improvement from 2.11% for the device with the pristine ZnO to 3.14% for the OSC based on the S-ZnO annealed at 250 °C, attributed to an enhanced short-circuit current density (Jsc) and fill factor (FF). Optical and structural analyses revealed that the sulfur treatment led to a small enhancement of the ZnO film crystallite size and an increased n-type transport capability. Additionally, the sulfurization of ZnO enhanced its electron extraction efficiency, exciton dissociation at the ZnO/photoactive layer interface and exciton/charge generation rate without altering the film morphology. These findings highlight the potential of sulfur doping as an easily implemented, straightforward approach to improving the performance of inverted OSCs. Full article
(This article belongs to the Special Issue Recent Advances in Semiconductors for Solar Cell Devices)
Show Figures

Figure 1

17 pages, 2098 KB  
Article
Highly Stable Inverted Organic Solar Cell Structure Using Three Efficient Electron Transport Layers
by Mohamed El Amine Boudia and Cunlu Zhao
Energies 2025, 18(1), 167; https://doi.org/10.3390/en18010167 - 3 Jan 2025
Cited by 2 | Viewed by 1143
Abstract
The efficiency of organic solar cells (OSCs) is influenced by various factors, among which environmental temperature plays a significant role. Previous studies have shown that the thermal stability of these cells can be enhanced by incorporating a third component into their structure. Ternary [...] Read more.
The efficiency of organic solar cells (OSCs) is influenced by various factors, among which environmental temperature plays a significant role. Previous studies have shown that the thermal stability of these cells can be enhanced by incorporating a third component into their structure. Ternary organic solar cells, particularly, have shown promising results in improving thermal stability. A well-designed electron transport layer (ETL) can significantly bolster thermal stability by facilitating efficient charge transport and reducing charge recombination. In this study, we investigated the effect of temperature, ranging from 300 K to 400 K, on the efficiency of inverted ternary structures by using a one-dimension optoelectronic model on “Oghma-Nano 8.0.034” software. The structures examined include (S1) “FTO/SnO2/PM6:D18:L8-BO/PEDOT: PSS/Ag”, (S2): “FTO/C60/PM6:D18:L8-BO/PEDOT: PSS/Ag”, and (S3): “FTO/PC60BM/PM6:D18:L8-BO/PEDOT: PSS/Ag”. Simulations using three different ETLs—SnO2, C60, and PC60BM—at 340 K (66.85 °C) resulted in a main effect on open circuit voltage (Voc) and fill factor (FF) values, in addition to an important Jsc value in terms of thermally stable devices. However, these structures retained 92% of their initial ~20% efficiency observed at 300 K, demonstrating significant thermal stability under high power conversion efficiency (PCE) conditions. Full article
(This article belongs to the Special Issue Organic and Hybrid Solar Cells for Efficient Solar Power Conversion)
Show Figures

Figure 1

14 pages, 3071 KB  
Article
Simulation and Comparison of the Photovoltaic Performance of Conventional and Inverted Organic Solar Cells with SnO2 as Electron Transport Layers
by Mohamed El Amine Boudia, Qiuwang Wang and Cunlu Zhao
Energies 2024, 17(13), 3302; https://doi.org/10.3390/en17133302 - 5 Jul 2024
Cited by 4 | Viewed by 2120
Abstract
Extensive research on organic solar cells (OSCs) over the past decade has led to efficiency improvements exceeding 18%. Enhancing the efficacy of binary organic solar cells involves multiple factors, including the strategic selection of materials. The choice of donor and acceptor materials, which [...] Read more.
Extensive research on organic solar cells (OSCs) over the past decade has led to efficiency improvements exceeding 18%. Enhancing the efficacy of binary organic solar cells involves multiple factors, including the strategic selection of materials. The choice of donor and acceptor materials, which must exhibit complementary absorption spectra, is crucial. Additionally, optimizing the solar cell structure, such as adjusting the thickness of layers and incorporating hole-transporting layers, can further increase efficiency. In this study, we simulated three different novels within the use of the inorganic SnO2 on the OSCs within this specific arrangement of structures using a drift-diffusion model: direct and inverted binary; direct ternary configurations of OSCs, specifically ITO/PEDOT: PSS/PM6:L8-BO/SnO2/Ag, ITO/SnO2/PM6:L8-BO/PEDOT: PSS/Ag; and FTO/PEDOT: PSS/PM6:D18:L8-BO/SnO2/Ag. These structures achieved power conversion efficiencies (PCE) of 18.34%, 18.37%, and 19.52%, respectively. The direct ternary device achieved an important Voc of 0.89 V and an FF of 82.3%, which is high in comparison with other simulated results in the literature. Our research focused on the role of SnO2 as an inorganic electron transport layer in enhancing efficiency in all three configurations. We also evaluated the properties of these structures by simulating external quantum efficiency (EQE), which results in a broadened absorption spectrum from 380 nm to 900 nm for both binary and ternary devices. Furthermore, we measured the spectral distribution of absorbed photons, and photo-charge extraction by linearly increasing voltage (photo-CELIV) to assess charge extraction and generation rates as well as charge mobility. These measurements help establish a robust model for practical application. Full article
(This article belongs to the Special Issue Organic and Hybrid Solar Cells for Efficient Solar Power Conversion)
Show Figures

Figure 1

18 pages, 8295 KB  
Article
Solution-Processed Bilayered ZnO Electron Transport Layer for Efficient Inverted Non-Fullerene Organic Solar Cells
by Walia Binte Tarique, Md Habibur Rahaman, Shahriyar Safat Dipta, Ashraful Hossain Howlader and Ashraf Uddin
Nanomanufacturing 2024, 4(2), 81-98; https://doi.org/10.3390/nanomanufacturing4020006 - 1 Apr 2024
Cited by 7 | Viewed by 3681
Abstract
Organic solar cells (OSCs) are becoming increasingly popular in the scientific community because of their many desirable properties. These features include solution processability, low weight, low cost, and the ability to process on a wide scale using roll-to-roll technology. Enhancing the efficiency of [...] Read more.
Organic solar cells (OSCs) are becoming increasingly popular in the scientific community because of their many desirable properties. These features include solution processability, low weight, low cost, and the ability to process on a wide scale using roll-to-roll technology. Enhancing the efficiency of photovoltaic systems, particularly high-performance OSCs, requires study into not only material design but also interface engineering. This study demonstrated that two different types of OSCs based on the PTB7-Th:IEICO-4F and PM6:Y6 active layers use a ZnO bilayer electron transport layer (ETL). The ZnO bilayer ETL comprises a ZnO nanoparticle (ZnO NP) and a ZnO layer created from a sol-gel. The effect of incorporating ZnO NPs into the electron transport layer (ETL) was studied; in particular, the effects on the electrical, optical, and morphological properties of the initial ZnO ETL were analyzed. The ability of ZnO films to carry charges is improved by the addition of ZnO nanoparticles (NPs), which increase their conductivity. The bilayer structure had better crystallinity and a smoother film surface than the single-layer sol-gel ZnO ETL. This led to a consistent and strong interfacial connection between the photoactive layer and the electron transport layer (ETL). Therefore, inverted organic solar cells (OSCs) with PTB7-Th:IEICO-4F and PM6:Y6 as photoactive layers exhibit improved power conversion efficiency and other photovoltaic properties when using the bilayer technique. Full article
Show Figures

Figure 1

18 pages, 5050 KB  
Article
Proposal and Numerical Analysis of Organic/Sb2Se3 All-Thin-Film Tandem Solar Cell
by Tarek I. Alanazi, Abdulaziz Alanazi, Ezzeddine Touti, Ahmed M. Agwa, Habib Kraiem, Mohana Alanazi, Abdulrahman M. Alanazi and Mona El Sabbagh
Polymers 2023, 15(11), 2578; https://doi.org/10.3390/polym15112578 - 5 Jun 2023
Cited by 14 | Viewed by 2390
Abstract
The low bandgap antimony selenide (Sb2Se3) and wide bandgap organic solar cell (OSC) can be considered suitable bottom and top subcells for use in tandem solar cells. Some properties of these complementary candidates are their non-toxicity and cost-affordability. In [...] Read more.
The low bandgap antimony selenide (Sb2Se3) and wide bandgap organic solar cell (OSC) can be considered suitable bottom and top subcells for use in tandem solar cells. Some properties of these complementary candidates are their non-toxicity and cost-affordability. In this current simulation study, a two-terminal organic/Sb2Se3 thin-film tandem is proposed and designed through TCAD device simulations. To validate the device simulator platform, two solar cells were selected for tandem design, and their experimental data were chosen for calibrating the models and parameters utilized in the simulations. The initial OSC has an active blend layer, whose optical bandgap is 1.72 eV, while the initial Sb2Se3 cell has a bandgap energy of 1.23 eV. The structures of the initial standalone top and bottom cells are ITO/PEDOT:PSS/DR3TSBDT:PC71BM/PFN/Al, and FTO/CdS/Sb2Se3/Spiro-OMeTAD/Au, while the recorded efficiencies of these individual cells are about 9.45% and 7.89%, respectively. The selected OSC employs polymer-based carrier transport layers, specifically PEDOT:PSS, an inherently conductive polymer, as an HTL, and PFN, a semiconducting polymer, as an ETL. The simulation is performed on the connected initial cells for two cases. The first case is for inverted (p-i-n)/(p-i-n) cells and the second is for the conventional (n-i-p)/(n-i-p) configuration. Both tandems are investigated in terms of the most important layer materials and parameters. After designing the current matching condition, the tandem PCEs are boosted to 21.52% and 19.14% for the inverted and conventional tandem cells, respectively. All TCAD device simulations are made by employing the Atlas device simulator given an illumination of AM1.5G (100 mW/cm2). This present study can offer design principles and valuable suggestions for eco-friendly solar cells made entirely of thin films, which can achieve flexibility for prospective use in wearable electronics. Full article
(This article belongs to the Special Issue Polymers for Electronics and Energy Devices)
Show Figures

Figure 1

12 pages, 4850 KB  
Article
Solution-Processable NiOx:PMMA Hole Transport Layer for Efficient and Stable Inverted Organic Solar Cells
by Tianyu Kong, Genjie Yang, Pu Fan and Junsheng Yu
Polymers 2023, 15(8), 1875; https://doi.org/10.3390/polym15081875 - 14 Apr 2023
Cited by 10 | Viewed by 3558
Abstract
For organic solar cells (OSCs), nickel oxide (NiOx) is a potential candidate as the hole transport layer (HTL) material. However, due to the interfacial wettability mismatch, developing solution-based fabrication methods of the NiOx HTL is challenging for OSCs with inverted [...] Read more.
For organic solar cells (OSCs), nickel oxide (NiOx) is a potential candidate as the hole transport layer (HTL) material. However, due to the interfacial wettability mismatch, developing solution-based fabrication methods of the NiOx HTL is challenging for OSCs with inverted device structures. In this work, by using N, N-dimethylformamide (DMF) to dissolve poly(methyl methacrylate) (PMMA), the polymer is successfully incorporated into the NiOx nanoparticle (NP) dispersions to modify the solution-processable HTL of the inverted OSCs. Benefiting from the improvements of electrical and surface properties, the inverted PM6:Y6 OSCs based on the PMMA-doped NiOx NP HTL achieves an enhanced power conversion efficiency of 15.11% as well as improved performance stability in ambient conditions. The results demonstrated a viable approach to realize efficient and stable inverted OSCs by tuning the solution-processable HTL. Full article
(This article belongs to the Special Issue Polymer Strategies in Organic and Perovskite Solar Cells)
Show Figures

Figure 1

14 pages, 4128 KB  
Article
Carbon Nanodots as Electron Transport Materials in Organic Light Emitting Diodes and Solar Cells
by Zoi Georgiopoulou, Apostolis Verykios, Kalliopi Ladomenou, Katerina Maskanaki, Georgios Chatzigiannakis, Konstantina-Kalliopi Armadorou, Leonidas C. Palilis, Alexander Chroneos, Evangelos K. Evangelou, Spiros Gardelis, Abd. Rashid bin Mohd Yusoff, Athanassios G. Coutsolelos, Konstantinos Aidinis, Maria Vasilopoulou and Anastasia Soultati
Nanomaterials 2023, 13(1), 169; https://doi.org/10.3390/nano13010169 - 30 Dec 2022
Cited by 7 | Viewed by 3892
Abstract
Charge injection and transport interlayers play a crucial role in many classes of optoelectronics, including organic and perovskite ones. Here, we demonstrate the beneficial role of carbon nanodots, both pristine and nitrogen-functionalized, as electron transport materials in organic light emitting diodes (OLEDs) and [...] Read more.
Charge injection and transport interlayers play a crucial role in many classes of optoelectronics, including organic and perovskite ones. Here, we demonstrate the beneficial role of carbon nanodots, both pristine and nitrogen-functionalized, as electron transport materials in organic light emitting diodes (OLEDs) and organic solar cells (OSCs). Pristine (referred to as C-dots) and nitrogen-functionalized (referred to as NC-dots) carbon dots are systematically studied regarding their properties by using cyclic voltammetry, Fourier-transform infrared (FTIR) and UV–Vis absorption spectroscopy in order to reveal their energetic alignment and possible interaction with the organic semiconductor’s emissive layer. Atomic force microscopy unravels the ultra-thin nature of the interlayers. They are next applied as interlayers between an Al metal cathode and a conventional green-yellow copolymer—in particular, (poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1′,3}-thiadiazole)], F8BT)—used as an emissive layer in fluorescent OLEDs. Electrical measurements indicate that both the C-dot- and NC-dot-based OLED devices present significant improvements in their current and luminescent characteristics, mainly due to a decrease in electron injection barrier. Both C-dots and NC-dots are also used as cathode interfacial layers in OSCs with an inverted architecture. An increase of nearly 10% in power conversion efficiency (PCE) for the devices using the C-dots and NC-dots compared to the reference one is achieved. The application of low-cost solution-processed materials in OLEDs and OSCs may contribute to their wide implementation in large-area applications. Full article
Show Figures

Figure 1

12 pages, 2871 KB  
Article
Improving the Efficiency of Organic Solar Cells with Methionine as Electron Transport Layer
by Yujie Xu, Hang Zhou, Pengyi Duan, Baojie Shan, Wenjing Xu, Jian Wang, Mei Liu, Fujun Zhang and Qianqian Sun
Molecules 2022, 27(19), 6363; https://doi.org/10.3390/molecules27196363 - 27 Sep 2022
Cited by 10 | Viewed by 2841
Abstract
Interface modification is an important way to get better performance from organic solar cells (OSCs). A natural biomolecular material methionine was successfully applied as the electron transport layer (ETL) to the inverted OSCs in this work. A series of optical, morphological, and electrical [...] Read more.
Interface modification is an important way to get better performance from organic solar cells (OSCs). A natural biomolecular material methionine was successfully applied as the electron transport layer (ETL) to the inverted OSCs in this work. A series of optical, morphological, and electrical characterizations of thin films and devices were used to analyze the surface modification effects of methionine on zinc oxide (ZnO). The analysis results show that the surface modification of ZnO with methionine can cause significantly reduced surface defects for ZnO, optimized surface morphology of ZnO, improved compatibility between ETL and the active layer, better-matched energy levels between ETL and the acceptor, reduced interface resistance, reduced charge recombination, and enhanced charge transport and collection. The power conversion efficiency (PCE) of OSCs based on PM6:BTP-ec9 was improved to 15.34% from 14.25% by modifying ZnO with methionine. This work shows the great application potential of natural biomolecule methionine in OSCs. Full article
Show Figures

Figure 1

16 pages, 3238 KB  
Article
Device Modeling of Organic Photovoltaic Cells with Traditional and Inverted Cells Using s-SWCNT:C60 as Active Layer
by Vijai M. Moorthy and Viranjay M. Srivastava
Nanomaterials 2022, 12(16), 2844; https://doi.org/10.3390/nano12162844 - 18 Aug 2022
Cited by 14 | Viewed by 2655
Abstract
This research work presents a thorough analysis of Traditional Organic Solar Cell (TOSC) and novel designed Inverted OSC (IOSC) using Bulk Hetero-Junction (BHJ) structure. Herein, 2D photovoltaic device models were used to observe the results of the semiconducting Single Wall Carbon Nanotube (s-SWCNT):C [...] Read more.
This research work presents a thorough analysis of Traditional Organic Solar Cell (TOSC) and novel designed Inverted OSC (IOSC) using Bulk Hetero-Junction (BHJ) structure. Herein, 2D photovoltaic device models were used to observe the results of the semiconducting Single Wall Carbon Nanotube (s-SWCNT):C60-based organic photovoltaic. This work has improved the BHJ photodiodes by varying the active layer thickness. The analysis has been performed at various active layer thicknesses from 50 to 300 nm using the active material s-SWCNT:C60. An analysis with various parameters to determine the most effective parameters for organic photovoltaic performance has been conducted. As a result, it has been established that IOSC has the maximum efficiency of 10.4%, which is higher than the efficiency of TOSC (9.5%). In addition, the active layer with the highest efficacy has been recorded using this material for both TOSC and IOSC Nano Photodiodes (NPDs). Furthermore, the diode structure and geometrical parameters have been optimized and compared to maximize the performance of photodiodes. Full article
(This article belongs to the Special Issue Abridging the CMOS Technology)
Show Figures

Figure 1

11 pages, 3789 KB  
Article
Graphene with Ni-Grid as Semitransparent Electrode for Bulk Heterojunction Solar Cells (BHJ-SCs)
by Martina Dianetti, Gianpaolo Susanna, Emanuele Calabrò, Giuseppina Polino, Martin Otto, Daniel Neumaier, Andrea Reale and Francesca Brunetti
Polymers 2022, 14(5), 1046; https://doi.org/10.3390/polym14051046 - 5 Mar 2022
Cited by 5 | Viewed by 2587
Abstract
In this work, we present the fabrication and characterization of bulk-heterojunction solar cells on monolayer graphene (MLG) with nickel-grids (Ni-grid) as semitransparent conductive electrode. The electrodes showed a maximum transmittance of 90% (calculated in 300–800 nm range) and a sheet resistance down to [...] Read more.
In this work, we present the fabrication and characterization of bulk-heterojunction solar cells on monolayer graphene (MLG) with nickel-grids (Ni-grid) as semitransparent conductive electrode. The electrodes showed a maximum transmittance of 90% (calculated in 300–800 nm range) and a sheet resistance down to 35 Ω/□. On these new anodes, we fabricated TCO free BHJ-SCs using PTB7 blended with PC70BM fullerene derivative as active layer. The best device exhibited a power conversion efficiency (PCE) of 4.2% in direct configuration and 3.6% in inverted configuration. The reference solar cell, realized on the ITO glass substrate, achieved a PCE of 6.1% and 6.7% in direct and inverted configuration respectively; for comparison we also tested OSCs only with simple Ni-grid as semitransparent and conductive electrode, obtaining a low PCE of 0.7%. The proposed approach to realize graphene-based electrodes could be a possible route to reduce the overall impact of the sheet resistance of this type of electrodes allowing their use in several optoelectronic devices. Full article
Show Figures

Graphical abstract

14 pages, 3208 KB  
Article
Mutual Diffusion of Model Acceptor/Donor Bilayers under Solvent Vapor Annealing as a Novel Route for Organic Solar Cell Fabrication
by Paweł Dąbczyński, Gabriela Wójtowicz and Jakub Rysz
Energies 2022, 15(3), 1033; https://doi.org/10.3390/en15031033 - 29 Jan 2022
Cited by 3 | Viewed by 2673
Abstract
The fabrication of bulk heterojunction organic solar cells (OSCs) is primarily based on a phase demixing during solution deposition. This spontaneous process is triggered when, as a result of a decrease in the solvent concentration, interactions between donor and acceptor molecules begin to [...] Read more.
The fabrication of bulk heterojunction organic solar cells (OSCs) is primarily based on a phase demixing during solution deposition. This spontaneous process is triggered when, as a result of a decrease in the solvent concentration, interactions between donor and acceptor molecules begin to dominate. Herein, we present that interdiffusion of the same molecules is possible when a bilayers of donors and acceptors are exposed to solvent vapor. Poly(3-hexyl thiophene) (P3HT), and poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT) were used as donors and two types of fullerene derivatives were used as acceptors: phenyl-C61-butyric acid methyl ester (PC60BM) and phenyl-C71-butyric acid methyl ester (PC70BM), Secondary ion mass spectrometry depth profiling revealed that the interpenetration of donors and acceptors induced by solvent vapor annealing was dependent on solvent vapor and component compatibility. Exposure to chloroform vapor resulted in a complete intermixing of both components. The mutual mixing increased efficiency of inverted solar cells prepared by solvent vapor annealing of model donor/acceptor bilayers. These results provide a new means for mixing incompatible components for the fabrication of organic solar cells. Full article
Show Figures

Figure 1

54 pages, 64551 KB  
Review
Recent Advances in Hole-Transporting Layers for Organic Solar Cells
by Cinthya Anrango-Camacho, Karla Pavón-Ipiales, Bernardo A. Frontana-Uribe and Alex Palma-Cando
Nanomaterials 2022, 12(3), 443; https://doi.org/10.3390/nano12030443 - 28 Jan 2022
Cited by 67 | Viewed by 8834
Abstract
Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC’s advancements, the development of efficient and stable interface materials is essential to achieve high performance, [...] Read more.
Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC’s advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Photovoltaic Applications)
Show Figures

Graphical abstract

15 pages, 2639 KB  
Article
Optimizing Device Structure of PTB7-Th:PNDI-T10 Bulk Heterojunction Polymer Solar Cells by Enhancing Optical Absorption
by Daniel Dodzi Yao Setsoafia, Kiran Sreedhar Ram, Hooman Mehdizadeh Rad, David Ompong, Naveen Kumar Elumalai and Jai Singh
Energies 2022, 15(3), 711; https://doi.org/10.3390/en15030711 - 19 Jan 2022
Cited by 5 | Viewed by 2690
Abstract
Using the optical transfer matrix method, we optimized the layered structure of a conventional and an inverted BHJ OSC with the active layer made of blended PTB7-Th:PNDI-T10 by maximizing the optical absorption and, hence, the JSC. The maximum [...] Read more.
Using the optical transfer matrix method, we optimized the layered structure of a conventional and an inverted BHJ OSC with the active layer made of blended PTB7-Th:PNDI-T10 by maximizing the optical absorption and, hence, the JSC. The maximum JSC thus obtained from the optimised structure of the inverted OSC was 139 Am−2 and that of the conventional OSC was 135 Am−2. Simulation of the electric field distribution in both inverted and conventional OSCs showed that the formation of a single CIP was obtained in the active layer of thickness 105 nm in both OSCs. As the light incidents from the ITO side, it was found that excitons were generated more closely to ITO electrode, which favors the efficient charge transport and collection at the opposite electrodes in the inverted OSC, which produces higher JSC. Full article
(This article belongs to the Special Issue Advances in Power Electronics Technologies)
Show Figures

Graphical abstract

17 pages, 2588 KB  
Article
Sulfonate-Conjugated Polyelectrolytes as Anode Interfacial Layers in Inverted Organic Solar Cells
by Elisa Lassi, Benedetta Maria Squeo, Roberto Sorrentino, Guido Scavia, Simona Mrakic-Sposta, Maristella Gussoni, Barbara Vercelli, Francesco Galeotti, Mariacecilia Pasini and Silvia Luzzati
Molecules 2021, 26(3), 763; https://doi.org/10.3390/molecules26030763 - 2 Feb 2021
Cited by 7 | Viewed by 3683
Abstract
Conjugated polymers with ionic pendant groups (CPEs) are receiving increasing attention as solution-processed interfacial materials for organic solar cells (OSCs). Various anionic CPEs have been successfully used, on top of ITO (Indium Tin Oxide) electrodes, as solution-processed anode interlayers (AILs) for conventional devices [...] Read more.
Conjugated polymers with ionic pendant groups (CPEs) are receiving increasing attention as solution-processed interfacial materials for organic solar cells (OSCs). Various anionic CPEs have been successfully used, on top of ITO (Indium Tin Oxide) electrodes, as solution-processed anode interlayers (AILs) for conventional devices with direct geometry. However, the development of CPE AILs for OSC devices with inverted geometry is an important topic that still needs to be addressed. Here, we have designed three anionic CPEs bearing alkyl-potassium-sulfonate side chains. Their functional behavior as anode interlayers has been investigated in P3HT:PC61BM (poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester) devices with an inverted geometry, using a hole collecting silver electrode evaporated on top. Our results reveal that to obtain effective anode modification, the CPEs’ conjugated backbone has to be tailored to grant self-doping and to have a good energy-level match with the photoactive layer. Furthermore, the sulfonate moieties not only ensure the solubility in polar orthogonal solvents, induce self-doping via a right choice of the conjugated backbone, but also play a role in the gaining of hole selectivity of the top silver electrode. Full article
Show Figures

Graphical abstract

19 pages, 6153 KB  
Article
Characterising Exciton Generation in Bulk-Heterojunction Organic Solar Cells
by Kiran Sreedhar Ram, Hooman Mehdizadeh-Rad, David Ompong, Daniel Dodzi Yao Setsoafia and Jai Singh
Nanomaterials 2021, 11(1), 209; https://doi.org/10.3390/nano11010209 - 15 Jan 2021
Cited by 16 | Viewed by 3713
Abstract
In this paper, characterisation of exciton generation is carried out in three bulk-heterojunction organic solar cells (BHJ OSCs)—OSC1: an inverted non-fullerene (NF) BHJ OSC; OSC2: a conventional NF BHJ OSC; and OSC3: a conventional fullerene BHJ OSC. It is found that the overlap [...] Read more.
In this paper, characterisation of exciton generation is carried out in three bulk-heterojunction organic solar cells (BHJ OSCs)—OSC1: an inverted non-fullerene (NF) BHJ OSC; OSC2: a conventional NF BHJ OSC; and OSC3: a conventional fullerene BHJ OSC. It is found that the overlap of the regions of strong constructive interference of incident and reflected electric fields of electromagnetic waves and those of high photon absorption within the active layer depends on the active layer thickness. An optimal thickness of the active layer can thus be obtained at which this overlap is maximum. We have simulated the rates of total exciton generation and position dependent exciton generation within the active layer as a function of the thicknesses of all the layers in all three OSCs and optimised their structures. Based on our simulated results, the inverted NF BHJ OSC1 is found to have better short circuit current density which may lead to better photovoltaic performance than the other two. It is expected that the results of this paper may provide guidance in fabricating highly efficient and cost effective BHJ OSCs. Full article
(This article belongs to the Special Issue Perovskite Nanostructures: From Material Design to Applications)
Show Figures

Figure 1

Back to TopTop